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Abstract

Introduction: We explored what combination of blood-based biomarkers (amyloid

beta [Aβ]1-42/1-40, phosphorylated tau [p-tau]181, neurofilament light [NfL], glial fib-

rillary acidic protein [GFAP]) differentiates Alzheimer’s disease (AD) dementia, fron-

totemporal dementia (FTD), and dementia with Lewy bodies (DLB).

Methods:We measured the biomarkers with Simoa in two separate cohorts (n = 160

and n = 152). In one cohort, Aβ1-42/1-40 was also measured with mass spectrometry

(MS). We assessed the differential diagnostic value of the markers, by logistic regres-

sion withWald’s backward selection.

Results: MS and Simoa Aβ1-42/1-40 similarly differentiated AD from controls. The

Simoa panel that optimally differentiated AD from FTD consisted of NfL and p-

tau181 (area under the curve [AUC] = 0.94; cohort 1) or NfL, GFAP, and p-tau181

(AUC = 0.90; cohort 2). For AD from DLB, the panel consisted of NfL, p-tau181, and

GFAP (AUC= 0.88; cohort 1), and only p-tau181 (AUC= 0.81; cohort 2).

Discussion: A combination of plasma p-tau181, NfL, and GFAP, but not Aβ1-42/1-40,
might be useful to discriminate AD, FTD, andDLB.
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1 BACKGROUND

Dementia is one of the major causes of disability and dependency

among older people and affects ≈50 million people worldwide.1

Alzheimer’s disease (AD) is the most common form of dementia and

represents ≈70% of cases,2 followed by frontotemporal dementia

(FTD) and dementia with Lewy bodies (DLB). To support the clinical

AD diagnosis, amyloid beta (Aβ) and phosphorylated tau (p-tau) are

currently measured in the cerebrospinal fluid (CSF) or visualized on

positron emission tomography (PET) scans.2 Efforts are ongoing to
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translate these markers into blood-based biomarkers, with promising

results.3 There are no blood-based biomarkers available for specifi-

cally theFTDandDLBpathologies, butAD-specific biomarkersormore

general neurodegenerative and astrocyte activation biomarkers might

be useful to differentiate patients with AD dementia from patients

with other dementias.4 Being able tomeasure different aspects of neu-

rodegenerativedementias comprehensively in aminimally invasive and

low-cost approach, could contribute to accurate differential diagnosis

in an early stage of the diagnostic process. This could accelerate drug

development and helpwith timely treatment and patientmanagement.
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Plasma Aβ1-42/1-40 and p-tau181 can be used to discriminate amy-

loid PET positive and negative individuals across the clinical AD

continuum.5–11 Furthermore, elevated plasma p-tau181 levels could

accurately differentiate patientswithAD fromFTD.12–19 Glial fibrillary

acidic protein (GFAP) is a major constituent of reactive astrocytes, and

reflects neuronal injury and immune-related processes.20 Combined

analysis of plasma GFAP with Aβ1-42/1-40 improved the prediction of

amyloid PET status.6,7 Furthermore, blood-based GFAP was increased

in AD, DLB, and some variants of FTD compared to non-demented

controls, suggesting use as a cross-dementia biomarker.21,22 Neurofil-

ament light (NfL) is a neurological damage biomarker, with especially

high levels in FTD and to a lesser extent in AD,23,24 suggesting NfL

could contribute to the differential diagnosis between AD and FTD.23

A new Simoa multiplex assay was developed that measures Aβ1-42,
Aβ1-40, NfL, and GFAP simultaneously with high sensitivity and

selectivity.25 It may be interesting and informative to add p-tau181 to

this multiplex. How such a panel of combined markers could improve

differential diagnoses, however, remains to be established. Further-

more, up to now, it seems that the Aβ1-42/1-40 ratio, alone or as a

composite with amyloid beta precursor protein (APP669-711), reaches

a higher accuracy for AD when measured with immunoprecipitation

mass spectrometry (IPMS) than immune assay based methods such as

Simoa.8–11,26 It remains to be established if a multiplex panel either

solely based on Simoa, or in combination with an IPMS Aβ1-42/1-40
method, would optimally provide a differential diagnosis of AD, DLB,

and FTD.

Themain goal of this studywas to explore the differential diagnostic

value of combinations of Aβ1-42/1-40 ratio, measured by Simoa or IPMS,

GFAP, NfL, and p-tau181.

2 METHODS

2.1 Clinical samples

Cohort 1 consisted of a selection of 160 participants from the Amster-

dam Dementia Cohort27 based on equal diagnostic group size, avail-

ability of CSF biomarker data, and availability of ethylenediaminete-

traacetic acid (EDTA) plasma samples in the Amsterdam Dementia

Biobank. Forty participants were controls (21 with psychiatric symp-

toms and 19 with subjective cognitive decline), 40 had AD dementia,

40 had FTD (11 with FTD with motor neuron disease [FTD-motor],

29 with FTD with primary progressive aphasia [FTD-PPA]), and 40

had DLB. Cohort 2 consisted of 152 participants, also from the Ams-

terdam Dementia Cohort, based on equal diagnostic group sizes and

availability of EDTA plasma in the Amsterdam Dementia Biobank, but

were selected to have a more comparable age;27 38 were controls

(all with subjective cognitive decline), 38 had AD dementia, 38 had

FTD (six with FTD-motor, 32 with FTD-PPA), and 38 had DLB. All vis-

ited the Alzheimer Center Amsterdam for extensive dementia screen-

ing, consisting of neurological, physical, and neuropsychological evalu-

ation; electroencephalography; brainmagnetic resonance imaging; and

CSF AD biomarker analysis.27,28 Diagnoses were made upon multi-

RESEARCH INCONTEXT

1. Systematic review: We reviewed the current literature

on blood-based biomarkers for dementia using PubMed,

with a focus on the biomarkers amyloid beta (Aβ), phos-
phorylated tau (p-tau), neurofilament light (NfL), and glial

fibrillary acidic protein (GFAP). The value of combina-

tion of these blood-based biomarkers in discriminating

between Alzheimer’s disease (AD) dementia and other

types of dementia remained to be explored.

2. Interpretation: We observed that a combination of

plasma p-tau181, NfL, and GFAP, but not the Aβ1-42/1-40
ratio, was able to discriminate patients with AD demen-

tia from patients with frontotemporal dementia or from

patients with dementia with Lewy bodies, with high accu-

racy.

3. Future directions: Our proposed blood-based biomarker

panel should next be validated in a larger cohort, which

should include the development and validation of cutoffs

tomake such a panel useful in daily clinical practice.

disciplinary consensus based on applicable clinical criteria.2,29–32 All

patients with AD dementia were CSF amyloid positive, and all controls

were CSF amyloid negative.

Written informed consent to use medical data and biomaterials for

researchpurposeswas inplace. The studywas approvedby theVUUni-

versity medical center ethical committee, and in accordance with the

Declaration of Helsinki.

2.2 CSF Aβ1-42 measurements

CSF Aβ1-42 concentrations were available for all samples of cohort 1

and for n= 148 (97%) of cohort 2. CSF AD biomarkers of 120 and 140

participants were measured with Innotest enzyme-linked immunosor-

bent assays and of 40 and 8 participants with Elecsys, for cohort 1

and cohort 2, respectively. Innotest Aβ1-42 concentrations were cor-

rected for the drift in biomarker concentrations that occurred over the

years.33 The drift-corrected cut-off for Innotest for CSF amyloid pos-

itivity was 813 pg/mL.33 The cut-off for Elecsys was 1000 pg/mL.34

To determine the correlation with the plasma markers, Elecsys results

were transformed to the predicted Innotest concentration using the

formula InnotestAβ1-42= (ElecsysAβ1-42 +365)/1.87.34

2.3 Plasma biomarker measurements

K2EDTA-plasma samples were obtained through venipuncture. After

10-minute centrifugation at 1,800 x g within 2 hours, plasma was
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aliquoted in 0.5 mL aliquots in polypropylene tubes and stored at

–80◦C.

2.3.1 Simoa measurements

Samples were thawed at room temperature and centrifuged at 10,000

x g for 10 minutes. For cohort 1, samples were measured using a pre-

commercial Neurology 4-plex E kit (Quanterix) that measures Aβ1-42,
Aβ1-40, GFAP, and NfL simultaneously. This Neurology 4-plex E was

developed in a collaboration between Amsterdam University Medi-

cal Centers, and biotechnology companies ADx NeuroSciences and

Quanterix.35 For cohort 2, the commercial Neurology 4-plex E kit

(Quanterix) was used, which gave different absolute values than the

pre-commercial assay. In the next freeze–thaw cycle, p-tau181 was

measured in 149 of the 160 participant samples of cohort 1 and in all

samples of cohort 2, using the pTau-181 V2 Advantage kit (Quanterix;

same kit batch for both cohorts). Allmeasurementswere performed on

the SimoaHDx analyzer, according tomanufacturer’s instructions.

2.3.2 IPMS

Aβ1-42, Aβ1-40, and APP669-711 were measured in a second zero-

thaw aliquot of the samples of cohort 1 with matrix-assisted

laser desorption/ionization–linear time-of-flight mass spectrometer

(AXIMA Assurance, Shimadzu) after two consecutive IP steps with

Dynabeads M-270 Epoxy used as beads and mouse monoclonal anti-

Aβ antibodies 6E10 and 4G8 to coat the beads.8 The compositemarker

was based on the average of the Z score of Aβ1-40/1-42 ratio and

APP669-711/Aβ1-42 ratio (details in the supporting information). Cen-

treHospitalier Universitaire (CHU) ofMontpellier performed themea-

surements and modified the normalization from the original method,

and followed their own quality control. One APP669-711 measurement

failed; therefore, the composite is available for 159 of the 160 partici-

pants.

2.4 Statistics

The IPMSAβ1-42/1-40 ratio,NfL,GFAP, andp-tau181were right skewed,
thus natural log transformed. In cohort 1, one outlier IPMS Aβ1-42/1-40
ratio in the DLB group of 34x the mean was excluded, so was one

CSF Aβ1-42 concentration in the FTD group of 4x the mean (note:

only excluded in analyses with continuous data). In cohort 1, one out-

lier NfL concentration in the FTD group of 15x the mean (351 pg/mL)

and a GFAP outlier in the AD group of 6x the mean (613 pg/mL)

were excluded. We used analysis of variance with Bonferroni correc-

tion to assess biomarker differences between the diagnostic groups.

Pearson correlations were assessed for the Aβ1-42/1-40 ratios mea-

sured with IPMS and 4-plex, and the difference in strength between

two correlations was tested using methods described in Diedenhofen

and Musch.36 Receiver operating characteristic (ROC) analyses deter-

mined the differentiation accuracy of the plasmamarkers. Areas under

the curve (AUCs) were compared with the DeLong test.37 Sensitiv-

ity and specificity were determined at Youden indices.38 We selected

biomarker combinations using the automated backward elimination

logistic regression procedure based on the Wald statistic. As a sensi-

tivity analysis, we ran the same models including the other Aβ1-42/1-40
ratio or IPMS composite score, which did not change the results (data

not shown). Statistical analyses were performed using SPSS (version

26) and R (version 3.6.1, packages Cocor, pROC).

3 RESULTS

3.1 Patient characteristics

Characteristics and fluid biomarker concentrations of the cohorts are

shown in Table 1. In cohort 1, patients with FTD and DLB were older

than the controls andpatientswithAD. In cohort 2, all four groupswere

of comparable age, but there were more males in the DLB group than

in the other diagnostic groups. For both cohorts, Mini-Mental State

Examination scores of patients with FTD andDLBwere between those

of controls and patients with AD. In both cohorts, NfL (r = 0.35–0.37,

both:P< .001) andGFAP (r=0.27–0.39, both:P< .001) correlatedwith

age, whereas p-tau181 correlated with age only in cohort 2 (r = 0.22,

P = .007; cohort 1: r = 0.08, P = .34) and 4-plex Aβ1-42/1-40 correlated
with ageonly in cohort 1 (r=–0.20,P= .01; cohort 2–0.11,P= .18). The

IPMS Aβ1-42/1-40 ratio (r = –0.08, P = .31) and IPMS composite (r = –

0.04, P = .63) did not correlate with age. There were no differences in

biomarker concentrations betweenmales and females within the diag-

nostic groups in either of the cohorts.

3.2 Comparison of Aβ1-42/1-40 ratio between the
platforms: 4-plex and IPMS

First, we assessed in cohort 1 how the Simoa and IPMS platforms

for Aβ1-42/1-40 measurement compare. The Aβ1-42/1-40 ratio measured

with 4-plex and with IPMS were only moderately correlated (r = 0.34,

P < .001, n = 159; Figure 1A). The 4-plex Aβ1-42/1-40 ratio correlated

with similar strength with CSF Aβ1-42 (r = 0.34, P < .001, n = 159; Fig-

ure 1B) as the IPMSplasmaAβ1-42/1-40 ratio (r=0.46,P< .001, n=158,

∆r=0.12,P= .14; Figure 1C). Assessing differences betweenCSF amy-

loid negative controls and CSF amyloid positive patients with AD, to

decide which assay should be selected for our further analyses, we

observed that with the 4-plex, median Aβ1-42/1-40 ratio was decreased
16% in patients with AD (median 0.12 [interquartile range (IQR): 0.11–

0.13] pg/mL) compared to controls (0.14 [0.13–0.16], P< .001; Table 1;

Figure 2A), and with the IPMS Aβ1-42/1-40 ratio this decrease was 17%
in patients with AD (0.037 [0.035–0.041] pg/mL) compared to con-

trols (0.044 [0.042—0.048] pg/mL, P < .001; Table 1; Figure 2B). The

4-plex Aβ1-42/1-40 ratio differentiated controls and patients with AD

with AUC = 0.80 (95% confidence interval [CI]: 0.70–0.90, P < .001;

Figure 2C) and a sensitivity of 0.90 and a specificity of 0.65. The IPMS
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F IGURE 1 Correlations between amyloid plasmamarkers and CSFmarkers. A, Pearson correlation between the 4-plex and IPMSAβ1-42/1-40
ratio. B, Pearson correlation between the 4-plex Aβ1-42/1-40 ratio and CSF Aβ1-42. C, Pearson correlation between the IPMSAβ1-42/1-40 ratio and
CSF Aβ1-42. Shape indicates clinical diagnosis, color indicates CSF amyloid status. Aβ, amyloid beta; AD, Alzheimer’s disease; CSF, cerebrospinal
fluid; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; IPMS, immunoprecipitationmass spectrometry

F IGURE 2 Differentiation accuracy of amyloid markers in CSF amyloid negative controls and CSF amyloid positive AD patients. A, The
Aβ1-42/1-40 ratio measured with the Simoa 4-plex. B, The Aβ1-42/1-40 ratio measuredwith IPMS. C, ROC curves of the two plasma amyloidmarker
for differentiation between control and AD (in blue: Simoa; in green: IPMS). There was no difference in accuracy between the two ratios. Aβ,
amyloid beta; AD, Alzheimer’s disease; AUC, area under the curve; CSF, cerebrospinal fluid; IPMS, immunoprecipitationmass spectrometry; ROC,
receiver operating characteristic

Aβ1-42/1-40 ratio had a similarAUCof 0.82 (95%CI: 0.72–0.92,P< .001;

Figure 2C), but a sensitivity of 0.78 and a specificity of 0.83. The perfor-

mance of the 4-plex and IPMSAβ1-42/1-40 ratio did not differ in terms of

AUC (∆AUC= 0.02, DeLong P= .83) and was similar to the IPMS com-

posite (∆AUC = 0.01, DeLong P = .83, Figure S1 in supporting infor-

mation). Given the similarity in AUCs and the value of the Simoa 4-

plex as a multiplex assay that measures several independent markers

simultaneously and requires less volume than IPMS, we continued the

analyses for differential diagnostic value with the 4-plex Aβ1-42/1-40
ratio as amyloid marker.
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F IGURE 3 4-Plex plasma (A) Aβ1-42/1-40, (B) NfL, (C) GFAP, and (D) Single-plex p-tau181 in cohort 1. Aβ, amyloid beta; AD, Alzheimer’s disease;
CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; GFAP, glial fibrillary acidic protein; NfL, neurofilament
light; p-tau, phosphorylated tau. ***P< .001, **P< .01, *P< .05

3.3 Differential diagnosis

In addition to the Aβ1-42/1-40 ratio, we measured NfL, GFAP, and p-

tau181. In cohort 1, the Aβ1-42/1-40 ratio was decreased not only in

patientswithAD (P< .001), but also in patientswith FTD (P= .010) and

DLB (P = .002) compared to controls. The Aβ1-42/1-40 ratio did not dif-
fer among the AD, FTD, or DLB group in this cohort (P > .48). NfL con-

centrations were increased in all diagnostic groups compared to con-

trols (all P < .001), and were highest in patients with FTD. GFAP con-

centrations were increased in all diagnostic groups compared to con-

trols (all P< .001), andwere highest in patients with AD. P-tau181 con-

centrations were increased in patients with AD compared to the other

dementia groups and controls (P≤.001; Figure 3, Table 1).

When measured in cohort 2, the Aβ1-42/1-40 ratio was decreased

only in patients with AD (P = .002) compared to controls. Similar to

cohort 1, the Aβ1-42/1-40 ratio did not differ among theAD, FTD, orDLB

groups (all: P = 1.000). NfL concentrations were increased in all diag-

nostic groups compared to controls (all: P < .015). NfL concentrations

were again highest in patients with FTD. Contrary to cohort 1, GFAP

was increased in patients with AD (P < .001) and in patients with DLB

(P = .042) compared to controls, but not in patients with FTD com-

pared to controls (P = .060). GFAP was also increased in patients with

AD compared to patients with FTD (P = .011) and patients with DLB

(P = .017). In agreement with findings in cohort 1, p-tau181 concen-

trations were increased in AD compared to the other dementia groups

and compared to controls (all: P < .007; Figure S2 in supporting infor-

mation; Table 1).

3.4 Classification of patients by the biomarkers

The AUCs of the ROC curve for differentiation between patients with

AD and FTD and between patients with AD and DLB are detailed

in Table 2. To define the panels, Wald’s backward elimination logis-

tic regression analysis was performed among all biomarkers (4-plex

Aβ1-42/1-40, NfL, GFAP, and single-plex p-tau181).

3.5 AD versus FTD

In cohort 1, Aβ1-42/1-40 had the lowest AUC (AUC=0.62, 95%CI: 0.49–

0.75, P = .065) and p-tau181 had the highest AUC (AUC = 0.85, 95%

CI: 0.75–0.94, P< .001, Figure 4A) for differentiating patients with AD

from patients FTD. The combination of NfL and p-tau181was selected

as the optimal differential diagnostic panel for AD versus FTD with an

AUC of 0.94 (95%CI: 0.87–1.00, P< .001, sens: 0.87, spec: 1.00).
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TABLE 2 Diagnostic accuracy of the 4-plex Aβ1-42/1-40 ratio, NfL, GFAP, p-tau181, and optimal panel

Cohort 1

AD vs. FTD n AUC 95%CI P-value Sensitivity Specificity

Aβ1-42/1-40 ratio 40 vs 40 0.62 0.49–0.75 .065 0.38 0.95

NfL 40 vs 40 0.79 0.69–0.89 <.001 0.48 0.98

GFAP 40 vs 40 0.81 0.71–0.90 <.001 0.75 0.73

P-tau181 36 vs 38 0.85 0.75–0.94 <.001 0.74 0.97

Panel (NfL, P-tau181) 36 vs 38 0.94 0.87–1.00 <.001 0.87 1.00

AD vs. DLB

Aβ1-42/1-40 ratio 40 vs 40 0.60 0.47–0.73 .124 0.38 0.95

NfL 40 vs 40 0.50 0.37–0.64 .946 0.28 0.98

GFAP 40 vs 40 0.69 0.57–0.81 .004 0.50 0.85

P-tau181 36 vs 37 0.75 0.63–0.87 <.001 0.54 0.97

Panel (NfL, GFAP, p-tau181) 36 vs 37 0.88 0.80–0.96 <.001 0.84 0.81

Cohort 2

AD vs. FTD n AUC 95%CI P-value Sensitivity Specificity

Aβ1-42/1-40 ratio 38 vs 38 0.58 0.46–0.71 .205 0.63 0.55

NfL 38 vs 37 0.78 0.68–0.88 <.001 0.89 0.55

GFAP 37 vs 38 0.71 0.60–0.83 .001 0.45 0.95

P-tau181 38 vs 38 0.71 0.59–0.83 .002 0.66 0.76

Panel (NfL, GFAP, p-tau181) 37 vs 37 0.90 0.82–0.98 <.001 0.81 0.92

AD vs. DLB

Aβ1-42/1-40 ratio 38 vs 38 0.56 0.43–0.69 .372 0.29 0.90

NfL 38 vs 38 0.63 0.51–0.76 .045 0.55 0.71

GFAP 37 vs 38 0.65 0.52–0.77 .027 0.40 0.87

P-tau181 38 vs 38 0.81 0.71–0.91 <.001 0.76 0.76

Panel (p-tau181) 38 vs 37 0.81 0.71–0.91 <.001 0.76 0.76

Notes: The panelswere selectedwith backward logistic regression basedonWald’s statistics, among the plasmamarkersAβ1-42/1-40, NfL,GFAP, andp-tau181.
Sensitivity and specificity are at Youden’s indices.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; AUC, area under the curve; CI, confidence interval; DLB, dementia with Lewy bodies; FTD, fron-

totemporal dementia; GFAP, glial fibrillary acidic protein; NfL, neurofilament light; p-tau181, phosphorylated tau 181.

In cohort 2, Aβ1-42/1-40 had the lowest AUC (AUC = 0.58, 95% CI:

0.46–0.71, P = .205), similar to cohort 1, but NfL had the highest AUC

(AUC = 0.78, 95% CI: 0.68–0.88, P < .001, Figure 4C) for differentiat-

ing patients with AD from patients with FTD. The combination of NfL,

GFAP, and p-tau181 was selected in the cohort 2 as the optimal differ-

ential diagnostic panel for ADversus FTDwith anAUCof 0.88 (95%CI:

0.80–0.96, P< .001, sens: 0.84, spec: 0.81).

3.6 AD versus DLB

In cohort 1, NfL had the lowest AUC (AUC = 0.50, 95% CI: 0.37–0.64,

P = .946) and p-tau181 had the highest AUC (AUC = 0.75, 95% CI:

0.63–0.87, P < .001, Figure 4B) for differentiating patients with AD

from patients with DLB. The combination of NfL, GFAP, and p-tau181

was selected as the optimal differential diagnostic panel for AD versus

DLBwith anAUCof 0.88 (95%CI: 0.80–0.96, P< .001, sens: 0.84, spec:

0.81).

In cohort 2, Aβ1-42/1-40 had the lowest AUC (AUC = 0.56, 95% CI:

0.43–0.69, P = .372) and similar to cohort 1, p-tau181 had the high-

est AUC (AUC = 0.81, 95% CI: 0.71–0.91, P < .001, Figure 4D) for dif-

ferentiating patients with AD from patients with DLB. P-tau181 alone

was selected as the optimal differential diagnostic panel for AD versus

DLBwith anAUCof 0.81 (95%CI: 0.71–0.91, P< .001, sens: 0.76, spec:

0.76).

4 DISCUSSION

We found that the 4-plex and IPMSAβ1-42/1-40 ratio and IPMS compos-

ite performed similarly in differentiating CSF amyloid positive patients

with AD and CSF amyloid negative controls. Furthermore, we showed
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F IGURE 4 ROCAUCs for the different biomarkers. Cohort 1: (A) Differentiation between AD and FTD. The panel consists of NfL and
p-tau181. (B) Differentiation between AD andDLB. The panel consists of NfL, GFAP and P-tau181. Cohort 2: (C) Differentiation between AD and
FTD. The panel consists of NfL, GFAP, and P-tau181. (D) Differentiation between AD andDLB. The panel consists of p-tau. The panels were
corrected for age and sex. Aβ, amyloid beta; AD, Alzheimer’s disease; AUC, area under the curve; CSF, cerebrospinal fluid; DLB, dementia with
Lewy bodies, FTD, frontotemporal dementia; GFAP, glial fibrillary acidic protein; NfL, neurofilament light; p-tau181, phosphorylated tau 181; ROC,
receiver operating characteristic

that the plasma Aβ1-42/1-40 ratio, NfL, GFAP, and p-tau181 differ

between diagnostic groups. All markers showed a largely similar pat-

tern of differences between the diagnostic groups in both cohort 1 and

cohort 2, though the optimal panel for differential diagnosis differed

between the cohorts. Our data suggest that, depending on patient

characteristics (e.g., age, sex), a plasma biomarker panel for optimal

differentiation between AD and FTD, and between AD and DLB, will

include plasma p-tau181but not plasmaAβ1-42/1-40 ratio, andwill likely
include plasmaGFAP and plasmaNfL.

We hypothesized that the IPMS would perform better than the

4-plex, because the differentiation accuracy for amyloid positivity in

cohorts was higher in IPMS studies (AUC range 0.84–0.89)8–10,39 than

in Simoa studies (AUC range 0.73–0.77).7,40 Also, two recent head-

to-head studies showed that IPMS Aβ1-42/1-40 outperformed Simoa

Aβ1-42/1-40.11,26 The similarity in performance in our study could be

due to our cohort selection, which includes two extremes; CSF amy-

loid positive symptomatic AD patients compared to CSF amyloid neg-

ative controls. In a preclinical cohort, the differences in plasma amy-

loid might be more subtle and better reflected with IPMS. In addi-

tion, the IPMS analyses were performed with the same method but by

a different research group than described in this recent comparison

study.26 Inter-laboratory variability and modifications in assay set-up

could be an explanation for the difference in performance. IPMS has

the advantage of high assay specificity and no interference of the sam-

ple matrix.41 The 4-plex assay uses antibodies that are highly specific

for full-length Aβ1-42 and Aβ1-40, just like IPMS.35

We found that p-tau181 had often the highest accuracy in differ-

entiating AD from FTD, and AD from DLB, and was included as a dis-

criminatory biomarker in both panels for both cohorts. Earlier studies

by us and others also convincingly showed that p-tau181 is a highly
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specific marker for AD pathology.12–19 That p-tau181 is useful to dif-

ferentiate patients with AD from patients with DLB has not been

reported extensively yet. In line with earlier publications,23,42–44 we

found that NfL is strongly increased in patients with FTD compared to

AD, which explains that it was included in the AD versus FTD panel for

both cohort 1 and cohort 2.GFAP showed a similar pattern to p-tau181

for differential diagnoses, but with lower or comparable accuracy than

p-tau181. Specifically, GFAP was selected in only cohort 1 in the AD

versus DLB panel and only in cohort 2 in the AD versus FTD panel. This

suggests that GFAP might be of added value to p-tau181 in a differen-

tial diagnostic panel, but it depends on the patient characteristics. FTD

andDLBpatientswere older thanADdementia patients in cohort 1 but

not in cohort 2, andover the cohorts,weobserved relationships of both

NfL and GFAPwith age.

The observed high accuracy of GFAP as a standalonemarker for AD

suggests that this marker reflects the process of Aβ aggregates trig-

gering a neuroinflammatory state and promoting glial cell activation.45

Theprimarymorphological change in astrogliosis is hypertrophy,which

is linked to an increase in expression of intermediate filaments such

as GFAP.46 Astrocytes are the most prevalent cell types in the brain,

thus even if only a small amount of GFAP is released per cell, this

may still be a major response that may result in high GFAP concen-

trations in blood. In addition, in AD, GFAP was increased in DLB com-

pared to controls in both cohorts, with concentrations between con-

trol and AD,21 which was driven by the CSF amyloid positive patients

with DLB. GFAP levels were also increased in FTD patients compared

to controls in cohort 1, to a lesser extent than in AD. Of note, we could

not reproduce this in our more age-matched cohort 2. A recent study

has shown that GFAP concentrations can be increased in symptomatic

progranulin (GRN)mutation carriers.47 We lack the genetic data to ver-

ify this in our cohort. The 4-plex Aβ1-42/1-40 ratio showed a similar pat-

tern of changes as p-tau181 and GFAP, being deviated in patients with

AD, though the differentiation accuracy was lower than for p-tau181

and GFAP (AUC > 0.56, P ≤ .372). Few studies have focused on the

Aβ1-42/1-40 ratio in neurodegenerative diseases outside of theAD spec-

trum thus far. One study measured Aβ1-42/1-40 with Simoa in controls,

patients with mild cognitive impairment (MCI), AD, and across differ-

ent FTD syndromes but did not find a difference among all groups.12

Similarly, our results shownodifferential diagnostic valueofAβ1-42/1-40
across patients with AD, FTD, or DLB.

In both cohorts, the differentiation accuracy between AD and FTD

strongly improved by using biomarker panels compared to single

biomarkers, except that based on our cohort 2, p-tau181was sufficient

as a single marker to differentiate between AD and DLB. This is likely

the result of the larger number of CSF amyloid negative patients with

DLB in cohort 2, which results in smaller overlap in the p-tau181 con-

centrations of the AD andDLB groups. Every biomarker tested reflects

a different aspect of AD pathology or brain damage in general. In the

future, these markers should be tested in a larger and more heteroge-

neous population, for example, to define cut-off values for clinical use.

Our exploratory results, however, suggest that an algorithm based on

NfL, GFAP, and p-tau as plasma biomarkers could provide an indication

of probability per clinical diagnosis. Combinedwith clinical assessment

this could help provide differential diagnoses ofADandother neurode-

generative diseases and support clinical trial inclusion in a minimally

invasive and low-cost manner.48

This study had several limitations. First, our cohorts were rela-

tively small and were included from our memory clinic only and did

not reflect a broader population of people with dementia, that is, with

older patients with AD. As a result, our AD patients typically have

less copathology, which might have influenced our panel selections. It

would also be interesting to assess whether our panels are also suc-

cesful in differentiating among the MCI stages of DLB, FTD, and AD.

Second, we used two different batches of the Neurology 4-plex E kit,

due to which absolute values were not comparabale. Third, due to the

cohort characteristics (largedifference in age for cohort 1 and largedif-

ferences in sex in cohort 2) age and sex were not appropriate covari-

ates. Last, becausewe did not know the apolipoprotein E (APOE) status

of all participants, we did not include this as a variable in the regression

analyses,whileAPOE is an important risk factor forADand confounded

blood biomarker results in some studies.10,49

One of the strengths of our study was the diversity of our cohort,

including different non-AD dementias. Also, the Aβ1-42/1-40 measured

with IPMS and immunoassay in the same cohort allowed us to robustly

compare their performance. Last, the Simoa Neurology 4-plex E kit is

commercially available for immediate use by other groups, with the

advantage that Simoa technology offers scalability for large-scale vali-

dation and routine implementation.

In summary, the IPMS and 4-plex immunoassay Aβ1-42/1-40 ratio

showed similar performance in indicating amyloid pathology. Different

combinations of NfL, GFAP, and p-tau181 were valuable for differen-

tial diagnosis of AD, FTD, and DLB. Further research on cut-off values

would help implement thesemarkers in clinical practice.
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