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Abstract

Vascular stiffness is a major cause of cardiovascular disease during normal aging and

in Hutchinson–Gilford progeria syndrome (HGPS), a rare genetic disorder caused by

ubiquitous progerin expression. This mutant form of lamin A causes premature aging

associated with cardiovascular alterations that lead to death at an average age of

14.6 years. We investigated the mechanisms underlying vessel stiffness in

LmnaG609G/G609G mice with ubiquitous progerin expression, and tested the effect of

treatment with nitrites. We also bred LmnaLCS/LCSTie2Cre+/tg and LmnaLCS/

LCSSM22αCre+/tg mice, which express progerin specifically in endothelial cells (ECs)

and in vascular smooth muscle cells (VSMCs), respectively, to determine the specific

contribution of each cell type to vascular pathology. We found vessel stiffness and

inward remodeling in arteries of LmnaG609G/G609G and LmnaLCS/LCSSM22αCre+/tg, but

not in those from LmnaLCS/LCSTie2Cre+/tg mice. Structural alterations in aortas of pro-

geroid mice were associated with decreased smooth muscle tissue content,

increased collagen deposition, and decreased transverse waving of elastin layers in

the media. Functional studies identified collagen (unlike elastin and the cytoskeleton)

as an underlying cause of aortic stiffness in progeroid mice. Consistent with this, we

found increased deposition of collagens III, IV, V, and XII in the media of progeroid

aortas. Vessel stiffness and inward remodeling in progeroid mice were prevented by

adding sodium nitrite in drinking water. In conclusion, LmnaG609G/G609G arteries exhi-

bit stiffness and inward remodeling, mainly due to progerin‐induced damage to

VSMCs, which causes increased deposition of medial collagen and a secondary alter-

ation in elastin structure. Treatment with nitrites prevents vascular stiffness in

progeria.

*These authors contributed equally to this study.
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1 | INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death and mor-

bidity worldwide (World Health Organization, 2017). Most of the

classical risk factors associated with CVD development are modifi-

able, for example, dyslipidemia, high blood pressure, smoking, and

diabetes (D'Agostino et al., 2008). However, the most important

CVD risk factor is aging, an ostensibly unmodifiable risk factor that

is a defining demographic phenomenon of our times, with a high

sanitary and socio‐economic impact (Population Division, 2002). It is

therefore of utmost importance to gain a thorough knowledge of

the mechanisms through which aging alone, independently of other

modifiable cardiovascular risk factors, induces changes in the cardio-

vascular structure and function, in order to provide sustainable and

accessible therapies to a rapidly aging population.

In addition to the characterization of risk factors epidemiologi-

cally associated and contributing to CVD development (D'Agostino

et al., 2008), great advances have been made in the definition of tis-

sue and cellular properties underlying age‐induced cardiovascular

decline (Lakatta, 2003; Lakatta & Levy, 2003a, 2003b). Among them,

vascular stiffness is attracting increasing attention due to evidence

that this alteration is a key starting point for other cardiovascular

complications, especially during aging (Hamczyk, del Campo, &

Andrés, 2018; Lakatta & Levy, 2003a). Age‐related arterial stiffness

triggers and promotes endothelial dysfunction and permeability

(Huveneers, Daemen, & Hordijk, 2015), increased blood pressure,

cardiac and vascular fibrosis and inflammation, inducing both vessel

and cardiac overload, finally leading to atherosclerosis and heart fail-

ure (Kohn, Lampi, & Reinhart‐King, 2015; Mitchell, 2008; Wang,

Monticone, & Lakatta, 2014). Furthermore, epidemiological studies

indicate that vessel stiffness is a strong independent predictor of

clinical cardiovascular events, especially during aging (Vlachopoulos,

Aznaouridis, & Stefanadis, 2010). Therefore, targeting vessel stiffen-

ing has great potential to prevent age‐related cardiovascular disor-

ders (Adji, O'Rourke, & Namasivayam, 2011; Boutouyrie, Laurent, &

Briet, 2008; Safar, 2018).

Hutchinson–Gilford progeria syndrome (HGPS, OMIM 176670) is

an ultra‐rare human genetic disease (estimated prevalence, 1 in 20

million) characterized by several signs of premature aging, including

accelerated CVD (Hennekam, 2006). The disease is caused by a

heterozygous de novo point mutation in the LMNA gene, most fre-

quently c.1824C>T (p.G608G) (Eriksson et al., 2003; De Sandre‐Gio-
vannoli et al., 2003). This synonymous mutation activates a cryptic

splice donor site that removes 150 nucleotides from exon 11, gener-

ating a truncated form of lamin A, known as progerin, a protein that

cannot undergo complete maturation and remains permanently car-

boxymethylated and farnesylated. As a result, progerin accumulates

within the nuclear lamina and disrupts normal nuclear architecture,

leading to DNA damage and many other nuclear and cell defects

(Dorado & Andres, 2017; Goldman et al., 2004). The most important

clinical manifestations of HGPS patients are cardiovascular complica-

tions, with patients typically dying at an average age of 14.6 years

(Gordon et al., 2014). The pattern of cardiovascular deterioration is

broadly similar in progeria and normal aging, although HGPS patients

typically lack or are mildly affected by traditional cardiovascular risk

factors (Hamczyk, del Campo & Andrés, 2018). HGPS therefore

offers a unique opportunity to study mechanisms that cause age‐as-
sociated vascular dysfunction independently of other risk factors

(Gerhard‐Herman et al., 2012; Hamczyk, Campo et al., 2018). Vessel

stiffness is also a key player in CVD associated with HGPS, which

appears very early and pervasively (Gerhard‐Herman et al., 2012;

Gordon et al., 2012), and is an important cardiovascular outcome

measure in HGPS clinical trials (Gordon et al., 2012, 2016). Despite

the importance of vessel stiffness in the cardiovascular pathophysiol-

ogy of both HGPS and normal aging, the underlying mechanisms and

specific contribution of different cell types have yet to be defined.

The present study aims to investigate the mechanisms underlying

vessel stiffness in HGPS by analyzing vascular structure and mechanics

in mutant LmnaG609G/G609G mice, which express progerin ubiquitously

and recapitulate the main clinical manifestations of human HGPS (re-

duced lifespan, lipodystrophy, and bone and cardiovascular abnormali-

ties; Hamczyk, Villa‐Bellosta et al., 2018; Osorio et al., 2011; Villa‐
Bellosta et al., 2013). In order to analyze the specific contribution of dif-

ferent cell types to the vascular pathology of progeria, we bred LmnaLCS/

LCSTie2Cre+/tg and LmnaLCS/LCSSM22αCre+/tg mice, which respectively

express progerin specifically in endothelial cells (ECs) and vascular

smooth muscle cells (VSMCs).

Many different therapeutic approaches for HGPS have been pro-

posed in the last years, but clinical trials have demonstrated only very
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limited benefit for patients (Harhouri et al., 2018). New therapies for

HGPS should be safe to permit long‐term use and should preferably

target CVD, the main cause of death in HGPS (Harhouri et al., 2018).

Vessel stiffness is an important determinant of CVD and is measured

in HGPS clinical trials (Gordon et al., 2016, 2012; Ullrich et al., 2013).

We therefore tested the effects of dietary supplementation with

sodium nitrite on vascular stiffness in LmnaG609G/G609G mice, a treat-

ment that has been shown to prevent large elastic artery stiffness dur-

ing normal aging in both mouse and humans, without reported side

effects (Rammos et al., 2014; Sindler et al., 2011).

2 | RESULTS

2.1 | LmnaG609G/G609G mice ubiquitously expressing
progerin show aortic stiffness and inward remodeling
that are reproduced in mice with VSMC‐specific
progerin expression

The mean survival of LmnaG609G/G609G mice in our animal facility

is 21.71 ± 0.82 weeks. All studies were carried out with 13‐ to

15‐week‐old male mice, which showed evident symptoms of disease

but were not yet in the last stages of their lifespan. Mechanical

properties of aortas were analyzed by ex vivo analysis with wire

myography. These assays showed that diameter–tension relation-

ships in aortas from LmnaG609G/G609G are left‐shifted compared to

Lmna+/+ controls (Figure 1a, left). Regression lines were calculated

for these relations and compared. The slopes of regression lines

were significantly steeper in LmnaG609G/G609G aortas, indicating

increased aortic stiffness (Figure 1a, middle). Moreover, the esti-

mated physiological diameter (diameter at 100 mmHg, Figure 1a,

right) and the diameter at 0 force (Supporting Information Figure S1,

left) were both decreased in aortas of LmnaG609G/G609G, indicating

inward remodeling.

Since systolic and diastolic pressures are unaltered in LmnaG609G/

G609G mice (Osorio et al., 2011), magnetic resonance imaging (MRI)

was used to measure the stroke change in lumen area of the tho-

racic aorta as an in vivo measure of distensibility and stiffness (Lau-

rent et al., 2006). We found smaller systolic and diastolic aortic

diameters in LmnaG609G/G609G mice (Figure 1b, left). Moreover, the

distensibility of the vessel was significantly lower in progeroid mice,

as evidenced by the decreased slope of the ascending part of the

cross‐sectional area–time curve (Figure 1b, right).
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F IGURE 1 The aortas of progeroid mice exhibit arterial stiffness and inward remodeling. (a) Wire myography analysis of diameter–tension
relationships, linear regression slope, and diameter estimated at 100 mmHg for aortic rings (n = 11 LmnaG609G/G609G mice and n = 13 Lmna+/+

littermate controls). (b) Magnetic resonance imaging (MRI) of the thoracic aorta in Lmna+/+ mice (n = 19) and LmnaG609G/G609G mice (n = 17)
and quantification of aortic size in area units (mm2) over a complete cardiac cycle. Distensibility is expressed as the slope of the ascending part
of the aortic size–time curve
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To determine the relative contribution of VSMCs and ECs to the

alterations observed in progeroid mouse aortas, we analyzed mice

expressing progerin only in VSMCs (LmnaLCS/LCSSM22αCre+/tg) or only

in ECs (LmnaLCS/LCSTie2αCre+/tg). Littermate LmnaLCS/LCS mice were

used as controls. Cell‐type‐specific progerin expression was con-

firmed by immunofluorescence on aortic sections (Supporting Infor-

mation Figure S2). Wire myography revealed a steeper slope of the

diameter–tension relationships and a decreased physiological diame-

ter in the aortas of LmnaLCS/LCSSM22αCre+/tg mice (Figure 2a),

whereas values were unaltered in aortas from LmnaLCS/LCSTie2Cre+/tg

mice (Figure 2b). These data indicate that VSMC‐specific progerin

expression, but not EC‐specific expression, is sufficient to induce

aortic stiffness and inward remodeling.

Pulse wave velocity (PWV) is the gold standard method for non-

invasive measurement of arterial stiffness in humans (Laurent et al.,

2006). Attempts to measure PWV in progeroid LmnaG609G/G609G mice

were impeded by the presence of aortic regurgitation (data not

shown), which interfered with PWV measurement. Nevertheless, we

were able to measure PWV in LmnaLCS/LCSSM22αCre+/tg mice, since

they do not develop aortic regurgitation. This analysis confirmed

increased arterial stiffness in these mice relative to LmnaLCS/LCS con-

trols (Supporting Information Figure S3), validating the MRI and wire

myography results.

2.2 | LmnaG609G/G609G mice and LmnaLCS/
LCSSM22αCre+/tg mice show stiffness and inward
remodeling in small mesenteric vessels

The structural and mechanical properties of small mesenteric arteries

were studied by pressure myography, which reveals pressure–diame-

ter properties. Vessels from LmnaG609G/G609G mice had smaller inner

and outer diameters than controls, indicating inward remodeling, as

well as left‐shifted stress–strain curves, indicating vessel stiffness

(Figure 3a). These alterations were also observed in small mesenteric

arteries from the VSMC‐specific LmnaLCS/LCSSM22αCre+/tg mice (Fig-

ure 3b), reinforcing the important role of VSMCs in the remodeling

and stiffness of progeroid mouse arteries.

2.3 | Collagen is an important mediator of aortic
stiffness in LmnaG609G/G609G mice

We explored the involvement of structural components of the vessel

wall that could play a role in aortic stiffness in progeroid mice, that

is, collagen, elastin, and the cytoskeleton. Thus, we analyzed aortic

diameter–tension relationships by wire myography in the absence

and presence of specific disrupting agents: collagenase type II to

degrade collagen, elastase to degrade elastin fibers, and mycalolide B
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F IGURE 2 Mice with VSMC‐specific progerin expression display arterial stiffness and inward remodeling, whereas mice with EC‐specific
progerin expression do not. (a, b) Wire myography analysis of diameter–tension relationships, linear regression slope, and diameter estimated at
100 mmHg for each vessel segment in aortic rings from LmnaLCS/LCSSM22αCretg/+ mice (n = 11) (a) and LmnaLCS/LCSTie2Cretg/+ mice (n = 8) (b).
Mice of both genotypes are compared with LmnaLCS/LCS littermate controls (n = 13 and 8, respectively)
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to depolymerize cytoskeletal F‐actin to G‐actin. These agents can

induce substantial changes in the diameter–tension relationships in

control aortas, but we were particularly interested in possible differ-

ences between Lmna+/+ and LmnaG609G/G609G, which could indicate a

different contribution of the corresponding structure to vessel wall

mechanical properties. Collagenase significantly reduced the slope of

the diameter–tension relationships in LmnaG609G/G609G aortas, but

had no effect on aortas from control Lmna+/+ mice (Figure 4a). These

results suggest that collagen is involved in the increased slope in

progeroid mice and therefore in aortic stiffness. Collagenase revealed

no between‐genotype differences in the estimated diameter at

100 mmHg (Supporting Information Figure S4A).

Elastase and mycalolide B had similar effects in Lmna+/+ and

LmnaG609G/G609G mouse aortas (Figure 4b,c), indicating that alter-

ations in elastin and the cytoskeleton are not involved in the devel-

opment of stiffness or inward remodeling in the aortas of

LmnaG609G/G609G mice.

2.4 | Aortas from LmnaG609G/G609G mice show
increased collagen deposition and smooth muscle
degeneration in the medial layer

Histological analysis of aortic sections stained with hematoxylin–
eosin (H&E) and Masson's trichrome revealed decreased smooth

muscle area and increased collagen area in the medial layer of

LmnaG609G/G609G aortas (Figure 5a). Fluorescent imaging of DAPI‐
stained nuclei revealed no significant between‐genotype differences

in cell number in the medial layer (Figure 5b), suggesting that the

decrease in muscle tissue in progeroid mice is due to loss of smooth

muscle mass, and not to increased cell death.

Collagen density and cross‐linking were evaluated in Lmna+/+ and

LmnaG609G/G609G aortas by visualizing picrosirius‐red‐stained aortic

sections under polarized light. This technique detected collagen bun-

dles only in the adventitial layer, showing no between‐genotype dif-

ferences in the total amount of adventitial collagen nor in the
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relative amount of orange (thick) or green (thin) collagen fibers (Sup-

porting Information Figure S5). Second‐harmonic generation micro-

scopy was also performed to evaluate the structure of fibrous

collagen. We detected collagen fibrils in the adventitial layer, but not

in the media; quantification showed no differences in the structure,

distribution, or amount of collagen fibers in the adventitial layer

(Supporting Information Figure S6).

Morphological analysis of elastin layers, visualized as green aut-

ofluorescence, showed significant loss of elastin fiber ondulations in

LmnaG609G/G609G aortas, quantified as an increase in elastin lineariza-

tion (Figure 5b). We also measured the lumen perimeter and calcu-

lated media thickness in aortic histological sections. Media thickness

is unaltered, while lumen perimeter is decreased in aortas from

LmnaG609G/G609G mice (Figure 5c). These data agree with those

obtained by wire myography, showing a decreased lumen diameter

even in unloaded conditions (arteries not subjected to intraluminal

force; Supporting Information Figure S1A). These results thus rein-

force the idea that progeroid arteries are not only stiffer but also

exhibit inward remodeling.

2.5 | Aortas from LmnaG609G/G609G mice show
increased expression of collagens III, IV, V, and XII in
the medial layer

We performed immunofluorescence experiments to examine the

amount and localization of collagens in aortas from Lmna+/+ and

LmnaG609G/G609G mice (Figure 6). We focused on collagens typically

present in the vessel wall that are expressed in HGPS (Stehbens,

Delahunt, Shozawa, & Gilbert‐Barness, 2001), that is, collagens I, III,

IV, and V. We also analyzed collagen XII since it cross‐links and orga-

nizes other collagen fibers (Chiquet, Birk, Bonnemann, & Koch,

2014). Moreover, mutations in the collagen XII gene cause Ehlers–
Danlos myopathy, a very rare disease with connective tissue and

vascular phenotype opposite to that seen in HGPS patients, includ-

ing joint hypermobility, soft highly elastic skin, and vascular fragility

(Malfait, 2018). We found that collagen I is mainly present in the

adventitial layer, and no significant differences in its expression were

detected in the adventitial and medial layers (Figure 6). In contrast,

collagens III, IV, V, and XII were mainly expressed in the media, with
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significantly more deposition in the medial layer of LmnaG609G/G609G

aortas (Figure 6).

2.6 | Dietary nitrite supplementation protects
against inward remodeling and stiffness in small
mesenteric arteries of progeroid mice

We treated control Lmna+/+ and progeroid LmnaG609G/G609G mice

with nitrites to explore the effect of this treatment on the

observed alterations in LmnaG609G/G609G aortas (Figure 7a). Dietary

nitrite supplementation at 50 mg/L prevented inward remodeling

and vessel stiffness in small mesenteric arteries (Figure 7b).

This dose was ineffective in aorta, but increasing the dose to

500 mg/L improved aortic vessel stiffness and inward remodeling

(Figure 7c).

3 | DISCUSSION

The present study provides insight into the mechanisms underlying

vessel stiffness and vascular dysfunction in aging by studying the

LmnaG609G/G609G knock‐in mouse model of HGPS. Like HGPS

patients, these mice express progerin ubiquitously and age prema-

turely, and they display the main clinical manifestations of the

human disease, including lipodystrophy, bone and cardiovascular

abnormalities, and reduced lifespan (Hamczyk, Villa‐Bellosta et al.,

2018; Osorio et al., 2011; Villa‐Bellosta et al., 2013).

We observed arterial stiffness and inward remodeling (smaller

inner and outer diameters) in both the aorta and small mesenteric

vessels of LmnaG609G/G609G mice. Future studies are warranted to

assess whether prelamin A accumulation in progeroid Zmpste24−/−

mice also causes vessel stiffening. The observed alterations in ves-

sels of LmnaG609G/G609G mice are reproduced in arteries of LmnaLCS/
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LCSSM22αCre+/tg mice, with VSMC‐specific progerin expression, indi-

cating that VSMCs contribute significantly to vessel stiffness in

progeria. The presence of remodeling and stiffness we observed in

small resistance vessels of progeroid mice should be noted as an

important newly described feature in progeria, since evidence exists

suggesting that associations between aortic stiffness and cardiovas-

cular events are mediated by pathways that include microvascular

damage and remodeling (Cooper et al., 2016). Vessel stiffness might

therefore be a key target to threat progeria, since reversing it could

improve or restore vascular and cardiac function, but also improve

the function of other organs that are compromised by impaired per-

fusion associated with microvascular dysfunction (Chirinos, 2016;

Mitchell, 2008).

Aortas from mice expressing progerin specifically in ECs

(LmnaLCS/LCSTie2Cre+/tg mice) showed none of these structural alter-

ations, suggesting that ECs play no role in vascular stiffness in

progeria. However, ECs appear to be critical effector cells of other

progerin‐induced cardiovascular alterations, since transgenic mice

overexpressing progerin only in ECs develop perivascular fibrosis in

coronary arteries and interstitial myocardial fibrosis, advance to left

ventricular hypertrophy associated with diastolic dysfunction, and

die prematurely (Osmanagic‐Myers et al., 2018). Further studies with

ubiquitous and cell‐type‐specific progerin expression mouse models

are warranted to identify systemic and cell‐intrinsic mechanisms

underlying primary and secondary cardiovascular anomalies in proge-

ria. We hypothesize that early VSMC dysfunction precedes and pos-

sibly can trigger endothelial dysfunction associated with the

development of atherosclerosis in HGPS consistent with our recent

studies showing that VSMC‐specific progerin expression is sufficient

to aggravate atherosclerosis and to cause atherosclerosis‐related pre-

mature death in apolipoprotein E‐null mice (Hamczyk, Villa‐Bellosta
et al., 2018). However, VSMC‐specific progerin expression in

atherosclerosis‐resistant mice with an intact apolipoprotein E gene

does not affect lifespan (Hamczyk, Villa‐Bellosta et al., 2018), despite

the development of vessel stiffening in aorta and small resistance

vessels (Figures 2b and 3b). Further efforts are warranted to assess

whether EC‐specific progerin expression is sufficient to aggravate

atheroma formation in atherosclerosis‐prone mouse models (e.g.,

apolipoprotein E‐null mice and low‐density lipoprotein receptor‐null
mice).

The here described new parameters to measure vessel stiffness

using the wire myograph allowed us to identify the tissue and
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cellular mechanisms underlying structural alterations in the aortas of

progeroid mice. These functional studies in which we disrupted indi-

vidual vessel wall components identified collagen as an underlying

cause of stiffness in the aorta of LmnaG609G/G609G mice, with no evi-

dence for a significant contribution from elastin or the cytoskeleton.

Further imaging of vessel wall components showed that arteries

from progeroid animals have increased collagen deposition and

decreased area of smooth muscle tissue, unaccompanied by signifi-

cant decreases in cell number. VSMCs thus degenerate in the vessels

of progeroid mice, and their space within the vessel wall is progres-

sively replaced by collagen, which accounts for the increased stiff-

ness. The change in elastin–fiber conformation to a more linear layer

arrangement in LmnaG609G/G609G mice might be an indirect conse-

quence of the alterations in collagen, and not a cause of the stiff-

ness, since the elastase experiments showed that differences in

diameter–tension relationships between control and progeroid aortas

were maintained after elastin disruption. This fibrotic process caused

by progerin expression in VSMCs mimics the well‐known medial

degeneration and sclerosis process associated with physiological

aging which promotes atherosclerosis in the long term (Sawabe,

2010). Of note, vascular stiffness in normal aging has been attribu-

ted not only to collagen accumulation, but also to elastin degradation

and increased collagen cross‐linking (Kohn et al., 2015). Although our

mechanistic experiment suggests collagen and not elastin as a caus-

ing agent of stiffness, we cannot rule out the involvement of

increased medial collagen cross‐linking in vascular stiffness in proge-

ria. Hence, the analysis of collagen organization and packaging by

picrosirius red staining or by second‐harmonic generation imaging

did not have enough resolution to detect collagen in the medial

layer, but showed no between‐genotype differences in the organiza-

tion and amount of collagen in the adventitia. The analysis of indi-

vidual collagen types by immunofluorescence confirmed no changes

in the amount of collagen in the adventitia (collagen I), and increased

expression of collagens III, IV, V, and XII in the medial layer of the

aorta. Further studies are required to identify the specific mecha-

nisms by which progerin induces increased expression of different
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collagens, and well as to assess the relative contribution of each col-

lagen to the stiffening of progeroid vessels.

Our findings also establish LmnaG609G/G609G and LmnaLCS/

LCSSM22αCre+/tg mice as animal models for the study of age‐related
vascular stiffness without the interference from other cardiovascular

risk factors. The LmnaLCS/LCSSM22αCre+/tg mice will be especially use-

ful, since they are free of other specific progeroid disease symptoms.

Nitrite supplementation of drinking water prevents vessel stiff-

ness associated with normal aging (Rammos et al., 2014; Sindler

et al., 2011), and our analysis in progeroid mice establishes that diet-

ary nitrite protects against inward remodeling and stiffness in small

mesenteric arteries and aortas in progeria. Nitrites are inorganic ions

(NO�
2 ) usually obtained through the diet from green leafy vegetables.

They have become attractive candidates for restoring physiological

nitric oxide (NO) signaling in states of NO insufficiency such as

aging, since they have the ability to generate NO in hypoxia or low

pH conditions (in highly energy demanding tissues) through the

nitrite reductase activity of a wide variety of enzymes (e.g., myo-

globin or hemoglobin) (Sindler, Devan, Fleenor, & Seals, 2014). The

observed protective effects of nitrites can be explained by their abil-

ity to increase NO bioavailability (Lundberg & Weitzberg, 2008; Tot-

zeck et al., 2012), resulting in NO‐mediated protection against

fibrosis (Chen et al., 2017; Kaikita et al., 2001, 2002), oxidative

stress, inflammation, and mitochondrial dysfunction (Liu & Huang,

2008; Wink et al., 2001), which may protect VSMCs from progerin‐
induced degeneration. Since HGPS patients die mainly of atheroscle-

rosis and associated ischemic events, and no cure has been found

yet, any therapeutic approach aiming to retard the key pathophysio-

logical alterations that trigger their cardiovascular decline such as

vessel stiffness may have a beneficial impact on the patients. Consis-

tent with this view, clinical trials have demonstrated reduced vessel

stiffness in HGPS patients treated with the farnesyltransferase inhi-

bitor lonafarnib, which has been estimated to prolong lifespan by

1.6 years (Gordon et al., 2012, 2018; Ullrich et al., 2013). Therefore,

both HGPS patients and the general aging population may benefit

from the vasoprotective effects of nitrites.

4 | EXPERIMENTAL PROCEDURES

4.1 | Mice

LmnaG609G/G609G knock‐in mice ubiquitously express progerin (Osorio

et al., 2011). Controls for these mice were Lmna+/+ littermates. We

crossed LmnaLCS/LCS mice (Osorio et al., 2011) with SM22αCre mice

(The Jackson Laboratory) or with Tie2‐Cre mice (Kisanuki et al.,

2001) to target progerin expression to VSMCs (LmnaLCS/LCSSM22α-

Cre
tg/+

) or to ECs (LmnaLCS/LCSTie2Cretg/+). Controls used were

LmnaLCS/LCSTie2Cre+/+ or LmnaLCS/LCSSM22αCre+/+ littermates, respec-

tively. All studies were carried out with 13‐ to 15‐week‐old male

mice on the C57BL/6 background, and analyses were performed by

researchers blinded to genotype and treatment.

Mice were maintained in the animal facility of the Centro Nacio-

nal de Investigaciones Cardiovasculares Carlos III (CNIC) under

specific‐pathogen‐free conditions. All animal procedures conformed

to EU Directive 2010/63EU and Recommendation 2007/526/EC

regarding the protection of animals used for experimental and other

scientific purposes, enforced in Spanish law under Real Decreto

1201/2005, and were approved by the local ethics committees and

the Animal Protection Area of the Comunidad Autónoma de Madrid

(PROEX 135/14).

4.2 | Sample preparation

Animals were euthanized by CO2 inhalation. Immediately after sacri-

fice, the thoracic and abdominal cavities were opened. Blood sam-

ples were collected from the inferior vena cava, placed in 500 µl

EDTA collecting tubes (Microvette), and maintained at 4°C for no

more than 1 hr before processing to obtain plasma. Thoracic and

mesenteric arteries were excised and used for different protocols.

4.3 | Nitrite treatment

LmnaG609G/G609G and Lmna+/+ mice received treatment with sodium

nitrite (NaNO2, 50 mg/L or 500 mg/L in drinking water) over the

8 weeks before sacrifice (from 6 to 14 weeks of age) (Figure 7a) The

doses used have been reported to be safe in mice, showing no evi-

dence of toxicological or carcinogenic effects and no changes in

water consumption (National Toxicology Program, 2001). Consistent

with this, we observed no adverse effects or changes in water con-

sumption in treated animals.

4.4 | Wire myography

Thoracic aortas were placed in ice‐cold Krebs–Henseleit solution

(KHS: 115 mM NaCl, 2.5 mM CaCl2, 4.6 mM KCl, 1.2 mM KH2PO4,

1.2 mM MgSO4, 25 mM NaHCO3, 11.1 mM glucose, and 0.01 mM

EDTA) immediately after sacrifice. The vessels were gently cleaned

of fat and connective tissue and cut into 2‐mm‐long segments. Wire

myography was performed as previously described (del Campo &

Ferrer, 2015). Aortic segments were mounted on two tungsten wires

in a wire myograph system (620M, DMT) and immersed in KHS at

37°C with constant gassing (95% O2 and 5% CO2). Diameter–tension
relationships were determined by artificial, stepwise stretching of the

tissue, increasing its passive diameter by augmenting the distance

between the wires passing through the lumen. At each step, we

recorded both the force and the internal circumference of the vessel,

which was transformed into vessel diameter in µm (del Campo &

Ferrer, 2015). The tension experienced by the vessel wall in resisting

this stretching was recorded by a force transducer connected to one

of the wires, and plotted on the y‐axis. The estimated diameter at

100 mmHg was calculated from the diameter–tension relationship

and the Laplace equation (Tension = [pressure * radius]/thickness)

using the DMT normalization module (LabChart software, ADInstru-

ments; del Campo & Ferrer, 2015). For each vessel segment, a linear

regression was calculated from the diameter–tension relationship.

Diameter–tension measurements were excluded when discalibration
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of the force transducer in a specific channel was detected (differ-

ence between the myograph unit and the software >5 mM). Diame-

ter–tension relationships can be defined and compared with two

parameters. First, the slope of the linear regression quantifies the

change in tension per unit change in vessel diameter, so that a stee-

per slope indicates greater stiffness. Second, the extrapolated value

of diameter when the force is equal to 0 represents the vessel diam-

eter at 0 pressure (Y0 diameter), which, together with the estimated

diameter at 100 mmHg (third), can indicate inward or outward

remodeling.

The contribution of different vessel wall components to vessel

stiffness was assessed by analyzing the diameter–tension relation-

ships upon degradation of collagen with collagenase type II (0.2% w/

v; Thermo Fisher Scientific), elastin with elastase (28 µg/µl; Sigma),

or the cytoskeleton with the selective F‐actin depolymerizer mycalo-

lide B (4 µM; Enzo Life Sciences). Aortic rings incubated with colla-

genase for 15 min in KHS were compared with vessels directly

mounted on the wire myograph in KHS (vehicle). Incubations with

elastase or mycalolide B were maintained for 3 hr at 37°C in HEPES

buffer (119 mM NaCl, 20 mM HEPES, 4.6 mM KCl, 1 mM

MgSO4·7H2O, 0.15 mM Na2HPO4·12 H2O, 0.4 mM KH2PO4, 5 mM

NaHCO3, 1.2 mM CaCl2·2H2O, 5.5 mM glucose, pH 7.4). Diameter–
tension relationships from these incubations were compared with

data from control aortic rings incubated for 3 hr in HEPES at 37°C

(vehicle). Note that diameter–tension relationships and corresponding

slopes for aortic rings incubated with elastase or mycalolide B share

the same control data, although they are plotted separately for clar-

ity (Figure 4).

4.5 | Pressure myography

Structural and mechanical properties of mesenteric resistance arter-

ies were studied with a pressure myograph (Danish Myo Tech,

Model P100, J.P. Trading I/S, Aarhus, Denmark). Vessels were placed

on two glass microcannulae and secured with surgical nylon suture

thread. After any small branches were tied off, vessel length was

adjusted so that the vessel walls were parallel without stretching.

Intraluminal pressure was then raised to 120 mmHg, and the artery

was unbuckled by adjusting the cannulae. The segment was then set

to 45 mmHg and allowed to equilibrate for 30 min at 37°C in cal-

cium‐free KHS (0Ca2+; omitting calcium and adding 1 mM EGTA),

perfused intravascularly and extravascularly, and gassed with a mix-

ture of 95% O2 and 5% CO2. Intraluminal pressure was reduced to

3 mmHg. A pressure–diameter plot was obtained by increasing intra-

luminal pressure in 20 mmHg steps from 3 to 120 mmHg. Internal

and external diameters were continuously measured under passive

conditions (Di0Ca, De0Ca, respectively) for 3 min at each intraluminal

pressure. The final value used was the mean of the measurements

taken during the last 30 s, when measurements had reached a

steady state.

From internal and external diameter measurements in passive

conditions, the following structural and mechanical parameters were

calculated:

Wall thickness (WT) ¼ ðDe0Ca � Di0CaÞ=2

Wall:lumen ¼ De0Ca � Di0Cað Þ=2Di0Ca

Incremental distensibility is the percentage of change in the arte-

rial internal diameter for each mmHg change in intraluminal pressure

and was calculated according to this formula:

Incremental distensibility ¼ ΔDi0Ca= Di0Ca � ΔPð Þ � 100

Circumferential wall strain (ε) = (Di0Ca − D00Ca)/D00Ca, where

D00Ca is the internal diameter at 3 mmHg, and Di0Ca is the observed

internal diameter for a given intravascular pressure, both measured

in 0Ca2+ medium.

Circumferential wall stress (σ) = (P × Di0Ca)/(2WT), where P is the

intraluminal pressure (1 mmHg = 133.4 × 103 dynes·cm‐2), and WT

is wall thickness at each intraluminal pressure in 0Ca2+‐KHS.

Arterial stiffness independent of geometry is determined by

Young's elastic modulus (E = stress/strain) (Briones et al., 2009;

Schjorring, Carlsson, & Simonsen, 2015). The stress–strain relation-

ship is nonlinear; therefore, it is more appropriate to obtain a tan-

gential or incremental elastic modulus (Einc) by determining the slope

of the stress–strain curve (Einc = δσ/δε). Einc was obtained by fitting

the stress–strain data from each animal to an exponential curve

using the equation σ ¼ σorigeβɛ , where σorig is the stress at the origi-

nal diameter (diameter at 3 mmHg).

Taking derivatives from the equation, we determine that Einc = βσ.

For a given σ‐value, Einc is directly proportional to β. An increase in β

implies an increase in Einc, which signifies an increase in stiffness.

4.6 | Histological analysis

Thoracic aorta segments were fixed in 4% paraformaldehyde. Fol-

lowing dehydration in an ascending ethanol series, samples were

embedded in paraffin, cut into 5‐µm sections, and stained with H&E,

Masson's trichrome, or picrosirius red. H&E staining was performed

to check primary tissue appearance. Samples stained with H&E and

Masson's trichrome were imaged with OPT Scanner 3001 (OPT,

Bioptonics Microscopy). Medial thickness and lumen perimeter

length were measured in Masson's trichrome‐stained specimens. Col-

lagen and VSMC content were measured in the medial layer as the

green or red area, respectively, in Masson's trichrome‐stained speci-

mens (Fiji software; ImageJ 1.50e x64) and expressed as a percent-

age of the medial area.

Picrosirius‐red‐stained slices were imaged under a Nikon Eclipse

90i microscope both in bright field and under polarized light in order

to visualize collagen bundles with different thickness and packaging

(Rittie, 2017). Under polarized light, denser collagen bundles are seen

as yellow‐orange, whereas the less dense or thinner collagen bundles

appear green (Lattouf et al., 2014). Under polarized light, we

observed green or yellow‐orange collagen bundles only in the adven-

titial layer, and quantified them with ImageJ software.

To analyze elastin lamellae and nuclei, 5‐µm aortic sections

were stained with DAPI (1:500; Invitrogen), mounted in Eukitt®
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mounting medium (Sigma‐Aldrich), and imaged with a confocal

microscope (Leica SP5 DMI 6000B) taking advantage of the intrinsic

autofluorescence of elastin fibers. The semiautomatic image pro-

cessing and quantification of elastin “rectilinearity” were developed

as a toolbox in Fiji (ImageJ 1.50e 64‐bit for Windows). Rectilinearity

measures the length and waviness of each elastin fiber. Thus, a

region of interest with elastin fibers and a threshold to segment

them are selected. A skeletonization of the segmented objects (Lee,

Kashyap, & Chu, 1994), after removing small connected compo-

nents, extracts the center lines of each lamellae independently of

their intensity or thickness; these are later analyzed to measure the

length (“fiber length”) of each resulting branch and the correspond-

ing Euclidean distance between starting and final points (“fiber dis-

tance”; Arganda‐Carreras, Fernandez‐Gonzalez, Munoz‐Barrutia, &

Ortiz‐De‐Solorzano, 2010). The final output is the ratio between

the accumulative sum of fiber distance and fiber length for all

branches. A first preprocessing step was applied to remove noise

from the original image by applying a median filtering followed by

background subtraction using the “rolling ball” algorithm (Sternberg,

1983).

4.7 | In vivo magnetic resonance imaging

For the MRI acquisition, mice were anesthetized with 2% isoflurane

and a 1.8 L/min oxygen flow. Ophthalmic gel was placed on the eyes

to prevent drying. Thoracic aorta cine MR studies were acquired

using a 7‐T Agilent/Varian scanner (Agilent, Santa Clara, CA, USA)

equipped with a DD2 console, an actively shielded 115/60 gradient

set, and a microstrip helmet coil used for both RF transmission and

reception. MRI sequences were based on an ECG‐triggered fast gra-

dient echo cine sequence with the following imaging parameters:

181.82/2.07 ms (minimum repetition time TR, minimum echo time

TE); field of view, 3.0 cm2; acquisition matrix, 256 x 256; flip angle,

40°; 8 averages; 20 cardiac phases; 2 slices; slice thickness, 0.2‐
0.4 mm; and slice gap, 0.6 mm.

To determine the descending aorta cross section, we acquired

two transverse images perpendicular to the long axis of the aorta

and spinal cord, located slightly above the heart apex level, set on

three orthogonal planes (transverse, coronal, and sagittal) used to

localize the thoracic aorta, spinal cord, lungs, and heart.

For image quantification, aortic lumen area was measured on the

cine MR images by manual segmentation by a trained operator, using

the freely available Segment software v1.9 R3819 (http://segment.

heiberg.se) (Heiberg et al., 2010). In some images, the area could not

be determined, and therefore, we used the upper section data, with

data from the lower section used to fill in missing values when nec-

essary. Since the time sampling was different for each animal (de-

pending on heart rate), a time linear interpolation was applied to all

curves in order to obtain equivalent points throughout the cardiac

cycle. For curve plotting purposes, the mean and standard deviation

at each time point was determined for both animal groups. All time

curves were cut at 150 ms, as the different cycle duration for each

animal prevented a proper time alignment beyond that point. From

the original area raw data in mm2, the following derived parameters

were calculated: distensibility or initial ascending slope (estimated by

linear fitting over the first 20 ms at systole); incremental area (mea-

sured as area difference from the first point); strain (measured as the

aortic radius increase divided by initial radius). Total strain was

defined as the integral of the strain curve.

4.8 | Immunofluorescence staining

Thoracic aorta segments were fixed for 24 hr in 4% paraformalde-

hyde, embedded in paraffin, cut into 5‐μm sections, deparaffinized,

and rehydrated. Sections were antigen‐unmasked, permeabilized, and

incubated with blocking solution. Primary antibodies were incubated

overnight at 4°C in blocking buffer. Sections were washed and incu-

bated with appropriate secondary antibodies for 1‐2 hr at room tem-

perature and with DAPI/Hoechst, mounted with Fluoromount™

(Sigma) or Thermo Fisher SlowFade Gold antifade reagent (S36936),

and visualized in a confocal microscope (Leica SP5 DMI 6000B for

collagen XII and Lamin A; Nikon Eclipse 80i for collagens I, III, IV, V).

For lamin A staining, antigen retrieval was performed with

0.37 g/L EDTA buffer (pH 8) for 30 min, permeabilization with 0.5%

Triton X‐100 for 10 min, and blocking with 5% BSA. For collagen XII

staining, antigen retrieval was performed with citrate buffer (pH 6)

for 20 min in the microwave, and blocking and permeabilization with

0.3% Triton X‐100, 5% normal goat serum, and 5% BSA in PBS. For

the rest of collagens, permeabilization was not necessary and antigen

retrieval was performed with Antigen Unmasking Solution (H3300,

Vector Labs). Blocking was performed with 2% BSA solution in PBS

for 15 min.

Antibodies used were as follows: antilamin A H‐102 antibody

(1:100; Santa Cruz Biotechnology); anticollagen XII antibody (1:100,

courtesy of Manuel Koch, Germany); COL‐I (Southern Biotech 1310‐
01, 1:400); COL‐III (Proteintech 22734‐1‐AP, 1:250 in PBS); COL‐IV
(Abcam ab6586, 1:250); COL‐V (Abcam ab7046, 1:250).

Collagen signal was quantified using ImageJ. Mean fluorescence

intensity was obtained for the selected area of the medial layer (and

the adventitial layer, in the case of Collagen I). Intensity values were

then normalized to the median of the controls. For collagen XII, due

to background, maximum entropy threshold was used to select colla-

gen XII‐positive pixels, and integrated density was obtained and nor-

malized to the median of the control mice.

4.9 | Second‐harmonic generation microscopy

Second‐harmonic generation microscopy was used to visualize the

three dimensional organization of collagen throughout the arotic wall

and to examine structural differences. H&E‐stained thoracic aorta

sections were used for the quantification of backward second‐har-
monic generation signal from collagen fibrils, which was obtained by

multiphoton excitation at 860 nm using a tunable femtosecond

pulsed laser (MaiTai DeepSee, Spectra‐Physics) coupled to a Zeiss

LSM780 upright system and a water‐dipping Plan‐Apochromat 10x/

NA 0,45 objective (Carl Zeiss Jena GmbH). Quantification was
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performed by ImageJ to obtain the amount and density of the colla-

gen signal, as well as kurtosis and skewness parameters. Kurtosis

measures the degree to which a distribution is more or less peaked

than a normal distribution, and skewness measures the degree of

asymmetry of a distribution (Mostaco‐Guidolin et al., 2013). Since

second‐harmonic generation imaging detected collagen bundles only

in the adventitia, the results obtained from the quantification of

these images refer only to the adventitial layer.

4.10 | Pulse wave velocity

PWV is the velocity at which the arterial wave propagates through

the circulatory system. Aortic‐femoral PWV was measured by Dop-

pler ultrasound using the transient time (TT) system (Laurent et al.,

2006). Animals were anesthetized (1.5% isoflurane in oxygen) and

maintained in supine position on a temperature‐controlled surface to

maintain body temperature at 37°C with continuous electrocardio-

graphic (EKG) recording. The pulse wave was recorded using a

pulsed wave Doppler ultrasound in a VEVO 2100 system (VisualSo-

nic). The ascending aorta was located in 2D mode, and the wave

Doppler flow was then recorded simultaneously with EKG. The pro-

cess was repeated on the femoral artery at the level of the thigh.

The time from the QRS R wave to the foot of the pulse waveform

was measured in both the ascending aorta and femoral artery. The

TT is the difference between these times measured at the two mea-

surement points. PWV is calculated as the distance between the two

measurement points divided by the pulse wave TT.

4.11 | Statistical analysis

Results are represented as mean ± standard error of the media (SEM).

The Student t test was used to compare univariable data between the

two groups. Single‐variable comparisons between more than two

groups were performed with one‐way ANOVA followed by the Sidak

multiple comparisons tests. Outliers identified using the maximum

normalized residual test (Grubbs’ test) were excluded. Diameter–ten-
sion relationships were analyzed by calculating the linear regression

lines and their corresponding slopes and diameter at force 0 (Y0),

which were then compared among groups using the Student t test or

one‐way ANOVA. Diameter–pressure curves were compared with

two‐way ANOVA followed by the Sidak multiple comparisons tests.

Stress–strain curves were analyzed by extracting the β value for each

curve (see Section 2.6, Pressure myography), which we compared

among groups using the Student t test. Aortic cross‐sectional area

curves obtained by MRI and collagen immunofluorescence measure-

ments were compared by the Mann–Whitney U test. Results were

considered statistically significant at p‐values <0.05. Statistical analysis

was performed with GraphPad Prism 7 software.
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