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With ever-growing genomic sequencing data, the data variabilities and the underlying biases of the
sequencing technologies pose significant computational challenges ranging from the need for accurately
detecting the nucleosome positioning or chromatin interaction to the need for developing normalization
methods to eliminate systematic biases. This review mainly surveys the computational methods for map-
ping the higher-resolution nucleosome and higher-order chromatin architectures. While a detailed dis-
cussion of the underlying algorithms is beyond the scope of our survey, we have discussed the
methods and tools that can detect the nucleosomes in the genome, then demonstrated the computational
methods for identifying 3D chromatin domains and interactions. We further illustrated computational
approaches for integrating multi-omics data with Hi-C data and the advance of single-cell (sc)Hi-C data
analysis. Our survey provides a comprehensive and valuable resource for biomedical scientists interested
in studying nucleosome organization and chromatin structures as well as for computational scientists
who are interested in improving upon them.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Multiple scales of DNA folding in the nucleus (cartoons in the left panels), from the small scale organization of nucleosome array to the median scaling structure of
loop, and the large scale structure of TAD as well as compartment A/B.
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1. Introduction

A nucleosome is the unitary structure of the chromatin fiber,
composed of two copies of each of four histone proteins, H2A,
H2B, H3, and H4, and a � 147 bp DNA wrapped around the histone
octamer [1]. Nucleosomes along with other proteins or complexes
such as the structural insulator CCCTC-binding factor (CTCF) [2,3]
and long-range interaction mediator YY1 [4] facilitate the assem-
bly of three-dimensional (3D) chromatin structure. 3D chromatin
structures, ranging from megabases (Mb)-scaled chromatin com-
partment, kilobases (Kb)-Mb-scaled topologically associating
domain (TAD), to Kb-scaled chromatin loop, play critical roles in
gene regulation [5], DNA replication [6], cell development and dif-
ferentiation [7]. Recent advance in sequencing technologies allows
us to map the nucleosome organization and 3D chromatin struc-
ture (Fig. 1). MNase-seq, a profiling method for mapping nucleo-
some landscape, is the most prevalent technique to study
nucleosome organization. In addition, several other experimental
methods were developed to tackle the nucleosome arrangement
in the nucleus, including Array-seq [8], Methylation foot-printing
[9], Chemical mapping [10], ATAC-seq [11] and MPE-seq [12].
These alternative approaches adapted the idea of cleaving DNA
between the nucleosomes but provided extra information. For
example, chemical mapping cleaves the DNA by introducing cys-
teines in histones H3/H4 and can detect nucleosome preferred
positions. MPE-seq uses MPE-Fe(II) to digest the DNA and can find
the presence of core histones. Chromosome conformation capture
(3C) [13] and its derivatives, including but not limit to circular
3C (4C) [14], 3C carbon copy (5C) [15], Capture-C [16], Hi-C [17],
TCC [18], and Micro-C [19], have been widely used to study chro-
matin structures.

With ever-growing genomic sequencing data, the data variabil-
ities and the underlying biases barriered researchers from acquir-
ing biological information accurately. For instance, MNase
cleaves DNA about 30 times slower upstream of an G/C than 50 of
a A/T, which causes sequence bias for MNase-seq [20–22]. And
Yaffe et al reported systematic bias in Hi-C dataset, including dif-
ferent length of restriction fragments caused by ligation efficien-
cies, different sequencing amplifications affected by GC contents,
and differential mappability of sequences [23]. Those data variabil-
ities and biases pose significant computational challenges ranging
from the need for accurately detecting the nucleosome positioning
to developing normalization methods to eliminate systematic
biases.

Enormous efforts at the computational aspect have been put
into processing the sequencing data and mapping the nucleosome
organization and chromatin structure. These computational efforts
include the development of novel computational methods, the
application of sophisticated algorithms, the modeling of the dis-
tinct distribution of the sequencing data and the extraction of
underlying data features. For example, NPS/iNPS [24,25] applied
a gaussian convolution algorithm to detect inflection points to find
candidate nucleosomes, and a novel iterative correction (ICE) algo-
rithm [26] was developed for balancing the biases in Hi-C data. The
computational algorithms are often further implemented as soft-
ware tools for user-friendly and interactive interfaces or down-
loadable executable files in public code repositories, such as
NucHMM [27] for identifying nucleosome states, JuiceBox [28]
for visualizing and analyzing Hi-C data, and HiSIF [29] for detecting
significant interacting fragments. In addition, a series of methods
and tools are sometimes combined into a workflow/pipeline to
achieve its meaningful biological output. For instance, HiC-Pro
[30], a popular pipeline in Hi-C analysis, combines Bowtie2 (a map-
ping tool) [31], ICE, ggplot2 [32] (a visualization package) and
other customized scripts for Hi-C data processing.
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This review mainly focuses on the computational methods
available for mapping the higher-resolution nucleosome and
higher-order chromatin architectures, and the summaries of the
features of the methods. While a detailed discussion of the under-
lying algorithms is beyond the scope of our survey, we will first
discuss the methods and tools that can detect the nucleosomes
in the genome, then demonstrate the computational methods for
identifying 3D chromatin domains and interactions. We further
illustrate computational approaches for integrating multi-omics
data with Hi-C data and the advance of single-cell (sc)Hi-C data
analysis. Our survey provides a comprehensive and valuable
resource for biomedical scientists interested in studying nucleo-
some organization and chromatin structures and computational
scientists interested in improving upon them.

2. Computational methods in detecting nucleosomes and
characterizing nucleosome organization

Accumulated evidence showed that nucleosomes and nucleo-
some organization played essential roles in transcriptional regula-
tion by interplaying with pioneer factors (PFs), transcription
factors (TFs), and ATP-dependent chromatin remodelers [33,34].
Nucleosome organization, which is characterized by nucleosome
positioning, spacing and phasing, is defined as the following
(Fig. 1): 1) nucleosome positioning describes the consistency of
the nucleosomes’ position in the population of cells, where nucle-
osome position is referred to the location of the histone-octamer
relative to DNA; 2) nucleosome spacing describes the distance
between the dyads of two adjacent nucleosomes; 3) nucleosome
phasing describes the degree of periodicity of the nucleosome
array, where nucleosome array is referred to a string of nucleo-
somes with no more than 350 bp spacing. We didn’t list nucleo-
some occupancy as a nucleosome organization feature because it
is included in measuring nucleosome positioning. Since MNase-
seq is the most prevalent and adaptable experimental method to
detect genome-wide nucleosomes, in this section, we were mainly
focused on summarizing computational methods for processing
MNase-seq data. Unlike typical ChIP-seq data of TFs or histone
modifications, MNase-seq data tend to have a more noised back-
ground signal. Thus classic ChIP-seq peak callers, such as MACS2
[35] and SPP [36], are not suitable for locating genome-wide nucle-
osomes. Although the basic idea for detecting nucleosomes is still
the identification of enriched regions (peaks), the algorithmic
design’s goal is instead to improve the signal-to-noise ratio and
refine the peak’s width to a specific size, 147 � 30 bp. Several
methods based on the above algorithmic design have been devel-
oped, including ChIPseqR [37], iNPS [24], NOrMAL [38], NPS [25],
Nseq [39], NucDe [40], NucHMM [27], NucHunter [41], NucleoFin-
der [42], nucleR [43], PING1/2 [44], PUFFIN [45]. Further, some
other methods have been focused on identifying the changes of
nucleosome positioning among cell types, e.g., BINOch [46], DAN-
POS/DANPOS2 [47], DiNuP [48] Dimnp [49] and Nucleosome
Dynamics [50]. In addition, some methods, such as NucPosSimula-
tor [51] and cplate [52], used Monte Carlo simulations and
Template-Based Bayesian to identify alternative or averaged nucle-
osome positions in cell populations. Few methods, e.g., NucHMM
and Nucleosome Dynamic, have lately been developed to further
infer nucleosome organization, including nucleosome positioning,
spacing and phasing. It is worth mentioning several other methods,
TemplateFilter [53], a highly-cited method for analyzing nucleo-
some positioning from the tiling microarray data, though outdated
but usually used as the control in performance comparison, and
DeNOPA [54] and NucleoATAC [11], designed based on ATAC-seq
data. A detailed summary of these methods is listed in Table 1.
Concerning the comparisons for the performance of nucleosome



Table 1
Methods for detecting nucleosomes and characterizing nucleosome organization.

Tools Description Programming
Language

Input
data
Type

Differential
analysis

Quantitative
Nucleosome
organization
Information

Webpage

BINoch Identifying differential nucleosome
occupancy regions with nucleosome
stabilization–destabilization (NSD) score.

Python Single-
end (SE)
Pair-end.
(PE)
MNase-
seq

Yes None https://liulab-dfci.github.
io/software/

ChIPseqR A binding-event description model to locate
nucleosomes, which is also flexible to handle
other types of experiments.

R SE
MNase-
seq
ChIP-seq

No Nucleosome positioning
score (binding score in
the package)

https://www.
bioconductor.
org/packages/release/bioc/
html/ChIPseqR.html

DANPOS2 A toolkit for Dynamic Analysis of
Nucleosome and Protein Occupancy by
Sequencing, version 2.

Python SE/PE
MNase-
seq
ChIP-seq

Yes Nucleosome positioning
score

https://sites.google.com/
site/danposdoc/

deNOPA Decoding nucleosome positions with ATAC-
seq data.

Python ATAC-seq
scATAC-
seq

No None https://gitee.com/
bxxu/denopa.

Dimnp Identifying regions with differential
nucleosome occupancy in multiple samples
using Chi-squared test.

Python
Matlab

Not Clear Yes None https://bioinfo.seu.edu.cn/
Nu_dynamics_data_public/

DiNuP A systematic approach to identify regions of
differential nucleosome positioning (RDNP).

Python SE
MNase-
seq

Yes Nucleosome positioning
score

https://zhanglab.tongji.
edu.cn/softwares/
DiNuP/download.html

iNPS An improved version of NPS, which
outperforms latter one and provides
additional nucleosome features.

Python SE/PE
MNase-
seq

No None https://www.picb.ac.cn/
hanlab/iNPS.html

NOrMAL Using a modified Gaussian mixture model to
identify nucleosome positions.

C++ SE/PE
MNase-
seq

No Nucleosome positioning
(Fuzziness)

https://github.com/
antonpolishko/NOrMAL

NPS A signal processing-based algorithm for
identifying positioned nucleosomes from
sequencing experiments at the nucleosome
level.

Python SE
MNase-
seq

No None https://liulab-dfci.github.
io/software/

Nseq A multithreaded Java application for finding
positioned nucleosomes from sequencing
data.

Java SE
MNase-
seq

No Nucleosome positioning
score

https://
github.com/songlab/Nseq

NucDe A Non-homogeneous hidden-State model on
first order differences for automatic
detection of nucleosome positions.

R SE
MNase-
seq
MNase-
Chip

No None https://pages.stat.wisc.
edu/�keles/Software/
demo_Nucde.pdf

NucDyn Based on nucleR and aimed at comparing the
reads of two MNase-seq experiments for
nucleosome positioning and detecting
significant inclusions, evictions and shifts.

R SE/PE
MNase-
seq

Yes Nucleosome positioning
scorenucleosome
phasing (Termed
Periocity in paper) for
specific gene
(from TSS to TTS)

https://github.com/
nucleosome-dynamics/
NucDyn

NucHMM A quantitative method modeling of
nucleosome organization identifying
functional nucleosome states, the
nucleosome position is identified based on
iNPS.

Python/C++ SE/PE
MNase-
seq
ChIP-seq

No Nucleosome positioning
score
Nucleosome spacing
Nucleosome phasing

https://github.com/
KunFang93/NucHMM

NucHunter Predicting nucleosome positions with
histone marks annotation from ChIP data.

Java SE/PE
ChIP-seq

No Nucleosome positioning
score (Fuzziness score)

https://epigen.molgen.
mpg.de/nuchunter/

NucleoATAC NucleoATAC is a python package for calling
nucleosome positions and occupancy using
ATAC-Seq data.

Python PE
ATAC-seq
MNase-
seq

No Nucleosome positioning
score

https://nucleoatac.
readthedocs.io/en/latest/

NucleoFinder A statistical approach for the detection of
nucleosome positions. The authors claim it
has fewer false positive detection than NPS
and TemplateFilter.

R SE
MNase-
seq
MNase-
Chip

No Nucleosome spacing https://sites.google.com/
site/beckerjeremie/home/
nucleofinder

nucleR Using Non-parametric methods to detect
nucleosome position. Its features include
in situ visualization and exporting results to
common genome browser formats.

R SE/PE
MNase-
seq
Tiling
arrray
data

No Nucleosome positioning
score

https://mmb.pcb.ub.es/
nucleR/

NucTools NucTools accounts for the continuous
distribution of nucleosome occupancy.

Perl/Matlab SE/PE
MNase-

Yes Nucleosome positioning
scoreNucleosome

https://generegulation.org/
nuctools/
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Table 1 (continued)

Tools Description Programming
Language

Input
data
Type

Differential
analysis

Quantitative
Nucleosome
organization
Information

Webpage

seq
ChIP-seq

spacing
(NRL)

NUCwave A wavelet-based tool that is designed to
evaluate the nucleosome-related
experimental methods.

Python SE/PE
MNase-
seq
ChIP-seq
Chemical
mapping

No None https://nucleosome.usal.
es/nucwave/

PING2 A Probabilistic inference method to identify
nucleosome positioning.

R SE/PE
MNase-
seq
ChIP-seq

No None https://www.
bioconductor.
org/packages/release/bioc/
html/PING.html

PuFFIN A parameter-free method to construct
genome-wide nucleosome maps from
paired-end sequencing data.

Python PE
MNase-
seq

No Nucleosome positioning
(Fuzziness)

https://github.com/
ucrbioinfo/PuFFIN

TemplateFilter Source code and executable files based
pipeline for nucleosome positioning data
processing.

Perl SE
MNase-
seq

No None https://compbio.cs.huji.ac.
il/NucPosition/
TemplateFiltering/Home.
html
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peak calling tools and nucleosome characterization tools, the inter-
ested reader are referred to the review [55] and tools’ original arti-
cles [24,27,44,45].
3. Computational methods in mapping 3D chromatin domains
and interactions

Identification of chromatin compartments. Mammalian genomes
are usually composed of two types of chromatin compartments,
A and B compartments [17], corresponding to open and closed
chromatin, respectively. Compartments were first derived and
defined by the sign of the first principal component analysis
(PCA) on transformed Hi-C matrices. Many tools, such as Juice-
Box [56], HOMER [57] and Fan-C [58], implemented original com-
partment analysis in their suite. It was further extended to a finer
sub-compartment on Hi-C data with a very high sequencing cover-
age such as Hi-C GM12878 data [59] by SNIPER developed by Xiong
and Ma [60], based on a denoising autoencoder and a multilayer
perceptron classifier. A recent new tool, Calder [61] was able to
identify multi-scale sub-compartments at variable data resolu-
tions, even in experiments with relatively low resolution.

Prediction of TADs. TAD is one of the key 3D-genome structures
that control gene regulation [62]. So far, more than two dozen
[59,63–66] programs or algorithms have been developed to predict
TADs. Most of TAD prediction methods can be grouped into four
major categories: one-dimension linear score method (e.g., Top-
Dom [67]), two-dimension clustering method (e.g., MSTD [68]),
feature method (e.g., pTADS [69]), and statistical method (e.g., HiC-
seg [70]). Recently, a systematic comparison of 22 computational
methods for predicting TADs was carried out [66], providing a
detailed description illustrating the pros and cons of each of the
22 methods. This extensive evaluation of TAD prediction tools is
an excellent resource that safe-guides users in selecting a suitable
tool or method for the TAD prediction, based on the desired exper-
imental design and biological question. Although TADs are com-
monly conserved at a larger scale among different conditions,
Sub-TADs within each large TAD are believed to be dynamically
changed between the conditions [62]. Some of TAD prediction tools
are specially designed to detect both the TAD and the sub-TAD,
including GMAP [71], HiTAD [72], Arrowhead [73] and TADtree
[74]. A more recent tool, OnTAD [75], implemented a two-level
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approach to generate a hierarchical TAD organization that best fits
the input Hi-C interaction matrix. It is reported to performs better
than other tools and reveals several interesting biological phenom-
ena related to a TAD hierarchy.. It is worth mentioning that a set of
methods were particularly developed for some variant Hi-C tech-
niques such as ChIA-PET [76], capture-Hi-C [77]), HiChIP [78] and
Split-Pool Recognition of Interactions by Tag Extension (SPRITE)
[79] due to their sparse or asymmetric interaction matrices.
GRiNCH [80] is one such tool based on a non-negative matrix fac-
torization and graph regularization, to identify TADs of genome
organization from sparse chromosome interaction matrices.

Prediction of differential TAD/TAD boundaries. Besides the compu-
tational prediction of TADs, there is also a need for computational
methods to investigate dynamical changes of TADs between the
conditions. For example, researchers have recently observed differ-
ential responses at TADs, looping genes and expressed genes in
endocrine-resistant breast cancer cells [81]. A new algorithmic
approach DADo [82], has been proposed to identify such differen-
tially active domains between the two conditions, providing com-
plementary information to a general differential expression
analysis. However, there are not many publicly available tools for
the aforementioned task. In the future, more tools are needed to
perform the differential analysis of chromatin domains between
different conditions.

Identification of chromatin interactions and loops. In addition to
mapping 3D chromatin domains, computational methods for iden-
tifying chromatin interactions or loops have also been developed
quickly in the past few years. A probabilistic mixture model [83]
was proposed to identify promoter-enhancer interactions from
Hi-C data about five years ago. However, the sequencing depth
required to obtain high-resolution interactions from Hi-C data is
too big. A new tool, HIFI [84], based on a density estimation algo-
rithm was thus designed to detect high resolution (at the
restriction-fragment scale) chromatin interactions from Hi-C data.
Alternately, a combination of low input ‘‘easy Hi-C” protocol for 3D
genomemapping and a new analysis pipeline (HiCorr) [85] for Hi-C
bias-correction at high resolution, were able to detect enhancer-
promoter loops at sub-TAD level. Besides, FitHiC1/2 [86,87] imple-
mented the statistical confidence estimation method to detect
loops. And a novel computational and statistical method (HiSIF)
[29] was proposed to identify genome-wide chromatin loops in
Hi-C data with high resolution, by using a two-tier module (quality
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control and classification). HiSIF detected genes with enhanced
loops showing worse survival in endocrine-treated breast cancer
patients. FitHiChIP [88] is a computational tool for calling chro-
matin loops from Hi-C/HiChiP/PLAC-seq data with a better perfor-
mance. More recently, MUSTACHE [89] employed scale-space
theory in computer vision to detect loops in Hi-C contact matrix.
For readers who are interested in studying the algorithm and com-
paring the performance of the Hi-C related tools, recent review
papers [66,90,91] are referred.
4. Computational approaches for integrating multi-omics data
including Hi-C data

The availability of Hi-C data and other genome-wide omics data
from 4D Nucleome [92], ENCODE [93] and other resources provide
an excellent opportunity to develop computational approaches to
integrating multi-omics data from the same or different sources.
Some pioneering studies explored integrative computational
methods in the context of 3D genome organization. Lan etc. [94]
used a Mixture Poisson Regression Model and a power-law decay
background to identify a highly specific set of interacting genomic
regions from publicly available K562 Hi-C data, sequentially
applied hierarchical clustering to ChIP-seq data of nine histone
marks and an Apriori algorithm to ChIP-seq of 45 transcription fac-
tors, and collectively classified 12 different clusters of interacting
loci categorized into two types of chromatin linkages. Whalen
et al. [95] developed an ensemble machine learning pipeline, Tar-
getFinder, for predicting enhancer-promoter interactions by inte-
grating Hi-C interactions with epigenetic annotations from
Segway and ChromHMM. Pancaldi et al. [96], inspired by a net-
work topology metric used in social sciences, applied the metric
to integrate epigenomic data and high-resolution promoter cap-
ture Hi-C and Hi-Cap data as well as ChIA-PET data to investigate
promoter-centered chromatin interaction networks. Wang et al.
[97] proposed a computational method called SPIN which inte-
grated TSA-seq, DamID and Hi-C data from K562 cells in a unified
framework based on a hidden Markov random field. They revealed
a genome-wide intra-nuclear chromosome positioning and nuclear
compartmentalization relative to multiple nuclear structures, such
as nuclear lamina, speckles and nucleoli. Recently, a new method
pTADs [69] was developed to identify TAD boundary and strength,
by integrating both DNA sequence-based features (e.g., DNA shape
and TF binding motif occurrence) and epigenetic profile informa-
tion (e.g., CTCF, H3K36me3 and H3K20me1).
5. Advances in scHi-C computational analyses

Although tremendous progress in reconstructing the 3D chro-
matin structure based on population-averaged Hi-C data [98],
single-cell Hi-C (scHi-C) protocols have newly been developed to
identify 3D chromatin architecture at single-cell resolution [99–
102], in which it has capability to delineate the 3D-regulated
heterogeneity in population cells. For instance, the organization
of zygote chromatin [103], the nuclear changes of stem cell differ-
entiation [104], and single-allele chromatin interactions [105,106]
have been fully examined by scHi-C technique. A crucial issue with
scHi-C analysis is the inherent sparsity of the contact matrices and
the technical noise mainly due to low amounts of starting material
often resulting in variable capture efficiencies. Quality control of
sequencing data is crucial to avoid technical artifacts. Despite of
these challenges, new sets of computational methods have been
developed for processing scHi-C data to reconstruct single-cell
3D chromatin structures [107–109], to impute the chromosome
contact matrices [110–112], to identify TAD-like domains [113],
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to classify single cells [114], to identify chromatin loops [115],
and to provide toolbox of scHi-C [116].

6. Conclusions and future perspectives

In summary, our survey provides a comprehensive and valuable
resource for biomedical scientists interested in studying nucleo-
some organization and chromatin structures, as well as for compu-
tational scientists who are interested in improving upon them.
Despite such abundant resources, there is still an opportunity to
develop more tools for integrating multi-source information and
multi-level approaches in analyzing 3D transcriptional regulation.
We also urgently need computational tools which could directly
interpret the functionality of the nucleosome organization and
3D chromatin structure in various diseases. Another promising
area worthy of attention is to incorporate molecular imaging data
such as 3D super-resolution imaging (3D-SIM) [117] and genome
architecture mapping (GAM) [118] to better derive the nucleosome
and chromatin structures.
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