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A B S T R A C T   

Fabry disease is a congenital lysosomal storage disease, and most of these cases develop organ damage in middle 
age. There are some promising therapeutic options for this disorder, which can stabilize the progression of the 
disease. However, a long delay in diagnosis prevents early intervention, resulting in treatment failure. Because 
Fabry disease is a rare disease, it is not well recognized and disease specific screening tests are rarely performed. 
Hence, a novel approach to for detecting patients with a widely practiced clinical test is crucial for the early 
detection of the disease. Recently, decision support systems based on artificial intelligence (AI) have been 
developed in many clinical fields. However, the construction of these models requires datasets from a large 
number of samples; this aspect is one of the main obstacles in AI-based approaches for rare diseases. In this study, 
with a novel image amplification method to construct the dataset for AI-model training, we built the deep neural- 
network model to detect Fabry cases from their urine samples. Sensitivity, specificity, and the AUC of the models 
on validation dataset were 0.902 (95% CI, 0.900–0.903), 0.977 (0.950–0.980), and 0.968 (0.964–0.972), 
respectively. This model could also extract disease-specific findings that are interpretable with human recog-
nition. These results indicate that we can apply novel AI models for rare diseases based on this image amplifi-
cation method we developed. We expect this approach could contribute to the diagnosis of Fabry disease. 
Synopsis: This is the first reported AI-based decision support system to detect undiagnosed Fabry cases, and our 
new image amplification method will contribute to the AI models for other rare disorders.   

Abbreviations: AdHE, adaptive histogram equalization; AI, artificial intelligence; alpha-Gal A, α- galactosidase A; AUC, area under the curve; CNN, convolutional 
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1. Introduction 

Fabry disease is the most prevalent lysosomal storage disorder. This 
disease is inherited as an X-linked disorder and is caused by mutations in 
the GLA gene encoding the α-galactosidase A (alpha-Gal A) enzyme [1]. 
The complete or partially deficient activity of this lysosomal enzyme 
leads to the accumulation of sphingolipids and globosides in many cell 
types throughout the body, resulting in multiple organ failure [2–4]. 

The prevalence of this disorder was previously underestimated 
because its classical form alone was mainly focused upon [5,6]. How-
ever, with the better understanding of the disease variants, the preva-
lence of the disease has been corrected upward and has been estimated 
to be one in about 1500 to 15,000 people, according to their ethnicity 
[7–10]. 

The diagnostic approach for the early detection of Fabry disease 
without family history is challenging because of the disease rarity, 
nonspecific symptoms particularly in the early stage of the disease, and 
the widespread misconceptions of the disease entity [11]. The mean 
delay for disease diagnosis, from the first visit, was estimated to be 
approximately 15 years [12], which can result in multiple organ failure. 
There are certain effective therapeutic options for Fabry disease avail-
able, such as enzyme replacement therapy (ERT) or oral pharmacologic 
chaperone therapy [13–15]. However, these treatments are known to be 
effective only if they commenced before the progression of organ 
damage [16,17]. 

There are several tests to diagnose Fabry patients, such as enzymatic 
assays for α-Gal A activity in leukocytes, GLA gene mutation analysis, or 
skin pathology test for globotriaosylceramide accumulation. However, 
none of these tests can be used as screening tools for disease prevention 
because of their cost or invasiveness. Thus, more simple diagnostic tools 
are desired, applicable before disease progression. Recently, the disease- 
specific urinary findings for Fabry disease, namely mulberry cells or 

mulberry bodies, have been focused upon for the detection of the early 
signs of the disease, without being invasive and expensive [18–20]. 
However, those findings are often unnoticed and seldom lead to the 
prevention of disease development, mainly because of their low famil-
iarity among general clinicians. 

Recently, the application of artificial intelligence (AI), including 
deep neural network algorithms, has been established as decision sup-
port systems in many clinical fields. However, these applications are 
mainly limited to the diseases with high pretest probabilities, and most 
of them do not have high accuracy for rare diseases due to their rela-
tively small sample size for model construction [21]. 

To address these issues, we constructed neural network models that 
could detect Fabry cases from urine sediment images. We also developed 
a new image augmentation method to improve the generalization of 
training data obtained from a relatively small number of original im-
ages. This is the first report of an AI model using image enhancement 
methods to screen for low prevalence metabolic diseases in a generally 
healthy population. We expect that this screening system will contribute 
to the early detection of Fabry’s disease, as well as other rare disorders. 

2. Material and methods 

2.1. Patient enrollment 

We have selected Fabry cases and control cases retrospectively from 
the National Center for Child Health and Development (NCCHD) 
(Tokyo, Japan) and the St. Marianna University School of Medicine 
(Kawasaki, Japan) records, between January 1, 2011, and September 1, 
2018. The Fabry cases were diagnosed definitively before enrollment by 
a combination of alpha-Gal A activity measurement and variant analysis 
of the GLA gene. The urine sample images from these enrolled cases are 
divided into training or validation groups, preprocessed, and collected 

Image preprocessing

Images for training dataset Images for validation dataset

Image preprocessing

39 images from Fabry cases
2065 images from nonFabry cases

Enrolled Clinical Images ( N = 2104)

Validation dataset

Positive segments from Fabry cases 
( n = 19)

Background segments from Fabry cases  
( n = 190 )

Negative segments from nonFabry cases 
( n = 3472 )

14 images from Fabry cases
217 images from nonFabry cases

Positive segments from Fabry cases 
( n = 125000)

Background segments from Fabry cases  
( n = 62500 )

Negative segments from nonFabry cases 
( n = 184800 )

Training dataset

25 images from Fabry cases
1848 images from nonFabry cases

(Augmentation) (Segmentation)

Fig. 1. Training and validation datasets for detecting Fabry disease. 
All enrolled images are divided into training or validation groups, preprocessed, and collected in each dataset. 
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in the training or validation dataset for machine learning models 
(Fig. 1). The research protocols were approved by the ethics committees 
of both medical institutes. 

2.2. Urinary-slide preparation for microscopic images 

Urine samples were collected from the patients; 10 mL of each 
sample was centrifuged at 3000 rpm for 10 min, and the pellets were 
resuspended in 500 μL of the supernatant. The suspension was used to 
prepare slides for examination. 

2.3. Training-database construction with urinary sediment images for 
deep neural network models 

The flow of information for training dataset construction was 
described in Fig. 2. In brief, we processed each image using adaptive 
histogram equalization. Further, each original image was segmented for 
image augmentation; the positive segment images, background images 
of the positive cases, and negative segment images were categorized into 
positive or negative groups, in accordance with their role in machine- 

learning training. 
In detail, after the digitalization, the contrast of each image was 

adjusted using adaptive histogram equalization (Fig. 3A). Image 
augmentation was then performed with image-trimming, as described 
below: 

(I) One-fourth sized rectangles of the original urinary sediment im-
ages from Fabry cases were randomly set to include the center of the 
mulberry cells. The segmented image trimmed by each rectangle con-
tained more than approximately a quarter of a single mulberry cell. 
These quarter-sized segmented images were defined as the positive 
segments and were categorized into positive training datasets. (Fig. 3B) 

(II) One-fourth-sized rectangles of the original images from Fabry 
cases, which did not contain any mulberry cells, were randomly set. The 
segments trimmed by these rectangles were defined as the background 
segments and were categorized into negative training datasets. (Fig. 3C) 

(III) One-fourth sized rectangles of the original images from non-
Fabry cases were randomly set. These trimmed images were defined as 
negative segments and were categorized into negative training datasets. 
(Fig. 3D) 

In the above processes ((I), (II), and (III)), image augmentation was 
performed by repeated random trimming of the quarter-sized rectangles. 
This database was mainly utilized for training each neural network 
model for the classification of the urine samples. The pathological 
diagnosis of each urinary sediment finding in the original images was 
performed by qualified medical staff (C.K., a medical technologist in St. 
Marianna), and confirmed by the medical doctor, who participated in 
this research (O.M.), during image processing. 

2.4. Neural-network model training 

The segmented images were converted into (192, 256, 3) vectors, 
before being input to the training machine-learning models. VGG19 [22] 
was used as the pre-trained deep convolutional neural network archi-
tecture for the convolutional layers. As the top layers, we connected self- 
made fully connected layers with batch normalization layers and 
dropout layers. Finally, a sigmoid function for binary classification was 
set as the output layer. The summary of the model was plotted in Sup-
plementary Fig. 2. We continued training a model with each training 
dataset until its loss score reached a plateau or model overfitting 
occurred (Supplementary Fig. 3). A patience, the number of epochs to 
wait if no progress on the test dataset, was defined as 20. The maximal 
number of epochs for training was set as 300. The model with the lowest 
loss score was saved and evaluated with the validation dataset. Our 
models are already submitted in https://github.com/huryu/DL_Fabry. 
Those models can be performed in mid-range consumer computer sys-
tems with GPU and Python programming language. 

2.5. Evaluation of the trained model 

Cases other than those utilized for the training dataset were used as 
the validation dataset. Each of these images was processed with or 
without adaptive histogram equalization and divided into 4 × 4 quarter- 
sized rectangles, as shown in Fig. 4F. The findings in each segment were 
judged by medical staff (C.K. and O.M.) and categorized into a positive 
or negative group as pre-prediction categories. The segments that con-
tained more than a quarter of a single mulberry cell was defined as 
positive and defined as negative if the segments did not contain any 
mulberry cells. The segments from Fabry cases, which included less than 
a quarter of a single mulberry cell, were excluded from this evaluation 
process. Then, the prediction of classification for these validation 
datasets by trained models was performed. 

If the pre-prediction category matched the prediction result, the 
prediction was defined to be true; else, it was defined as false. The 
receiver operating characteristic (ROC) curves were constructed for 
each target findings by varying the threshold and plotting the true- 
positive rate (i.e., sensitivity) and false-positive rate (i.e., 

25 images
from one Fabry case 

Segments of
positive images

(125000 segments)

Background of
positive images

(62500 segments)

1848 images
from nonFabry cases 

Segments of
negative images

(184800 segments)

Entire training dataset

Training dataset of 
positive images

Training dataset of 
negative images

Contrast adjustment
using image histogram equalization

Fig. 2. Overview of the image preprocessing workflow for training datasets. 
Each image in the training group was first processed using histogram equal-
ization for contrast adjustment, as shown in Fig. 3A. 1:4 scale-sized rectangles 
were randomly clipped from these images, as shown in Figs. 3B–3D. Among 
these processed segmented images, the segmented positive images were cate-
gorized as positive training datasets, while the negative segmented images and 
the background of the positive images were categorized as negative datasets. 
For training the neural network models, these datasets were randomly sepa-
rated as three-fourth for training and one-fourth for hyper-parameter tuning. 
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1–specificity) at each threshold. The areas under the ROC curves (AUCs) 
were computed to assess the classification algorithms. To detect the area 
based on which the models made their judgment, we have visualized the 
heatmaps of the class activation for each segmented image. 

2.6. Statistical analysis 

Mann-Whitney U tests were used to compare AUCs between each 
group, and analyses were performed using the SciPy, scikit-learn, and 

Keras/TensorFlow python packages, p < .05 was considered statistically 
significant. 

2.7. Data handling 

The image data were blinded and analyzed by H.U. The entire code is 
open to the public in GitHub (https://github.com/huryu/DL_Fabry). 

2.8. Data availability 

The datasets generated and/or analyzed during the current study are 
available from the corresponding author upon reasonable request. 

3. Results 

Three Fabry patients, whose diagnosis was definitely confirmed, 
were enrolled in this study as disease-positive cases. Further, 2065 
nonFabry cases, whose urine sediment images were already stored in the 
laboratory database of the respective medical institution, were enrolled 
as negative controls after their clinical reports were reviewed to confirm 
that they did not exhibit any signs, symptoms, or other laboratory 
findings indicating the existence of Fabry disease. Briefly, these images 
were divided into training or validation group, preprocessed, and saved 
as each dataset, as shown in Fig. 1. 

In detail, twenty-five urinary sediment slides obtained from one 
Fabry patient were included in the training dataset as positive images. 
1848 cases were randomly selected from the negative control cases, and 
the urinary sediment images from each case were included in the 
negative training dataset. The main findings of negative control samples 
for training sets are summarised in Supplementary Table 1. From these 
original urine images, 125,000 positive segments, 62,500 background 
segments, and 184,800 negative segments were generated for the 
training dataset using image augmentation methods. From this dataset, 
three-fourth of the whole images were randomly selected for training, 
and the rest of the images were used for hyperparameter tuning. The 
models trained with this database were called ‘C’ models (Fig. 2). 

For comparative purposes, training datasets without histogram 
equalization nor positive background sampling (Supplementary 
Fig. 1A), and ones without positive background sampling (Supplemen-
tary Fig. 1B) were also constructed. The neural network models trained 
with these datasets were called ‘A’ models and ‘B’ models, respectively. 

For the validation dataset, fourteen images obtained from two Fabry 
patients, and 217 negative control images were used. All cases used in 
the validation dataset did not overlap with any cases used in the training 
dataset. From these original images, we obtained nineteen positive 
segments of the Fabry cases, 189 background segments, and 3472 
negative segments (Fig. 1). With this validation dataset, we evaluated 
each model’s performance for its classification accuracy. 

After the initial weights in each layer of the model were decided with 
the random initialization, these weights were gradually adjusted to 
decrease the loss score according to the backpropagation algorithm 
during model training (Supplementary Fig. 3). To confirm the robust-
ness, we made several models based on each algorithm. These results are 
shown in Fig. 4A and B, and Supplementary Figs. 4A and 4B. 

The ROC curves revealed that model A displayed only slight supe-
riority, compared to random guessing (Fig. 4A). The construction of the 
training dataset with color-histogram-equalized images significantly 
improved the accuracy of the trained models (model B), compared to the 

Fig. 3. Image preprocessing of the original images into segmented images. 
(A) Representative images before and after equalization are shown in the upper row. Histograms of the pixel intensity before and after equalization are shown in the 
lower row. (B) Rectangular areas that were ¼ the size of the original image, including the center of the mulberry cells, were randomly clipped out for the positive 
training dataset. (C) As the positive-image backgrounds, rectangular areas that were ¼ the size of the original image and did not overlap any part of mulberry cells 
were randomly clipped out. (D) As negative segmented images, rectangular areas that were ¼ the size of the original image were randomly clipped out. The 
segmented images from (B) were incorporated into the positive dataset, whereas those from (C) and (D) were incorporated into the negative dataset for training the 
neural network, as shown in Fig. 2. 
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Fig. 4. Model evaluation based on each training dataset. 
(A, B) Representative ROC curves (A) and boxplots of AUCs for each model (B) 
were shown (N = 15–25 per group, means ± standard error). *p < .05; **p <
.01. 
(C-E) Representative histograms of the scores for the negative (C), positive (D), 
and Fabry background segments (E), predicted with the model C. The intervals 
on the y-axis scale were logarithmically transformed. 
(F) Visualization of the class activation area on the segmented images. The 
original urinary sediment images (left) were segmented and displayed as 
heatmaps according to the contribution of the model activation for classifica-
tion (center). Each segment was processed using the models and converted to 
scores for Fabry disease prediction (right). 
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‘A’ models. Further improvement was observed when the backgrounds 
of the positive images were appended to the negative training dataset for 
model training (model C) (Fig. 4A). The AUCs for model C was signifi-
cantly higher than model B, reflecting the accuracy of each model (0.968 
+/− 0.004 vs 0.945 +/− 0.005; p = .013) (Fig. 4B). 

The prediction scores for the negative segment images were 
distributed in the range 0–1.0, with extreme deviation to the zero points, 
when model C was used for prediction (Fig. 4C). The predicted scores of 
the Fabry-background images were concentrated around zero (Fig. 4E). 
The prediction scores of the positive segmented images were concen-
trated around 1.0, with model C (Fig. 4D). On the contrary, with the 
model B, the variance of the negative prediction scores was large, and 
the prediction scores of the background images were distributed in the 
range 0–1.0 (Supplementary Fig. 2). These findings suggest that only 
model C can successfully predict the urinary sediment images from 
Fabry cases based on the presence of mulberry cells. To confirm this 
hypothesis, we visualized the class activation heatmaps for these 
models. In these maps, when the model C judged the images as negative, 
the activated areas were disseminated over almost the entire area, but 
when they were detected as positive segment images, the activated areas 
of the heatmaps were concentrated only on the mulberry-cell images 
(Fig. 4F). 

4. Discussion 

Most of the Fabry cases display only nonspecific symptoms in their 
early stages, and these aspects disturb the early diagnosis of this disease 
[12,23]. Previous reports suggest that some therapeutic options may be 
useful to reduce the progression of Fabry disease if these are initiated 
before disease progression [17]. Thus, early diagnosis is critical for the 
timely application of therapeutic interventions. We focused on the ex-
istence of mulberry cells, the early signs of Fabry disease with high- 
sensitivity and high-specificity [20], when we constructed AI-based 
models to detect Fabry cases. 

The expected pretest probability of Fabry disease is one in several 
thousand, which is considerably low in the general population [6–10]. 
This low prevalence leads to the substantial numbers of false-positive 
cases even with sufficiently accurate diagnostic tools. This aspect sug-
gests that stringent specificity, rather than high sensitivity, is crucial for 
the screening system of Fabry disease. 

In general, the large number of images is critical for the sufficient 
generalization of training dataset when we construct accurate neural 
network-based models [24]. This requirement could be a bottleneck 
when we build AI models for rare diseases because of their limited 
number of cases [21]. To attain enough generalization against the di-
versity of clinical sample images, we applied novel strategies to 
construct the training dataset from Fabry cases. 

We performed the image augmentations of positive and negative 
samples to enhance the generalization of training image sets, as shown 
in Fig. 3B and D. The background segments from Fabry cases, which did 
not contain any signs of Fabry disease, were also amplified and added to 
the training dataset as a part of negative datasets (Fig. 3C). 

For further improvement of generalization against all clinical input 
images, we transformed all the input images for training and validation 
datasets using histogram equalization for model B or model C. Negative 
background images were added to create Model C. Retraining with many 
negative images improved the specificity of correctly discriminating 
images with mulberry cells. In general, improvement of specificity 
contributes more to the expansion of the area under the ROC curve than 
sensitivity in our models. Although this conversion regulates the color 
diversity of the input images, this preservers the main contours of the 
mulberry cells, and contributes to the improvement of the performance 
of trained models (Figs. 3A, 4A, B). 

To evaluate the combination of these strategies, we compared the 
performances of the models constructed with the different training 
datasets (models A, B, and C). A drastic improvement in the accuracy of 

model B was observed compared to the model A (Fig. 4A and B). Further, 
the model performances significantly increased when we added the 
background images of Fabry cases to the negative training dataset 
(model C, Fig. 4A, and B). Comparing the prediction score distributions 
of model Cs (Fig. 4C) with model Bs (Supplementary Fig. 2), we could 
conclude that background segments are useful to reduce the number of 
false-positive segments. Also, the distribution of the image scores 
(Figs. 4C-4E) and the class activation maps (Fig. 4F) in model C indi-
cated that this model could predict each segment’s score based on the 
existence of mulberry cells. 

Consequently, we could construct the models that predict the pres-
ence or absence of mulberry cells in urinary samples with high accuracy, 
despite the small number of original images for training datasets. The 
results of model prediction were easily interpreted by human cognition, 
leading to further elimination of false-positive cases. 

Thus, we developed high-sensitivity and high-specificity machine 
learning models, which can classify the disease-specific findings from 
numerous samples. Combined with the final human judgments, this 
model could be utilized as a rapid, low-cost universal screening system 
for Fabry patients. In the future, we expect that these classifier systems, 
which include both machine and human recognition, for detecting uri-
nary sediment, would be extensively used for detecting other inborn 
metabolism disorders. 
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