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Abstract: Inhalational anesthetics was previously reported to suppress glioma cell malignancy
but underlying mechanisms remain unclear. The present study aims to investigate the effects of
sevoflurane and desflurane on glioma cell malignancy changes via microRNA (miRNA) modulation.
The cultured H4 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. The miR-138, -210
and -335 expression were determined with qRT-PCR. Cell proliferation and migration were assessed
with wound healing assay, Ki67 staining and cell count kit 8 (CCK8) assay with/without miR-138/-
210/-335 inhibitor transfections. The miRNA downstream proteins, hypoxia inducible factor-1α (HIF-
1α) and matrix metalloproteinase 9 (MMP9), were also determined with immunofluorescent staining.
Sevoflurane and desflurane exposure to glioma cells inhibited their proliferation and migration.
Sevoflurane exposure increased miR-210 expression whereas desflurane exposure upregulated both
miR-138 and miR-335 expressions. The administration of inhibitor of miR-138, -210 or -335 inhibited
the suppressing effects of sevoflurane or desflurane on cell proliferation and migration, in line
with the HIF-1α and MMP9 expression changes. These data indicated that inhalational anesthetics,
sevoflurane and desflurane, inhibited glioma cell malignancy via miRNAs upregulation and their
downstream effectors, HIF-1α and MMP9, downregulation. The implication of the current study
warrants further study.

Keywords: microRNA; sevoflurane; desflurane; hypoxia inducible factor-1α; matrix metallopro-
teinase 9; glioma

1. Introduction

Surgery is the primary treatment of solid tumors world-wide. Sadly, the majority
of patients still die due to cancer recurrence following surgery [1]. There are many risk
factors related to cancer recurrence after surgery and one of those being considered is
anesthetics/techniques [2]. Sevoflurane and desflurane are widely used inhalational anes-
thetics in clinical practice. Sevoflurane has been demonstrated to suppress cell proliferation,
migration and invasion of glioma cells [3,4]. Recent studies have revealed that inhalational
anesthetics can exert anti- or pro-cancer effects on cancer cell biology such as proliferation,
migration, and apoptosis via some key factors including hypoxia inducible factor 1α (HIF-
1α) [5] and Matrix metalloproteinases (MMPs) [4] depending on experimental conditions
and cancer cell lines used. HIF-1α is an oxygen-labile DNA-binding transcriptional activa-
tor [6] and regulates cancer cell proliferation and invasion [7,8]. MMP9 plays a critical role
in the process of tumor invasion [9] and progression [10]. Thus, it is important to explore
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the micro-mechanism of cancer biology changes after anesthesia exposure for establishing
optimal anesthetic regimens for glioma surgery.

MicroRNAs (miRNA) are noncoding RNA molecules which negatively regulate pro-
tein expressions by post-transcriptional intervention to messenger RNAs (mRNA). miRNAs
affect cancer cell metabolism, differentiation, proliferation, cell cycle control, apoptosis,
invasion and migration in several cancer cell lines [11]. Anesthetics can alter a number of
miRNA expressions in normal [12] and cancer cells [13]. However, the potential effects of
anesthetics on cancer cell biology via miRNAs remain unknown.

The present study aims to investigate the effects of anesthetic sevoflurane and des-
flurane on glioma cell biology via miRNA expression changes. miR-138 [14] and -210 [15]
regulate HIF genes, while miR-335 was reported to control MMP9 in glioma [16]. We
hypothesized that inhalational anesthetics might modulate the HIF-1α and MMP9 cell
signaling/pathway in glioma cells via miRNA expression changes.

2. Results
2.1. Sevoflurane and Desflurane Exposure Inhibited H4 Cell Proliferation and Migration
2.1.1. Cell Migration

To examine the anesthetic effects on H4 cell biology, wound healing assay, Cell Count-
ing Kit-8 (CCK8) assay and Ki67 staining analysis were performed up to 48 h after the
exposure. In the wound healing assay, sevoflurane or desflurane exposure suppressed
cell migration at 24 and 48 h after gas exposure (gap closure percentage at 24 h after anes-
thesia: sevoflurane 40.28 ± 1.35, p < 0.001; desflurane 41.46 ± 2.42, p < 0.001, vs. control
57.92 ± 1.05, the gap closure percentage at 48 h after anesthesia: sevoflurane 81.11 ± 1.43,
p < 0.001; desflurane 81.22 ± 1.67, p < 0.001, vs. control 96.25 ± 1.11) (n = 6) (Figure 1a,b).
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Figure 1. The changes of cell viability and miRNAs after inhalational anesthesia. (a) Neuroglioma (H4) cell migration 
analysis with wound healing assay after 2 h of inhalational anesthesia: control (left), 3.6% sevoflurane (middle) and 10.4% 
desflurane (right), at 0 h later (upper), 24 h later (middle) and 48 h later (bottom). The microscopic images at 0, 24 and 48 
h after general anesthesia. (b) The comparison between anesthetics in percentage of gap closure by wound healing assay. 
(c) Cell proliferation analysis with CCK8 assay relative to control group. (d) Ki67 immunofluorescence staining: Ki67 (red), 
marker for cell proliferation, in control (left), sevoflurane- (middle) and desflurane-treated (right) H4 cells, counter-stained 
with DAPI (blue); x20 magnification, scale bar = 20 μm. (e) Comparison of percentage of Ki67 positive cells at 24 h after 
anesthesia exposure. (f–h) miRNA expressions evaluated with qRT-PCR compared to control group just after anesthesia 
exposure: (f) miR-138 (HIF-1α regulator), (g) miR-210 (HIF-1α regulator) and (h) miR-335 (MMP9 regulator). Data showed 
as plots and mean ± SD (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA with Tukey-Kramer compared to the 
control group. C: control, S: sevoflurane, D: desflurane and CCK8: cell count kit 8. 

2.1.2. Cell Proliferation Test 
CCK8 assay analysis showed that sevoflurane and desflurane significantly decreased 

the cell proliferation at 24 h after gas exposure (cell proliferation relative to control: 
sevoflurane 0.92 ± 0.02, p < 0.001; desflurane 0.91 ± 0.02, p < 0.001, vs control 1.00 ± 0.04) (n 
= 6) (Figure 1c). Both inhalational anesthetics reduced the Ki67-positive cells at 24 h after 
gas exposure (Ki67 positive cell percentage: sevoflurane 2.22 ± 0.23, p < 0.001; desflurane 
2.16 ± 0.24, p < 0.001, vs control 5.56 ± 0.41) (n = 6) (Figure 1d,e). 

2.2. Sevoflurane Exposure Increased miR-210 Expressions and Desflurane Exposure Enhanced 
miR-138 and -335 Expressions 
miRNA Changes after Anesthesia 

miR-138 and -210 are known as regulators of HIF-1α and miR-335 is reported to 
control MMP9 expression. To determine their expression changes induced by sevoflurane 
or desflurane in H4 cells, qRT-PCR was performed just after gas exposure. The miR-138 
and miR-335 expressions were upregulated by desflurane exposure (miR-138: sevoflurane 
1.15 ± 0.23, p = 0.358; desflurane 1.46 ± 0.18, p = 0.001, vs control 1.00 ± 0.11) (n = 6) (Figure 
2f), (miR-335: sevoflurane 1.12 ± 0.27, p = 0.628; desflurane 1.90 ± 0.54, p = 0.001, vs control 
1.00 ± 0.11) (n = 6) (Figure 2h), whereas the expression of miR-210 (Figure 2g) was 

Figure 1. The changes of cell viability and miRNAs after inhalational anesthesia. (a) Neuroglioma (H4) cell migration
analysis with wound healing assay after 2 h of inhalational anesthesia: control (left), 3.6% sevoflurane (middle) and 10.4%
desflurane (right), at 0 h later (upper), 24 h later (middle) and 48 h later (bottom). The microscopic images at 0, 24 and 48 h
after general anesthesia. (b) The comparison between anesthetics in percentage of gap closure by wound healing assay. (c)
Cell proliferation analysis with CCK8 assay relative to control group. (d) Ki67 immunofluorescence staining: Ki67 (red),
marker for cell proliferation, in control (left), sevoflurane- (middle) and desflurane-treated (right) H4 cells, counter-stained
with DAPI (blue); x20 magnification, scale bar = 20 µm. (e) Comparison of percentage of Ki67 positive cells at 24 h after
anesthesia exposure. (f–h) miRNA expressions evaluated with qRT-PCR compared to control group just after anesthesia
exposure: (f) miR-138 (HIF-1α regulator), (g) miR-210 (HIF-1α regulator) and (h) miR-335 (MMP9 regulator). Data showed
as plots and mean ± SD (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA with Tukey-Kramer compared to the
control group. C: control, S: sevoflurane, D: desflurane and CCK8: cell count kit 8.

2.1.2. Cell Proliferation Test

CCK8 assay analysis showed that sevoflurane and desflurane significantly decreased
the cell proliferation at 24 h after gas exposure (cell proliferation relative to control: sevoflu-
rane 0.92 ± 0.02, p < 0.001; desflurane 0.91 ± 0.02, p < 0.001, vs. control 1.00 ± 0.04) (n = 6)
(Figure 1c). Both inhalational anesthetics reduced the Ki67-positive cells at 24 h after gas
exposure (Ki67 positive cell percentage: sevoflurane 2.22 ± 0.23, p < 0.001; desflurane
2.16 ± 0.24, p < 0.001, vs. control 5.56 ± 0.41) (n = 6) (Figure 1d,e).

2.2. Sevoflurane Exposure Increased miR-210 Expressions and Desflurane Exposure Enhanced
miR-138 and -335 Expressions
miRNA Changes after Anesthesia

miR-138 and -210 are known as regulators of HIF-1α and miR-335 is reported to
control MMP9 expression. To determine their expression changes induced by sevoflurane
or desflurane in H4 cells, qRT-PCR was performed just after gas exposure. The miR-138
and miR-335 expressions were upregulated by desflurane exposure (miR-138: sevoflurane
1.15 ± 0.23, p = 0.358; desflurane 1.46 ± 0.18, p = 0.001, vs. control 1.00 ± 0.11) (n = 6)
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(Figure 2f), (miR-335: sevoflurane 1.12± 0.27, p = 0.628; desflurane 1.90± 0.54, p = 0.001, vs.
control 1.00 ± 0.11) (n = 6) (Figure 2h), whereas the expression of miR-210 (Figure 2g) was
upregulated only by sevoflurane (sevoflurane 1.75 ± 0.37, p = 0.004; desflurane 1.02 ± 0.42,
p = 0.992, vs. control 1.00 ± 0.14) (n = 6).
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Neuroglioma (H4) cell migration analysis with wound healing assay after 24 h and 48 h of inhalational anesthesia with 
miRNA inhibition pretreatment at 0 h (upper) and 24 h (bottom) after anesthesia. (a) The microscopic images after control 
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desflurane anesthesia and miRNA inhibitor pretreatment. Data showed as plots and mean ± SD (n = 6). *** p < 0.001. One-

Figure 2. The changes of cell migration after inhalational anesthesia with miRNA inhibitor pretreatment. (a–f) Neuroglioma
(H4) cell migration analysis with wound healing assay after 24 h and 48 h of inhalational anesthesia with miRNA inhibition
pretreatment at 0 h (upper) and 24 h (bottom) after anesthesia. (a) The microscopic images after control anesthesia. (b) The
comparison of gap closure percentage with control anesthesia and miRNA inhibitor pretreatment. (c) The microscopic
images after 3.6% sevoflurane anesthesia with miRNA inhibitor pretreatment. (d) The comparison of gap closure percentage
with 3.6% sevoflurane anesthesia and miRNA inhibitor pretreatment. (e) The microscopic images after 10.4% desflurane
anesthesia with miRNA inhibitor pretreatment. (f) The comparison of gap closure percentage with 10.4% desflurane
anesthesia and miRNA inhibitor pretreatment. Data showed as plots and mean ± SD (n = 6). *** p < 0.001. One-way
ANOVA with Tukey-Kramer compared to each control group. C: control, S: sevoflurane, D: desflurane, Scr: scrambled
miRNA, 138i: miR-138 inhibitor, 210i: miR-210 inhibitor and 335i: miR-335 inhibitor.

2.3. The Inhibition of miR-138, -210 and -335 Reversed the Sevoflurane- and Desflurane-Induced
Suppression of Proliferation and Migration
2.3.1. Cell Migration Ability after the Inhibitor Administration of miR-138, -210 and -335

To assess the effects of miRNA expression changes on cell activity, the miRNA in-
hibitors were transfected to H4 cells before anesthetic exposure. Without anesthetics, the
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inhibition of miR-138, -210 and -335 increased cell migration in the wound healing assay at
24 h after gas exposure (control + miR-138 inhibition 62.11 ± 0.85, p < 0.001; control + miR-
210 inhibition 63.94 ± 3.75, p < 0.001; control + miR-335 inhibition 65.41 ± 3.57, p < 0.001,
vs. control 54.03 ± 3.12) (n = 6) (Figure 2a,b).

2.3.2. Cell Migration Ability after the Inhibitor Administration of miR-138, -210 and -335
with Sevoflurane Exposure

With sevoflurane exposure, only miR-210 inhibition increased cell migration at 24
and 48 h after anesthesia (24 h after the exposure: sevoflurane + miR-138 inhibition
43.12 ± 2.01, p = 0.768; sevoflurane + miR-210 inhibition 54.47 ± 3.57, p < 0.001; sevoflu-
rane + miR-335 inhibition 45.75 ± 2.08, p = 0.057, vs. sevoflurane 41.32 ± 1.59) (n = 6)
(Figure 2c,d), (48 h after the exposure: sevoflurane + miR-138 inhibition 87.44 ± 1.53,
p = 0.870; sevoflurane + miR-210 inhibition 96.83 ± 3.83, p < 0.001; sevoflurane + miR-335
inhibition 90.53 ± 0.99, p = 0.061, vs. sevoflurane 85.86 ± 2.66) (n = 6) (Figure 2c,d).

2.3.3. Cell Migration Ability after the Inhibitor Administration of miR-138, -210 and -335
with Desflurane Exposure

MiR-138 and miR-335 inhibition boosted gap closure at 24 and 48 h after desflurane
exposure (24 h after the exposure: desflurane + miR-138 inhibition 50.01 ± 1.69, p < 0.001;
desflurane + miR-210 inhibition 41.69 ± 2.14, p = 0.654; desflurane + miR-335 inhibition:
52.28 ± 2.84, p < 0.001, vs. desflurane: 40.08 ± 2.01) (n = 6) (Figure 2e,f), (48 h after the
exposure: desflurane + miR-138 inhibition 91.24 ± 0.87, p < 0.001; desflurane + miR-210
inhibition 85.82 ± 2.40, p = 0.258; desflurane + miR-335 inhibition 96.75 ± 2.66, p < 0.001,
vs. desflurane 84.22 ± 2.48) (n = 6) (Figure 2e,f).

2.3.4. Cell Proliferation after the Inhibitor Administration of miR-138, -210 and -335

In Ki67 staining, the inhibition of miR-210 and -335 accelerated cell proliferation at 24 h
after gas exposure (control + miR-138 inhibition 6.14 ± 0.19, p = 0.228, control + miR-210
inhibition 8.44 ± 0.41, p < 0.001, control + miR-335 inhibition 6.66 ± 0.41, p = 0.002, vs.
control 5.59 ± 0.41) (n = 6) (Figure 3a,b).

2.3.5. Cell Proliferation after the Inhibitor Administration of miR-138, -210 and -335 with
Sevoflurane or Desflurane Exposure

With sevoflurane exposure, only miR-210 inhibition promoted Ki67 positive per-
centage (sevoflurane + miR-138 inhibition 1.89 ± 0.19, p = 0.054, sevoflurane + miR-210
inhibition 4.11 ± 0.21, p < 0.001, sevoflurane + miR-335 inhibition 2.24 ± 0.15, p = 0.999,
vs. sevoflurane 2.23 ± 0.23) (n = 6) (Figure 3a,c), while miR-138 and miR-335 inhibition
increased cell proliferation only by desflurane exposure (desflurane + miR-138 inhibition
4.49 ± 0.18, p < 0.001, desflurane + miR-210 inhibition 2.85 ± 0.14, p = 0.010, desflurane +
miR-335 inhibition 4.33 ± 0.11, p < 0.001, vs. desflurane 2.16 ± 0.23) (n = 6) (Figure 3a,d).

2.4. Sevoflurane and Desflurane Exposure Attenuated HIF-1α Protein Expression Which Was
Reverted by miR-138 and -210 Inhibitor Treatment
The Inhibition of miR-138 and -210 enhanced HIF-1α Expression at Any Conditions

HIF-1α is a key transcriptional factor in cancers which can be regulated by miR-138
and -210. Thus, HIF-1α expression was examined after miRNA inhibition and anesthetic
exposure. In immunofluorescent staining, sevoflurane and desflurane exposure signifi-
cantly decreased HIF-1α compared with the control (sevoflurane 0.78 ± 0.09, p < 0.008;
desflurane 0.68 ± 0.15, p < 0.001, vs. control 1.00 ± 0.04) (n = 6). The inhibition of miR-138
and -210 enhanced HIF-1α expression (control + miR-138 inhibition 1.21 ± 0.14, p = 0.004,
control + miR-210 inhibition 1.23 ± 0.08, p = 0.002, vs. control 1.00 ± 0.04; sevoflurane
+ miR-138 inhibition 1.33 ± 0.29, p < 0.001, sevoflurane + miR-210 inhibition 1.13 ± 0.19,
p = 0.030, vs. sevoflurane 0.79± 0.09; desflurane + miR-138 inhibition 1.24± 0.14, p < 0.001,
desflurane + miR-210 inhibition 1.44 ± 0.26, p < 0.001, vs. desflurane 0.68 ± 0.15) (n = 6)
(Figure 4a,b).
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Figure 3. The changes of cell proliferation after 2 h of inhalational anesthesia with miRNA inhibitor pretreatment. (a) 
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proliferation, in control (upper), sevoflurane- (middle) and desflurane-treated (bottom) H4 cells, counter-stained with 

Figure 3. The changes of cell proliferation after 2 h of inhalational anesthesia with miRNA inhibitor pretreatment. (a) Neu-
roglioma (H4) cell proliferation analysis with Ki67 immunofluorescence staining: Ki67 (red), marker for cell proliferation,
in control (upper), sevoflurane- (middle) and desflurane-treated (bottom) H4 cells, counter-stained with DAPI (blue);
×20 magnification, scale bar = 20 µm. (b–d) Cell proliferation analysis with Ki67 immunofluorescence staining with
anesthesia and miRNA inhibitor pretreatment relative to each control group at 24 h after exposure: (b) control anesthe-
sia, (c) 3.6% sevoflurane anesthesia and (d) 10.4% desflurane anesthesia. Data showed as plots and mean ± SD (n = 6).
* p < 0.05, *** p < 0.001; One-way ANOVA with Tukey-Kramer compared to each control group. C: control, S: sevoflurane,
D: desflurane, Scr: scrambled miRNA, 138i: miR-138 inhibitor, 210i: miR-210 inhibitor and 335i: miR-335 inhibitor.
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2.5. Desflurane Exposure Attenuated MMP9 Protein Expression Which Was Reverted by miR-335
Inhibitor Treatment
The Inhibition of miR-335 Enhanced MMP9 Expression

MMP9 plays a main role in cancer cell migration, regulated by miR-335. MMP9 expres-
sion was examined after miRNA inhibition and anesthesia. In immunofluorescent staining,
sevoflurane and desflurane exposure significantly decreased MMP9 compared with the
control (sevoflurane 0.71 ± 0.16, p = 0.017; desflurane 0.69 ± 0.13, p = 0.012, vs. control 1.00
± 0.18) (n = 6). The inhibition of miR-335 enhanced MMP9 expression with the presence
of any anesthetics (control + miR-335 inhibition 1.66 ± 0.29, p < 0.001, vs. control 1.00 ±
0.18; sevoflurane + miR-335 inhibition 1.50 ± 0.09, p < 0.001, vs. sevoflurane 0.71 ± 0.16;
desflurane + miR-335 inhibition 1.39 ± 0.10, p < 0.001, vs. desflurane 0.69 ± 0.13) (n = 6)
(Figure 5a,b).
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3. Discussion

This in vitro study with neuroglioma cells demonstrated that inhalational anesthet-
ics exerted the anti-cancer effects via the miR-138/HIF-1α, miR-210/HIF-1α and miR-
335/MMP9 pathways in this specific cancer cell line (Figure 6). miR-210 inhibitor attenu-
ated the “anti-cancer” effect of sevoflurane and HIF-1α expression induced by sevoflurane,
and miR-138 or miR-335 inhibitors reversed the “anti-cancer” effect of desflurane and HIF-
1α or MMP9 expressions induced by desflurane. Sevoflurane decreased HIF-1α expression
via miR-210, while desflurane downregulated HIF1-α and MMP9 expressions via miR-138
and miR-335, respectively. The current finding is not in line with our previous work in
which showed that inhalational anesthetics had oncogenic effect via HIF-1a/miR-138 or
-210 pathways in ovarian cancer (SKOV3) cells [17]. The “anti- or pro-cancer effects” of
inhalational anesthetics via miR-138 or -210 are likely depending on cancer cell types.
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and migration via HIF-1α by miR-210 upregulation. Desflurane exposure to H4 cells decrease
H4 cell proliferation and migration via HIF-1α and MMP9 by miR-138 and miR-335 upregulation,
respectively.

Anesthetic/techniques may affect cancer cell biology such as proliferation, migra-
tion, invasion and apoptosis, and thus influence the clinical outcomes of cancer patients
following surgery. Inhalational anesthetics have been reported to be capable of regulat-
ing gene expressions in human breast cancer and neuroblastoma [18], suggested to exert
anti-proliferative effects in glioma cells [19] and decreased cell viability of non-small cell
lung cancer cells [20]. Sevoflurane also has been reported to regulate multiple miRNAs in
normal cells including brain [21] and peripheral organs [12,22] and in cancer cells, leading
to cell biological changes. Sevoflurane can inhibit cell migration and invasion in colon
cancer cells via the ERK/MMP9 pathway by regulating miR-203 [23]. Sevoflurane also
attenuated glioma cell proliferation and invasion thorough the upregulation of miR-637
and miR-124, which suppressed the Akt1 expression and ROCK1 signal pathways, re-
spectively [24,25]. miRNAs regulate cancer cell biology including cell proliferation and
invasion in glioma [26] and ovarian cancer cells [27] via HIF-1α and MMP9 pathways.
Several studies have demonstrated that HIF-1α can be regulated by miR-210 [15,28] and
miR-138 [14] in melanoma cells. For example, miR-210 can act as a tumor suppressor, in-
hibiting cell proliferation in ovarian cancer [29] and laryngeal squamous cell carcinoma [30].
Conversely, miR-138 is downregulated in numerous cancers, including glioblastoma [31],
and acts as a tumor suppressor gene by regulating the expression of various genes in
many cancer types. For example, miR-138 suppressed cell proliferation, invasion and
migration as a tumor suppressor gene in cervical cancer by targeting H2AX [32], and in
ovarian cancer cells via SOX4 [33]. HIF-1α has been identified as one of the key regulators
in tumor progression, cell proliferation, invasion and angiogenesis [34,35]. An increased
expression of HIF-1α has been reported in a number of cancer cell lines [36], associated
with tumor growth, metastasis, poor clinical prognosis [37], and chemoresistance [38].
HIF-1α expression may be increased via loss-of-function mutations of tumor-suppressor
genes or gain-of-function mutations of oncogenes, and activation of the Phosphoinositide 3-
kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) and Mitogen-activated
Protein Kinase/Extracellular Signal-regulated Kinase (MAPK/ERK) pathways [39]. Inhala-
tional anesthetics, e.g., Isoflurane, exposure increased HIF-1α expression in a concentration-
and time-dependent manner, and HIF-1α translocated from the cytoplasm to the nucleus
as a transcription factor, resulting in various downstream effectors being activated and
then, in turn, increased proliferation and invasion in prostate cancer cells [5]. On the
other hand, sevoflurane suppressed invasion and metastasis, and increases sensitivity to
radiotherapy by inhibition of p38/MAPK, HIF-1α and MMP family proteins in non-small
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lung cancer cells [9,40]. Inhalational anesthetics accelerated cancer cell malignancy via
HIF-1α/miR-138 or -210 in SKOV3 cells [17]. Together, all these studies may indicate that
the effects of inhalational anesthetics on cancer cells via miR-138 or -210 were depending
on cancer cell types.

MMPs are proteolytic enzymes that degrade components of the extracellular ma-
trix (ECM) and basement membrane [41], contributing to cancer cell invasion and migra-
tion [42]. Increased MMP expression has been reported in many types of cancer cells [10,43],
and its involvement in tumor progression [10], cell proliferation, remodeling, and invasion
was reported in glioma cells [44]. MMP9 can also regulate vascular endothelial growth
factor (VEGF) expression, an essential factor for angiogenesis [45] and tumor growth [46].
Furthermore, MMP9 expression in tumor tissue was correlated with the clinical tumor
stages/grades and clinical outcome in glioma [47]. Sevoflurane and desflurane inhibited
cell invasion through MMP9 downregulation in colorectal cancer cells [48]. miR-335 has
been reported as a tumor invasion/metastasis suppressor in small cell lung cell lung can-
cer [49], gastric cancer [50] and ovarian cancer [51]. Downregulation of miR-335 in breast
tumor tissue has been associated with overexpression of MMP2, MMP9 and VEGF and
downregulation of tissue inhibitors of metalloproteinases (TIMP)1 and TIMP2 genes [52],
which related to tumor size, cancer metastasis and cancer histological grades. This study
showed the anti-cancer effect of desflurane but not sevoflurane via MMP9/miR-335.

In summary, our in vitro data showed that sevoflurane inhibited H4 cell migration and
cell proliferation via miR-210/HIF-1α mechanism while desflurane via miR-138/ HIF-1α
and miR-335/MMP9 modulation. However, this study is not free from limitations. Firstly,
this is an in vitro study using one cell line. Each of the neuroglioma cell phenotypes have
their own biological characteristics. Therefore, further investigations using other cell lines
of neuroglioma are needed for further validation of the findings reported here. Secondary,
the current experimental paradigm is only one relatively high concentration used with
2 h exposure time. Clinically, surgical time of brain tumor is sometimes longer than 2 h.
Therefore, a variety of exposure time and concentration of these anesthetics are needed to
determine their time- and concentration- effects. Furthermore, the experimental duration
after gas exposure is relatively shorter (only up to 48 h) when considering postoperative
recurrence. Lastly, the clinical value of the current study needs to be validated in vivo
study and clinical settings.

4. Materials and Methods
4.1. Cell Culture

The human neuroglioma cell (H4) line (European Cell Culture Collection, Salisbury,
UK) was cultured at 37 ◦C in a humidified atmosphere containing 5% CO2 balanced with
air in Dulbecco’s Modified Eagle medium (Sigma-Aldrich, Dorset, UK), containing 10%
fetal bovine serum (Thermo Scientific, Paisley, UK) and 1% penicillin (Sigma-Aldrich)
for the experiments described below with or without inhalational agent exposures for
further analyses.

4.2. Inhalational Anaesthetic Exposure

When cultures reached to 60%, they were exposed to the experimental gas mixture
which consisted of 21% O2, 5% CO2 and either 3.6% sevoflurane or 10.3% desflurane
balanced with N2 (BOC, South Humberside, UK) in a purpose-built 1.5 L airtight gas
chamber, equipped with inlet and outlet valves. The chamber was placed in an incubator
(Galaxy R CO2 chamber; New Brunswick Scientific, Enfield, CT, USA) at 37 ◦C for 2 h [53].
Other cohort cells were exposed to the same concentration gases without inhalational
anesthetic served as controls. After exposure, cells were returned to the normal culture
incubator until the further study.
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4.3. Wound Healing Assay

Cells (2.5 × 104) were seeded into each well (Culture-Insert 3 wells (Ibidi, Martin-
sried, Germany)), incubated for 24 h before wound was made and then exposed to the
experimental gas mixtures as above for 2 h. The gap closure was monitored using an
inverted microscope (CK30-SLP; Olympus, Tokyo, Japan) at 0, 24 and 48 h after gas expo-
sure. Images were analyzed using Image J version 1.52a software (National Institute of
Health, Bethesda, MD, USA). Gap closure (healing) was quantified according to the mean
percentage remaining cell-free area compared with the area of the initial wound [54].

4.4. Cell Proliferation Test

Cells (7× 103) seeded into 96-well plates were exposed to the experimental gas mixture
described above. The cell Counting Kit-8 (CCK8) reagent (Sigma-Aldrich) was added for
2 h before the readings of media were made at 450 nm using an ELx800 Microplate Reader
(BioTek, Swindon, UK) at 24 h after gas exposure. Cell viability was expressed as a ratio
relative to the controls.

4.5. RNA Extraction and Reverse Transcription

Immediately after the anesthetic exposure, the total RNA was extracted from cells us-
ing QIAzol Lysis Reagent and miRNeasy Mini Kit (Qiagen, West Sussex, UK) in accordance
with the manufacturer instruction. The quantity and quality of RNA were assessed using a
BioPhotometer (Eppendorf, Stevenage, UK). Samples with an A260/A280 ratio >1.8 were
considered as to be sufficient quality for further analysis. RNA (1 ng) was converted to
cDNA with miScript II RT Kit (Qiagen) using the thermal protocol of 37 ◦C for 60 min and
95 ◦C for 5 min in thermalcycler (Mastercycler®, Eppendolf, Stevenage, UK).

4.6. qRT-PCR

qRT-PCR was performed with miScript SYBR Green PCR Kit (Qiagen) and Rotor gene
Q system (Qiagen). SNORD44 small nuclear RNA was used as an endogenous control.
The commercial primers, miR-138-5p, miR-210-3p and miR-335-5p, were purchased from
Qiagen. Thermocycle setting for RT-PCR was as follows; 95 ◦C for 15 min, 40 cycles of 94 ◦C
for 15 s, 55 ◦C for 30 s and 70 ◦C for 30 s. Melting curve analysis was used to confirm the
specificity of amplification. Expressions of miRNAs relative to SNORD44 were determined
using the comparative 2−∆∆Ct method.

4.7. miRNA Inhibitor Transfection

miR-138-5p (5′AGCUGGUGUUGUGAAUCAGGCCG), miR-210-3p (5′CUGUGCGUG
UGACAGCGGCUGA) and miR-335-5p (5′UCAAGAGCAAUAACGAAAAAUGU) in-
hibitors (Qiagen) were purchased from Qiagen for transfection. miScript Inhibitor Negative
Control (Qiagen) served as the negative control for miRNA inhibitor. Cells were transfected
with 50 nM of each miRNA inhibitor or negative control using the HiPerFect transfection
reagent (Qiagen) for 24 h. After transfection, the cells were exposed to anesthetics in the
fresh medium.

4.8. Immunofluorescent Staining

Cells were fixed in 4% paraformaldehyde for 10 min and blocked with 10% normal
donkey serum (Sigma-Aldrich) for 1 h, followed by overnight incubation at 4 ◦C with one
of primary antibodies; rabbit polyclonal anti-Ki-67 antibody (1:500; Abcam plc, Cambridge,
UK), rabbit polyclonal anti-HIF-1α antibody (1:300; Novus biologicals, Abingdon, UK), rab-
bit monoclonal anti-MMP9 antibody (1:300; Cell signaling Technology, London, UK). Cells
were subsequently incubated in Alexa flour 568-conjugated secondary antibody (1:300;
ThermoFisher scientific, Waltham, MA, USA) and co-stained with Vectashield mounting
medium containing nuclear dye 4′, 6-diamidino-2-phenylindole–mounting medium (Milli-
pore, Burlington, MA, USA). Cells were visualized with a BX60 wide-field fluorescence
microscope (Olympus, Hamburg, Germany) under a 20× magnification. Images were cap-
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tured using a cooled AxioCam camera (Zeiss, Oberkochen, Germany) with Zeiss software.
Fluorescence intensity was quantified as the mean pixel intensity of relevant antibody
staining using Image J version 1.52a software (National Institute of Health).

4.9. Statistical Analysis

All numerical data are presented as dot plots and expressed as mean ± SD. One-way
analysis of variance followed by post-hoc Tukey’s test were used for data analyses using
Prism version 8.0 (GraphPad Software, San Diego, CA, USA). A p value less than 0.05 was
considered to be a statistical significance.

5. Conclusions

In conclusion, the present study showed that inhalational anesthetics inhibited cancer
cell biology including cell proliferation and migration in neuroglioma cells via miRNA
changes. Although both sevoflurane and desflurane provide “anti-cancer” effects through
HIF-1α and MMP9 changes, the regulatory mechanisms of HIF-1α and MMP9 via miRNAs
may be difference from one to the other inhalational anesthetics. This study may arguably
contribute to the elucidation of the molecular mechanisms underpinning the effects of
inhalational anesthetics on cancer cells. Our data may call more clinical studies to optimize
anesthesia regimen for individual cancer type.
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