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Abstract

Background: Gene expression profiling is a promising approach to better estimate patient
prognosis; however, there are still unresolved problems, including little overlap among similarly
developed gene sets and poor performance of a developed gene set in other datasets.

Results: We applied a gene sets approach to develop a prognostic gene set from multiple gene
expression datasets. By analyzing 12 independent breast cancer gene expression datasets
comprising 1,756 tissues with 2,41 | pre-defined gene sets including gene ontology categories and
pathways, we found many gene sets that were prognostic in most of the analyzed datasets. Those
prognostic gene sets were related to biological processes such as cell cycle and proliferation and
had additional prognostic values over conventional clinical parameters such as tumor grade, lymph
node status, estrogen receptor (ER) status, and tumor size. We then estimated the prediction
accuracy of each gene set by performing external validation using six large datasets and identified a
gene set with an average prediction accuracy of 67.55%.

Conclusion: A gene sets approach is an effective method to develop prognostic gene sets to
predict patient outcome and to understand the underlying biology of the developed gene set. Using

the gene sets approach we identified many prognostic gene sets in breast cancer.

Background

Many researchers have studied the feasibility of gene
expression profiling to improve the prognosis of cancer
patients and have shown that gene expression signatures
can better predict the outcome of cancer patients than
conventional clinical criteria in many cancer types [1-4]. A
few of the discovered signatures are now in large clinical
trials to confirm their prognostic value [5,6]. However,
there are also concerns about the usefulness of the gene
expression signatures because several problems remain
unresolved [7-9]. These problems include poor overlap
among discovered gene signatures, the unstable nature of

gene expression signatures, and poor performance of sig-
natures when applied to other datasets [7,9-11].

Researchers have applied either top-down or bottom-up
approaches to discover prognostic gene signatures [12].
Most researchers have used the top-down approach in
which samples are split into training and testing sets and
gene signatures are developed by discovering genes that
show a high correlation between expression and clinical
information [2,13-19]. In the bottom-up approach, gene
signatures developed from other biological models are
applied to gene expression datasets to classify patients
into clinically distinct groups [12,20]. One advantage of
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the bottom-up approach is that it affords a straightfor-
ward understanding of the underlying biological process
behind the discovered gene signature [12]. Similarly, the
recently developed gene set enrichment analysis (GSEA)
and similar methods are promising tools for high-
throughput data analysis. These methods enable research-
ers to identify significantly changed biological themes and
pathways from gene expression data by observing changes
in expression using pre-defined gene sets [21,22]. Another
method, named globaltest, was recently developed to test
the association of a pathway with survival using gene
expression data [23].

A gene signature is useless if it works well only on the
dataset from which it was developed. Thus, recent work
includes external validation of developed signatures as a
necessary step that will reinforce the applicability of gene
signatures to other datasets [14,15,24]. Here, we suggest a
simple but very effective approach to identify gene signa-
tures that are prognostic in multiple datasets. Rather than
developing a signature from one dataset and validating it
in other datasets, we suggest simultaneously testing mul-
tiple pre-defined gene signatures on multiple datasets to
identify signatures that are prognostic in as many inde-
pendent datasets as possible. By exhaustively testing all
combinations of gene sets and datasets, our approach
guarantees that the best gene signature will be identified
among a pool of pre-defined gene sets. Moreover, our
approach will enable better understanding of the underly-
ing biology of disease by observing the patterns of associ-
ation between gene expression and clinical parameters at
multiple gene set levels.

In this work, we applied a bottom-up, gene sets approach
to multiple datasets to determine gene signatures for prog-
nosis of breast cancer patients. We chose breast cancer
because there are several high-quality breast cancer gene

Table I: Breast cancer datasets analyzed in this study
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expression datasets with survival or recurrence informa-
tion. Our goal was to identify prognostic gene signatures
useful in as many independent datasets as possible. For
this, we collected 12 different datasets comprising 1,756
tumor samples and prepared 2,411 gene sets from diverse
sources including gene ontology, biological pathways,
and previously identified prognostic gene signatures for
breast cancer. For each gene set, we performed survival
analysis to test if the gene set could classify patients into
clinically distinct groups. We also evaluated each gene set
for the accuracy of outcome prediction.

Results

Selection of gene sets for prognosis of survival or
recurrence

Analysis of 12 datasets (Table 1) with 2,411 gene sets
(Table 2) including 32 gene sets previously identified as
prognostic in breast and other cancers (Table 3) revealed
that many of the gene sets related to cell cycle or prolifer-
ation were best discriminating between good and poor
prognosis groups. Table 4 presents the 20 most highly
prognostic gene sets identified by two-means clustering of
samples. Most of these top gene sets were related to cell
cycle, mitosis, proliferation, and DNA replication as well
as gene sets previously identified as prognostic in breast
cancer such as 11823860_ST2, 17076897_ADF3, and
16478745_ST1 (Table 4). Kaplan-Meier plots of 12 data-
sets showed that the 11823860_ST2 gene set classified
patients into two groups (poor or good prognosis) accord-
ing to differences in survival or recurrence in eight of 12
datasets (Figure 1). Because breast cancers are heterogene-
ous and may comprise three to six subtypes [25-27], we
also applied k-means clustering with k = 3, 4, 5, and 6 to
each dataset to divide samples into three, four, five, and
six subtypes respectively and performed log-rank test to
infer the significance of differences in survival between
the groups. Again, we found that gene sets related to cell

Study Platform Samples Data source

Bild Affymetrix 169 *GSE3143

Miller Affymetrix 251 GSE3494

Oh Oligos Agilent 67 https://genome.unc.edu/pubsup/breastGEO/
Pawitan Affymetrix 159 GSE1456

Sorlie_| Spotted cDNA 76 GSE3193

Sorlie_2 Spotted cDNA 39 http://genome-wwwb.stanford.edu/

Sotiriou_| Spotted cDNA 99 http://www.pnas.org/cgi/content/full/100/18/10393
Sotiriou_2 Affymetrix 187 GSE2990

Van de Vijver oligos Agilent 295  http://www.rii.com/publications/2002/nejm.html
Woang Affymetrix 286 GSE2034

Weigelt Oligos Agilent 79  https://genome.unc.edu/pubsup/breastGEO/
West Affymetrix 49 http://data.cgt.duke.edu/west.php

Total 1756

*GSE: gene expression series number in GEO (gene expression omnibus)
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Table 2: Number of gene sets in each category

Category Number
GO Biological Process (BP) 735
GO Molecular Functions (MF) 648
Biological Pathways 198
InterPro Domains 798
Breast and other Cancer Signatures 32
Total 2411

cycle or proliferation were best discriminating between
groups with different clinical outcomes (Additional data
file 1, Supplementary Table 1, 2, 3, and 4). The
11823860_ST2 gene set, which was ranked as the first in
two-means clustering analysis (Table 4), was ranked as the
first in four (Supplementary Table 2) and the fifth in three
(Supplementary Table 1) and the tenth in five and six-
means clustering (Supplementary Table 3 and 4).

http://www.biomedcentral.com/1471-2164/9/177

Unadjusted and adjusted hazard ratios

We then calculated unadjusted hazard ratios for three
selected gene sets within the 12 datasets (Table 5). These
three gene sets showed significant (P < 0.05) unadjusted
hazard ratios in six or seven of the 12 datasets irrespective
of microarray platforms. For example, the Sotiriou_2,
Wang, and Pawitan datasets used the Affymetrix U133A
platform, the van de Vijver dataset used Agilent oligomers,
and the Sorlie_1 dataset used cDNA arrays. This confirms
that many gene sets related to cell cycle and proliferation
are prognostic irrespective of the microarray platform. We
also calculated adjusted hazard ratios for the
11823860_ST2 gene set in the three datasets (Sotiriou_2,
van de Vijver, and Sorlie_1) for available clinical parame-
ters such as grade, lymph node status, tumor size, age, and
estrogen receptor (ER) status (Additional data file 2, Sup-
plementary Table 5, 6 and 7). The 11823860_ST2 gene set
proved significant even after adjustment for other clinical
parameters in the three datasets, verifying that the
11823860_ST2 gene set contains additional prognostic
value over existing prognostic clinical parameters.

Table 3: Thirty-two prognostic gene sets prepared from published reports

Gene set Number (reported) Number (unique) Reference
*11823860_ST2 231 164 van't Veer et al. [13]
11823860_ST3 2,460 1,818 van't Veer et al. [13]
11823860_ST4 430 314 van't Veer et al. [13]
12490681_70 70 50 van de Vijver [1]
12747878_ST2 177 144 Huang et al. [52]
12747878_ST3 168 160 Huang et al. [52]
12917485_ST6 606 564 Sotiriou et al. [18]
12917485_ST7 137 126 Sotiriou et al. [18]
12917485_ST8 706 635 Sotiriou et al. [18]
12917485_ST9 485 402 Sotiriou et al. [18]
14737219_CSR 512 459 Chang et al. [3]
14737219_USR 677 611 Chang et al. [3]
15034139_T2 45 31 Zhao et al. [53]
15073102_4 4 4 Glinsky et al. [54]
15073102_6 6 6 Glinsky et al. [54]
15073102_13 12 12 Glinsky et al. [54]
15073102_14 14 14 Glinsky et al. [54]
15591335_FI 21 21 Paik et al. [6]
15721473_T3 76 68 Wang et al. [2]
15931389_T3_stem I I Glinsky et al. [55]
15931389_ST2_14 14 14 Glinsky et al. [55]
15931389_ST2_CNS I I Glinsky et al. [55]
16141321_SDC2 500 398 Miller et al. [19]
16273092 _catenin 98 76 Bild et al. [20]
16273092_E2F3 298 238 Bild et al. [20]
16273092_myc 332 192 Bild et al. [20]
16273092_RAS 348 248 Bild et al. [20]
16273092_SRC 75 58 Bild et al. [20]
16280042_AF| 64 6l Pawitan et al. [16]
16478745_ST1 242 207 Sotiriou et al. [15]
16707453_ST3 101 86 Schuetz et al. [56]
17076897_ADF3 52 52 Teschendorff et al. [24]

*Eight-digit number represents PubMed id of a reference
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Table 4: Top 20 prognostic gene sets identified by two-means clustering in breast cancer gene expression datasets

Gene set *category Bild Miller Oh  Pawitan Sorlie_| Sorlie_2 Sotiriou_| Sotiriou_2 van de Vijver Wang Weigelt West #req %*mean
11823860_ST2 BR 1.32 721 10.02 22.68 8.87 0.44 4.51 8.18 4551 8.19 0 097 8 9.83
mitotic BP 751 1334 291 13.57 0.07 0.03 4.08 9.59 3078 1249 0.0l 3.57 7 8.16
checkpoint

Cell_cycle_KE PW 72 1205 208 11.46 428 031 275 9.33 40.26 6.93 0.0l 0.03 7 8.06
GG_GenMAPP

cell division BP 437 1047 346 13.81 6.05 0 2.14 7.69 32.14 1518 0.02 0.06 7 7.95
cation efflux IP 7.94 9.69 216 15.77 4.16 241 1.96 10.45 24.69 10.04 051 0.21 7 7.5
protein

cyclin, C- IP 388 1525 672 16.84 5.65 0.07 2.64 3.84 21.12 77 0.69 023 7 7.05
terminal

DNA repair BP 2.04 7.15 458 9.13 0.09 0.02 6.61 8.4 35.15 6.97 0.13 1.53 7 6.82
cyclin, N- IP 34 1566  2.50 10.93 5.5 0.3 4.37 391 26.72 7.28 1.03  0.03 7 6.8
terminal

domain

protein MF 9.45 403 829 9.19 4.51 0.55 2.55 0.46 24.1 9.25 0 284 7 6.27
tyrosine

phosphatase

activity

protein MF 6.56 5.32 0 10.73 0.14 1.24 12.14 6.81 15.53 2.69 10.09  0.66 7 5.99
domain specific

binding

DNA BP 4.08 80l 1.81 10.15 0.06 0.17 5.06 4.88 262 888 0.64 0.3 7 5.85
metabolism

identical MF 0.18 804 835 9.55 0.12 53 8.79 4.09 19.64 0.0l 097 0.12 7 543
protein binding

water BP 0.0l 1023 585 5.26 0.45 5.25 1.57 0.42 397 091 6.13 514 7 3.77
transport

17076897_AD BR 3.5 1449 4.06 19.84 0.1 2.59 231 12.03 4893 18.04 0 239 6 10.66
F3

mitosis BP 645 1381 222 16.95 1.35 0.1 223 9.05 3787 1143 0 o.le6 6 8.47
16478745_ST| BR 549 1052 32 13.32 1.04 0 2.55 11.64 39.05 1251 029 053 6 8.35
Pyrimidine PW 4.28 784 435 25.6 0.61 0.46 2.07 8.04 42.75 3.12 0 077 6 8.32
metabolism_K

EGG

14737219_US BR 427 1025 372 13.61 0.99 0.06 1.96 10.86 39.37 11.4 0.16 0.2 6 8.07
R

cytokinesis BP 2.6 89 391 17.06 0.03 091 0.22 8.68 48.68 5.24 0.16 0.17 6 8.05
14737219_CS BR 0.51 107 3.13 15.5 7.45 0.08 425 1.43 39.65 732 0.38 23 6 7.73
R

Values are chi-square values from log-rank test.
#frequency: The number of cases in which chi-square value is over 3.84

*category: BP-GO Biological Processes, BR-Breast cancer prognostic signatures, MF-GO Molecular Function, PW-KEGG and GenMAPP pathways,

IP-InterPro domains
%mean: Mean of 12 chi-square values

Accuracy of outcome prediction

We then analyzed the accuracy of patient outcome predic-
tion for each of the 2,411 gene sets. Initially, we tested five
algorithms - nearest centroid, diagonal linear discrimi-
nant analysis (DLDA), compound covariate predictor,
one-nearest and three-nearest neighbor predictor [28] and
found that in our datasets nearest centroid and DLDA
methods performed better than the others (data not
shown) with similar performance to each other. For con-
venience, we used the nearest centroid method in subse-
quent analysis. With six large datasets containing more
than 100 samples, we estimated the prediction accuracy of
each gene set by external validation. We measured predic-
tion accuracy for each pair of 30 training-testing datasets
and for a total of 30 predictions (Table 6). The best gene
set was the gene set 11823860_ST2, with prediction accu-
racy, sensitivity, and specificity of 67.55%, 70.56%, and
57.16%, respectively (Tables 6 and 7). The individual pre-
diction accuracy with the 11823860_ST2 gene set was as

high as 0.7464 when the training-testing pair was Paw-
itan-van de Vijver and as low as 0.54 74 when the training-
testing pair was Wang-Bild (Table 6). The individual pre-
diction accuracy was not related to the differences in
microarray platforms or patient characteristics (data not
shown). We also analyzed the accuracy of patient out-
come prediction with nine datasets with more than ten
samples for each of the two groups. Again, the gene set
11823860_ST2 was the best with a prediction accuracy,
sensitivity, and specificity of 0.6578, 0.6895, and 0.566,
respectively (Additional data file 3, Supplementary Table
8).

Best gene sets for prediction accuracy differ from those for
prognosis

Comparison of the top 20 prognostic gene sets for breast
cancer survival (Table 4) with the top 20 gene sets with
high prediction accuracy (Table 7) showed only three
common gene sets (11823860_ST2, 14737219_USR, and
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C.Oh D. Pawitan
P =0.0015 P=109le-6
G. Sotiriou_1 H. Sotiriou_2
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K. Weigelt L. West
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Kaplan-Meier survival curves for the two prognostic classes of breast cancers. In each dataset, patients were divided
into two groups (poor and good prognostic groups) based on the gene expression pattern in the | 1823860_ST2 gene set, and
their survival or recurrence proportions were then plotted. The log-rank test was used to infer the statistical significance of
survival or recurrence differences between the two groups. In each graph, the x-axis represents overall or relapse-free survival
years and the y-axis represents the proportion of overall survival (A, B, C, D, E, F, |, and K) or relapse-free survival (G, H, J, and
L). Black indicates poor prognosis and red indicates good prognosis.

14737219_CSR). Interestingly, the gene sets shown in
Table 7 were, in general, from higher categories in the
gene ontology hierarchy, including transferase activity
(MF), transcription factor activity (MF), transport (BP),
and transcription (BP). Because gene sets in higher catego-
ries have more genes than those in lower categories, we
reasoned that there might be a significant difference in
gene set size between the gene sets in Table 4 and Table 7.
Thus, we compared the distribution of gene set sizes
between the top 20 prognostic gene sets for survival (des-
ignated as prognosis gene sets, Table 4) and the top 20
gene sets with high prediction accuracy (designated as pre-
dictor gene sets, Table 7) and found a significant differ-
ence in sizes between prognosis and predictor gene sets
(Figure 2; P = 1.34 x 10-5> by unpaired t-test). The sizes of
the top 20 prognosis gene sets ranged from 6 to 530 with
a mean of 155.5 and a median of 72.5, whereas the sizes

of the top 20 predictor gene sets ranged from 125 to 1,817
with a mean of 674.15 and a median of 502.5 (Figure 2).
The trend was repeatedly observed when we varied the
number of top n prognosis and predictor gene sets (n =
10, 50, 100, 150, and 200) for comparison. The P-values
by unpaired t-test to compare the difference in sizes
between the two gene sets were 2.42 x 103 (n = 10), 6.46
x 108 (n = 50), 3.34 x 107 (n = 100), 3.02 x 108 (n = 150),
and 4.55 x 108 (n = 200), respectively

Discussion

We have shown that a gene sets approach is effective in
identifying prognostic gene sets over multiple gene
expression datasets. We identified 11823860_ST?2 gene set
as the best prognostic gene set for breast cancer patients.
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Table 5: Hazard ratios and P values for the top three gene signatures in 12 datasets

Datasets 11823860_ST2 Mitotic checkpoint Cell_cycle_KEGG

Bild 6.35 *#(1.23-32.2) p = 0.0256 2.88 (0.686—12.1) p = 0.148 1.13 (0.407-3.11) p=0.819
Miller 1.29 (0.297-5.63) p = 0.731 0.942 (0.269-3.3) p = 0.925 1.37 (0.547-3.41) p = 0.504
Oh 4.72 (0.834-26.7) p = 0.0794 3.87 (0.792-18.9) p = 0.0944 2.07 (0.728-5.9) p = 0.172
Pawitan 34.6 (4.94-242) p = 3.57e-4 11.9 (2.84-49.9) p=7.le-4 5.21 (1.97-13.8) p = 8.6e-4
Sorlie_| 6.84 (1.75-26.7) p = 0.00568 4.73 (1.46-15.3) p = 0.00953 2.07 (1.07-4.01) p = 0.0312
Sorlie_2 3.28 (0.29-46.9) p = 0.381 1.99 (0.308-12.8) p = 0.471 1.33 (0.319-5.57) p = 0.695
Sotiriou_| 27.3 (2.60-287) p = 0.0582 64.2 (2.22-1854) p = 0.0153 5.58 (1.19-26.20 p = 0.0296
Sotiriou_2 5.22 (1.63-16.8) p = 0.00549 3.13 (1.17-8.42) p = 0.0234 2.6 (1.24-5.44) p=0.0113
Van de Vijver 62.3 (17.7-219) p= 1.12e-10 8.8 (4.18-18.5) p = 1.05e-8 4.03 (2.37-6.85) p = 2.73e-7
Woang 7.48 (2.78-20.1) p = 6.92e-5 2.73 (1.22-6.1) p = 0.0144 3.78 (1.89-7.55) p = 1.66e-4
Wiegelt 2.00 (0.152-26.0) p = 0.597 1.40 (0.15-13.0) p = 0.769 1.25 (0.19-3.38) p = 0.764
West 15.5 (0.73-329) p = 0.788 5.56 (0.635-12.1) p = 0.121 4.27 (1.20-15.1) p = 0.0246

*Values in parenthesis are 95% confidence intervals
#Bolded data entries are significant at P < 0.05.

Table 6: Prediction accuracy of the 11823860_ST2 gene set in external validation

training testing *GTG GTP PTG PTP *faccuracy sensitivity specificity
Bild Miller 128 49 17 19 0.6901 0.7232 0.5278
Bild Pawitan 89 41 7 ) 0.6842 0.6846 0.6818
Bild Sotiriou_2 85 32 I 17 0.7034 0.7265 0.6071
Bild Van de Vijver 165 67 Il 37 0.7214 0.7112 0.7708
Bild Wang 128 55 42 51 0.6486 0.6995 0.5484
Miller Bild 37 24 17 17 0.5684 0.6066 0.5
Miller Pawitan 84 46 6 16 0.6579 0.6462 0.7273
Miller Sotiriou_2 77 40 7 21 0.6759 0.6581 0.75
Miller Van de Vijver 165 67 I 37 0.7214 0.7112 0.7708
Miller Wang 125 58 42 51 0.6377 0.6831 0.5484
Pawitan Bild 43 18 19 15 0.6105 0.7049 0.4412
Pawitan Miller 133 44 19 17 0.7042 0.7514 0.4722
Pawitan Sotiriou_2 87 30 I 17 0.7172 0.7436 0.6071
Pawitan Van de Vijver 173 59 12 36 0.7464 0.7457 0.75
Pawitan Woang 135 48 51 42 0.6413 0.7377 04516
Sotiriou_2 Bild 38 23 18 16 0.5684 0.623 0.4706
Sotiriou_2 Miller 129 48 19 17 0.6854 0.7288 0.4722
Sotiriou_2 Pawitan 86 44 10 12 0.6447 0.6615 0.5455
Sotiriou_2 Van de Vijver 164 68 12 36 0.7143 0.7069 0.75
Sotiriou_2 Wang 131 52 43 50 0.6558 0.7158 0.5376
Van de Vijver Bild 41 20 21 13 0.5684 0.6721 0.3824
Van de Vijver Miller 136 41 21 15 0.7089 0.7684 0.4167
Van de Vijver Pawitan 99 31 12 10 0.7171 0.7615 0.4545
Van de Vijver Sotiriou_2 88 29 15 13 0.6966 0.7521 0.4643
Van de Vijver Wang 141 42 54 39 0.6522 0.7705 0.4194
Wang Bild 34 27 16 18 0.5474 0.5574 0.5294
Wang Miller 123 54 14 22 0.6808 0.6949 0.6111
Wang Pawitan 8l 49 6 16 0.6382 0.6231 0.7273
Woang Sotiriou_2 76 4] 7 21 0.669 0.6496 0.75
Wang Van de Vijver 154 78 8 40 0.6929 0.6638 0.8333
Total 3175 1325 559 746 0.6755 0.7056 0.5716

*GTG — Good prognosis group predicted as Good; GTP — Good prognosis group predicted as Poor; PTG — Poor prognosis group predicted as
Good; PTP — Poor prognosis group predicted as poor
*faccuracy = (GTG+PTP)/(GTG+GTP+PTG+PTP); sensitivity = GTG/(GTG+GTP); specificity = PTP/(PTG+PTP)

Page 6 of 11

(page number not for citation purposes)



BMC Genomics 2008, 9:177

http://www.biomedcentral.com/1471-2164/9/177

Table 7: Top 20 gene sets with high prediction accuracy (analysis with six datasets)

Gene set category GTG GTP PTG PTP  accurary sensitivity specificity
11823860_ST2 br 3175 1325 559 746 0.6755 0.7056 0.5716
transferase activity mf 3264 1236 658 647 0.6737 0.7253 0.4958
ligase activity mf 3204 1296 633 672 0.6677 0.712 0.5149
11823860_ST3 br 3200 1300 632 673 0.6672 0.7111 0.5157
transcription factor activity mf 3268 1232 701 604 0.667 0.7262 0.4628
16141321_SDC2 br 3169 1331 607 698 0.6661 0.7042 0.5349
oxidoreductase activity mf 3209 1291 648 657 0.666 0.7131 0.5034
14737219_CSR br 3165 1335 606 699 0.6656 0.7033 0.5356
12917485_ST9 br 3162 1338 61l 694 0.6643 0.7027 0.5318
catalytic activity mf 3209 1291 661 644 0.6637 0.7131 0.4935
RNA polymerase Il transcription factor activity mf 3235 1265 689 616 0.6634 0.7189 0.472
transport bp 3186 1314 645 660 0.6625 0.708 0.5057
transcription bp 324| 1259 701 604 0.6624 0.7202 0.4628
transporter activity mf 3171 1329 631 674 0.6624 0.7047 0.5165
14737219_USR br 3094 1406 555 750 0.6622 0.6876 0.5747
12917485_ST7 br 3140 1360 602 703 0.662 0.6978 0.5387
ATP binding mf 3185 1315 647 658 0.662 0.7078 0.5042
kinase activity mf 3205 1295 669 636 0.6617 0.7122 0.4874
metabolism bp 3199 1301 666 639 0.6612 0.7109 0.4897
regulation of progression through cell cycle bp 3108 1392 575 730 0.6612 0.6907 0.5594

*category: br — breast and other cancer gene set; mf — molecular functions; bp — biological processes
**GTG — Good prognosis group predicted as Good; GTP — Good prognosis group predicted as Poor; PTG — Poor prognosis group identified as

Good; PTP — Poor prognosis group identified as Poor

A accuracy = (GTG+ PTP)/(GTP+GTP+PTG+PTP); sensitivity = GTG/(GTG+GTP); specificity = PTP/(PTG+PTP)

Our gene sets approach is fundamentally different from
previous methods in that our method doesn't try to build
a single gene set from gene expression and clinical data as
previous methods did [2,3,13]. Instead, our method
begins from multiple gene sets and datasets and exhaus-
tively searches for the best gene set among the given gene

2500
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Figure 2

Comparison of gene set sizes between best prognos-
tic gene sets (group 1) and best gene predictive sets
(group 2). The number of genes in top 20 gene sets for
group discrimination (PROG) and top 20 gene sets for pre-
diction accuracy (PRED) is box plotted. P-value was inferred
from an unpaired t-test.

sets. As more gene sets and datasets accumulate, our
method always finds out a better gene set than before.
Another advantage of our gene sets approach is that it
assists us to understand the underlying biology of the clin-
ical outcome because many gene sets are prepared using
biological knowledge such as pathways, gene ontology,
and protein domains [12,21,22]. In the analysis of breast
cancer datasets, cell cycle or proliferation gene sets were
the best for prognosis of survival or recurrence as judged
by the log-rank test (Table 4). This result is in agreement
with many previous studies showing that cell prolifera-
tion signatures are the best predictors of prognosis of
breast cancer patients [1,2,12-16,18,24,29,30].

Because poor overlap among independently developed
prognostic gene sets has raised concerns over this type of
diagnostic tool [10,11], we examined the degree of over-
lap among the top 20 prognostic gene sets identified in
our study. Again, we found relatively poor overlap among
them, thus confirming previous results (data not shown).
However, poor overlap among gene sets may not be as
serious a problem as previously thought if different gene
sets represent similar biological pathways and are congru-
ent on outcome prediction [30-32]. This point was
recently emphasized by Fan et al. [26] who showed con-
gruence among four different gene expression-based pre-
dictors for breast cancer.
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Pepe et al. [33] emphasized that strong statistical associa-
tions between prognostic markers and clinical outcomes
do not necessarily imply good discriminative power of the
marker. Thus, instead of reporting odds ratios or hazards
ratios, one should report an objective prediction accuracy
to prove the usefulness of the marker as a diagnostic, prog-
nostic, or screening tool [33-35]. As such, we calculated
the prediction accuracy of each gene set using six datasets
containing over 100 samples. We emphasize that we per-
formed only external validation to avoid over-fitted esti-
mation of prediction accuracy. While Michiels et al. [7]
showed that five of the seven datasets they analyzed did
not classify patients better than by chance, at least for
breast cancer, all six datasets that we analyzed classified
patients even though we only used external validation.

When we prepared 2,411 gene sets, we included 32 gene
sets previously identified as prognostic in breast and other
cancers to evaluate their performance in multiple gene
expression datasets. Among the included gene sets are the
70-gene signature (12490681_70 in Table 3) [1,13], 76-
gene signature (15721473_T3 in Table 3) [2], 21-gene sig-
nature (15591335_F1 in Table 3) [6], and wound healing
signature (14737219_CSR in Table 3) [3,12] (Table 3).
Through various analyses, we identified the
11823860_ST2 gene set as the best prognostic gene set in
breast cancer. The 11823860_ST gene set was the best in
two and four-means clustering and also in outcome pre-
diction (Table 4, 6, Supplementary Table 2 in Additional
data file 1, and Supplementary Table 8 in Additional data
file 3). The 11823860_ST2 gene set was also ranked high
in three, five, and six-means clustering (Supplementary
Table 1, 3, and 4 in Additional data file 1). The
11823860_ST2 gene set was originally identified as 231
genes significantly associated with clinical outcomes of 78
node-negative, untreated, and young patients with an age
at diagnosis less than 55 years in a supervised analysis
[13]. But, in our analysis with 12 datasets, the
11823860_ST2 gene set was also prognostic in independ-
ent patients with diverse clinical characteristics (both
node-negative and positive, both treated and untreated
patients of all ages), which was previously confirmed
[1,18]. Also, the 11823860_ST2 gene set was prognostic in
most datasets irrespective of the used microarray plat-
forms.

In van't Veer et al. [13]'s work, 11823860_ST2 gene set
was reduced to the famous 70-gene signature by optimiz-
ing the number of genes for maximum accuracy in leave-
one-out cross validation [13]. The 70-gene signature has
been validated in subsequent works and now undergoes a
large scale prospective clinical trial [1]. But, our results
indicate that using 231 genes might be better than using
the 70-gene signature. Then, why 11823860_ST2 gene set
performed better than the 70-gene signature? One reason

http://www.biomedcentral.com/1471-2164/9/177

is because we included in our analysis 12 different data-
sets produced using diverse microarray platforms with dif-
ferent gene contents. In this situation, gene sets
containing many genes are likely to perform better than
gene sets with a small number of genes because a greater
proportion of prognostic genes are consistently present
across all platforms. Indeed, the 11823860_ST2 gene set
contains many genes (for example, cyclin E2, MCM6,
MMP9, MP1, RABG6B, PK429, ESM1, and FLT1), in addi-
tion to 70 genes, involved in processes such as cell cycle,
invasion and metastasis, angiogenesis, and signal trans-
duction, processes up-regulated in poor prognosis group
[13]. The tendency of gene sets with high prediction accu-
racy (Table 7) having more genes than prognostic gene
sets identified by log-rank test (Table 4) may be explained
in the same way (Figure 2).

One concern in our strategy is that by taking a certain
number of pre-defined gene sets, it may just happen that
one gene set will turn out significant. However, because
the two procedures we perform, log-rank test and the esti-
mation of prediction accuracy, evaluate at individual
gene-set level whether a gene set is prognostic or not, we
suppose that our method can effectively handle false pos-
itive predictions. Thus, even if a gene set is identified as
the best among pre-defined gene sets, the two procedures,
log-rank test and prediction accuracy, will evaluate if the
identified gene set is significant or not.

Many microarray-based molecular studies have been crit-
icized as noisy discovery due to problems such as small
sample size, inappropriate statistical analysis leading to
over-fitting of data, lack of independent validation, or val-
idation with too small set [9,36,37]. In this regard, our
work sets a good example for microarray-based discovery
of prognostic gene sets. We included more than 1,700
samples in the analysis and applied complete external val-
idation to avoid data over-fitting. Thus, we believe that
gene sets found in our analysis are truly prognostic in
breast cancer and not just a noisy discovery. Finally,
although we focused only on breast cancer datasets in this
work, our gene sets approach is equally applicable to
other types of cancer or to studies that develop molecular
signatures for predicting drug sensitivity of each patient to
cancer drugs. We expect that, like gene set enrichment
analysis and similar tools that have become useful for
gene expression data analysis [21,22], a gene sets
approach will be useful for developing prognostic signa-
tures for outcome prediction [23].

Conclusion

The gene sets approach is an effective tool for selecting a
prognostic gene set as well as for understanding the
underlying biology for different patients' outcomes. By
applying a bottom-up approach with many gene sets, we
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could identify the biological processes and pathways that
are important for prognosis of breast cancer patients. The
importance of cell proliferation signatures in breast cancer
prognosis has been repeatedly discovered, but our
approach  reinforces  these  previous  findings
[1,2,13,15,16,18,24,30,38]. Additionally, our approach is
applicable to other types of cancer in which prognostic
gene sets are less developed than breast cancer.

Methods

Datasets

We downloaded breast cancer gene expression datasets
with clinical information from the gene expression omni-
bus [39], Stanford microarray database [40], or author's
individual web pages [1,2,15-20,26,27,38,41]. See Table 1
for a complete list of datasets and their sources. We ana-
lyzed 12 datasets comprising 1,756 tissue samples.

Gene sets

We prepared gene sets from diverse sources including
gene ontology (GO) terms [42], GenMAPP [43] and
KEGG pathways [44], and InterPro protein domain infor-
mation [45] using the Affymetrix annotation file (2006
November version) downloaded from the Affymetrix web
site (Table 2)[46]. We limited the gene set size between
five and two thousands. We also included 32 well-known
prognostic gene sets for breast and other cancers (Table 3).
For those 32 gene sets, we created a nomenclature for each
gene set by combining the PubMed id of the reference and
the source of the gene set in the reference. For example,
11823860_ST2 represents a gene set from the Supplemen-
tary Table 2 from van't Veer et al. [13] with a PubMed id
of 118323860. The number of gene sets in each category
is shown in Table 2.

Preprocessing of microarray data

The datasets that we analyzed included both single-chan-
nel Affymetrix and dual-channel cDNA microarray plat-
forms. We used a gene symbol as a common identifier to
map probe IDs across different platforms. When we
mapped a gene set between two arrays, we used only genes
common to both arrays. To analyze Affymetrix datasets,
we consistently used expression values computed by
MASS algorithms to ensure similar processing, normal-
ized each sample by a global mean method to a target
density of 1,000, floored low expression values to 100,
log-transformed each value by base two, merged replicate
probes for the same gene by an average value, and finally
mean-centered each gene within a dataset [47]. To analyze
cDNA datasets, we initially filtered out missing values
when the percentage of missing values was greater than
30%, imputed missing values by the k-nearest neighbor
method, merged replicate probes by an average value, and
finally mean-centered each gene. We used the GEPAS web
service [48] to filter and impute missing values [49].

http://www.biomedcentral.com/1471-2164/9/177

Statistical analysis

For each dataset and gene set, we applied k-means cluster-
ing with k = 2, 3, 4, 5, and 6 to divide each sample into
two, three, four, five, or six groups based on the gene
expression pattern of the gene set and applied the log-rank
test to infer the statistical significance of differences in sur-
vival between the groups. We used a Kaplan-Meier plot to
show the differences in survival. We applied the nearest-
centroid prediction rule, one of the simplest class predic-
tion methods, to estimate the accuracy of prediction for
each patient's outcome [7]. To briefly describe, the near-
est-centroid prediction rule first calculates a centroid for
each group. The centroid is the average gene expression
for each gene in each group. Then, with a new sample, the
method calculates two distances between the gene expres-
sion value of the new sample and each of the two centro-
ids and assigns the new sample to the group with the
smaller distance. For each gene set, we defined two aver-
age profiles (good and poor) as vectors of the average
expression values of genes in a gene set in patients with
good and poor prognoses. Good prognosis patients were
defined as relapse-free or overall survival over five years,
whereas poor prognosis patients were deceased within
five years. We classified each patient in the validation set
according to the Euclidean distance between the gene
expression of the patient and the two average profiles. We
performed external validation using six large datasets con-
taining more than 100 samples. For external validation,
we calculated two average (good and poor) profiles using
only samples in one dataset and predicted patient out-
comes in the other five datasets and performed external
validation for all training-testing pairs of six datasets (30
pairs). We used R language [50] for statistical analysis and
python programming language [51] for data processing.

List of abbreviations used

GEO: Gene expression omnibus; GSE: Gene expression
Series; GO: Gene ontology; BP: Biological processes; MF:
Molecular functions; PW: pathway, BR: Breast cancer
prognostic signature; ER: estrogen receptor.
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Additional material

Additional file 1

Additional data file 1 contains Supplementary tables (1-4) showing top
20 prognostic gene sets from three, four, five, and six means clustering of
the 12 data sets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-177-S1.1tf]

Additional file 2

Additional data file 2 contains tables (5-7) showing adjusted hazard
ratios of the gene set 11823860_ST2 for available clinical parameters in
Sotiriou_2, van de Vijver, and Sorlie_1 datasets, respectively.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-177-S2.1tf]

Additional file 3

Additional data file 3 is a Supplementary table (8) showing top 20 gene
sets with high prediction accuracy in independent validation using nine
datasets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-177-83.1tf]
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