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Temperature induces metabolic
reprogramming in fish during
bacterial infection
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Water temperature elevation as a consequence of global warming results in

increased incidence of bacterial disease, such as edwardsiellosis, in fish

farming. Edwardsiellosis is caused by the bacterial pathogen Edwardsiella

tarda and affects many farmed fish including flounder (Paralichthys

olivaceus). Currently, the effect of temperature on the metabolic response of

flounder to E. tarda infection is unclear. In this study, we found that compared

to low temperature (15°C), high temperature (23°C) enhanced E. tarda

dissemination in flounder tissues. To examine the impact of temperature on

the metabolism of flounder induced by E. tarda, comparative metabolomics

were performed, which identified a large number of metabolites responsive to

E. tarda invasion and temperature alteration. During E. tarda infection, the

metabolic profile induced by elevated temperature was mainly featured by

extensively decreased amino acids and TCA intermediates such as succinate, a

proven immune regulator. Further, 38 potential metabolite markers of

temperature effect (MMTE) in association with bacterial infection were

identified. When used as exogenous supplements, two of the MMTE, i.e.,

L-methionine and UDP-glucose, effectively upregulated the expression of

pro-inflammatory cytokines and suppressed E. tarda infection in flounder

leukocytes. Taken together, the results of this study indicate an important

influence of temperature on the metabolism of flounder during bacterial

infection, which eventually affects the survivability of the fish.
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Introduction

According to the Food and Agriculture Organization of the

United Nations, the projected consequences of climate change,

including rising temperature, increased risks of disease, altered

precipitation pattern, ocean acidification and sea-level rise,

impose immediate and long-term threats to the sustainability

of aquaculture (1, 2). Fish and most other farmed aquatic

animals are poikilothermic and therefore sensitive to the

variation of ambient temperature (2). Rising water

temperature per se and/or in combination with its potential

environmental consequences, such as decreased level of

dissolved oxygen, can exert multilayer impacts on various

physiological processes of fish, notably metabolism and

immune defense against pathogens (3, 4).

Elevated water temperatures have been associated with

increased incidences of infectious disease in a number of farmed

fish species, including flounder (Paralichthys olivaceus), channel

catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus)

(5–8). Flounder (alternative names: Japanese flounder, olive

flounder) is a species of marine teleost extensively cultured in

Asia, in particular China, Japan, and Korea, and is extensively used

as an experimental model in the studies on fish disease (9–13). The

physiologically suitable temperatures of flounder range from 14°C

to 23°C (14–16). In farmed flounder, edwardsiellosis is one of the

most severe diseases, which occurs more frequently at high

temperatures and can lead to mass mortality in numerous fish

species farmed worldwide (17–20). The causative agent of

edwardsiellosis is Edwardsiella tarda, a Gram-negative, facultative

intracellular pathogenic bacterium (21–24). The pathogenicity of E.

tarda depends on an armory of weapons including the type III

secretion system (T3SS), type VI secretion system (T6SS), and other

virulence factors (22, 23). Temperature is vital for the regulation of

virulence in E. tarda. The bacterium senses the variation of

environmental temperature via the two-component system PhoP-

PhoQ (25). At 23°C-35°C, the sensor histidine kinase PhoQ

phosphorylates the regulator PhoP, which subsequently activates

the expression of T3SS, T6SS and other virulence genes, such as that

encoding the anti-serum complement protease Sip1, to promote the

onset of edwardsiellosis (25, 26).

Metabolism is considered a guiding force for immune cell

activation and differentiation, and metabolites, such as succinate,

can serve as signaling molecules in immune and inflammatory

responses (27–30). In mammals, host metabolism is remodeled

in response to bacterial infection (31). Some intracellular

bacteria, such as Mycobacterium tuberculosis, Legionella

pneumophila, Brucella abortus, Chlamydia trachomatis, and C.

pneumoniae, are able to reprogram the metabolism of host cells,

whereby eliciting a phenomenon termed Warburg-like effect

(32). Warburg effect is known as a hallmark of cancer cells, in

which glucose uptake and glycolysis are accelerated, and the final

product of glycolysis, pyruvate, is converted to lactate in the
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cytosol, rather than being routed to oxidative phosphorylation in

the mitochondria as seen in normal non-proliferating cells (33).

Pathogenic bacteria-induced Warburg-like metabolism in host

cells accumulates the intermediates of glycolysis and

tricarboxylic acid (TCA) cycle, whereby enhancing the

anabolism of amino acids, nucleotides and lipids, which

support host immunity and also serve as nutrients for the

pathogen (32, 34). Considering the essential role of

metabolism in shaping immunity (28, 35), metabolites have

been employed to regulate host immunity and combat

bacterial infection (36). In teleost, the metabolomic approach

has been used to identify the crucial metabolic biomarkers that

benefit host survival during bacterial infection (37, 38). In

crucian carp (Carassius auratus), tilapia (Oreochromis

niloticus) and zebrafish (Danio rerio) , exogenously

supplemented metabolites could enhance the survival of fish

during E. tarda infection (5, 39, 40).

Increasing evidences indicate that in flounder, E. tarda

infection elicits profound immune responses through an

elaborate network composed of immune molecules such as

proteins and regulatory RNAs (41–43). However, the

metabolic response of flounder to E. tarda infection, especially

under different temperatures, remains unclear. In this study, we

investigated the metabolomic profiles of flounder induced by E.

tarda infection at high and low temperatures, and identified

potential biomarkers for temperature-regulated metabolic

reprogramming in response to bacterial infection. Our results

revealed a metabolic connection between temperature elevation

and edwardsiellosis in flounder, and indicated a risk of increased

fish disease as a result of global warming.
Materials and methods

Fish and bacteria

Flounder (Paralichthys olivaceus) averaging 250 g in weight

were purchased from a local fish farm in Qingdao, China. The

fish were maintained at ~15°C in aerated seawater and fed daily

with a commercial feed. Prior to experiments, the fish were

acclimatized for a week and verified to be clinically healthy as

reported previously (44). For tissue collection, flounder were

euthanized with tricaine methane sulfonate (Sigma, St. Louis,

MO, USA) as described previously (45). Edwardsiella tarda TX1

was isolated from diseased founder (46).
Experimental grouping, infection
and sampling

Flounder were randomly divided into four groups (9 fish/

group), namely, the low temperature control group (LC), the
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high temperature control group (HC), the low temperature

infection group (LI), and the high temperature infection group

(HI). All fish were acclimatized at 15°C for one week. Then the

LC and LI groups were maintained continuously at 15°C, while

the HC and HI groups were maintained at the temperature that

increased by 1°C per day until 23°C. The HC and HI groups were

maintained at 23°C for one week. Meanwhile, E. tarda was

grown in Leibovitz L-15 medium (Gibico, Grand Island, NY,

USA) at 15°C or 23°C till OD600 ≈ 0.4. The bacteria were

collected by centrifugation, washed with PBS and suspended in

PBS to a final concentration of 1 x 108 CFU/mL. The LI and HI

groups were intramuscularly injected with 100 mL bacterial

suspension of the 15°C and 23°C culture, respectively; the LC

and HC groups were injected with a same volume of PBS. After

injection, the LC and LI groups were maintained at 15°C for

24 h; the HC and HI groups were maintained at 23°C for 24 h.

Spleen was aseptically collected from the fish of each group. One

portion of the spleen sample was used to analyze bacterial

recovery by plate count as reported previously (47). The rest

of the sample was frozen in liquid nitrogen and used for

metabolomic analysis.
Liquid chromatography/tandem mass
spectrometry (LC-MS/MS)

A total of 36 samples (9 samples/group) were subjected to

metabolomic LC-MS/MS analysis with an UHPLC-Q-TOF-MS

approach. For each sample, 60 mg tissue was homogenized in

200 mL water. Then the metabolites were extracted with 800 mL
methanol: acetonitrile solution (1:1, v/v) and lyophilized using a

vacuum centrifuge at 4°C. The extract was dissolved in 100 mL
acetonitrile/water (1:1, v/v), and 2 mL of each sample was added

onto an ACQUITY UPLC BEH Amide column (1.7 mm, 2.1

mm× 100 mm) (Waters, Wexford, Ireland) for hydrophilic

interaction liquid chromatography (HILIC) with Agilent 1290

Infinity LC ultrahigh performance liquid chromatography

(UHPLC) system. The automatic sampler was maintained at

4°C during the LC process. The separation was performed at

25°C, 0.3 mL/min, with the gradient of solvent A (25 mM

ammonium acetate and 25 mM ammonium hydroxide in

water) and solvent B (acetonitrile) as follows: 0-1 min, 95% B;

1-14 min, 95%-65% B; 14-16 min, 65%-40% B; 16-18 min, 40%

B; 18-18.1 min, 40%-95%; 18.1-23 min, 95% B. A tandem MS/

MS was coupled to the LC separation using a Triple TOF 5600

mass spectrometer (AB SCIEX). The electrospray ionization

(ESI) source conditions were set as follows: Ionization modes:

negative and positive; Ion Source Gas1 (Gas1), 60; Ion Source

Gas2 (Gas2), 60; curtain gas (CUR), 30; source temperature,

600°C; Ion Spray Voltage Floating (ISVF), ± 5500 V. The

parameters of TOF MS were set as follows: m/z range, 60-

1000; accumulation time, 0.20 s/spectra. The secondary MS was

performed with the information dependent acquisition (IDA)
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approach in the high sensitivity mode. The parameters were set

as follows: m/z range, 25-1000; accumulation time, 0.05 s/

spectra; collision energy (CE), 35 V ± 15 eV; declustering

potential (DP): ± 60 V.
Metabolomic data processing
and analysis

The raw data of LC-MS/MS was converted to the MzXML

format using ProteoWizard (https://proteowizard.sourceforge.io)

and imported to the XCMS (https://xcmsonline.scripps.edu)

software for retention time correction, peak detection and

matching. The metabolites were identified based on exact

mass (< 25 ppm) and compound spectrum matching with a

self-built database constructed by Shanghai Applied Protein

Technology Co., Ltd. After signal normalization, the data were

processed by SIMCA-P 14.1 (Umetrics, Umea, Sweden) for

Unsupervised Principal Component Analysis (PCA), Supervised

Partial Least Squares Discriminant Analysis (PLS-DA) and

Orthogonal Partial Least Squares Discriminant Analysis (OPLS-

DA). The variable Importance for the Projection (VIP) value

derived from OPLS-DA was used to evaluate the contribution of a

metabolite to its discriminative grouping for screening the

potential metabolic biomarkers upon different treatments

(thermal stress and/or bacterial infection). The statistical

significance was determined with an unpaired Student’s t test.

VIP value >1, p<0.05 and |fold change| > 2 were set as

the screening criteria to identify significantly differential

metabolites (SDMs). The metabolite category, Venn diagram

and heat map analysis of the SDMs were performed using the

platform of Shanghai Applied Protein Technology Co., Ltd

(http://cloud.aptbiotech.com/#/main-page). Pathway enrichment

analysis was conducted using MetaboAnalyst 5.0 (https://www.

metaboanalyst.ca/) and the KEGG database (https://www.kegg.jp)

as reported previously (5, 48). Pathways with p value < 0.05 were

considered significantly enriched.
Isolation of the flounder
spleen leukocytes

Flounder spleen leukocytes were isolated as described

previously with minor modification (49). In brief, founder

spleen was collected aseptically and placed onto a cell strainer

(BD Falcon, Franklin Lakes, NJ, USA) on top of a 50-mL tube.

Then the spleen was cut to pieces and gently grinded in L-15

medium with a syringe plunger, during which process, the cells

were separated by passing through the strainer. The cell

suspension was loaded onto a Percoll (GE Healthcare,

Uppsala, Sweden) solution with the density of 1.070 g/mL and

centrifuged at 400 × g for 10 min. The leukocyte layer was

collected with a syringe and suspended in L-15 medium.
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Cellular infection assay

To assess the effects of the selected metabolites on E. tarda

infection to flounder leukocytes, the metabolites (dissolved in L-

15 medium) were added to the cells in 1.5-mL Eppendorf tubes

to a final concentration of 0.5 mM (50). The control group was

added with L-15 medium. The cells (1 x 107 cells/mL, 1 mL/tube,

3 replicates/group) were incubated at 23°C for 6 h. Meanwhile,

E. tarda was grown in Luria–Bertani (LB) medium at 28°C to an

OD600 of 0.7 and suspended in L-15 medium to a final

concentration of 1×109 CFU/ml. The above flounder

leukocytes were infected with E. tarda at an MOI of 5:1 and

incubated at 23°C for 2 h with constant slow rotation. Then the

leukocytes were centrifuged at 400 × g for 5 min and gently

washed with PBS for 3 times. The leukocytes were divided into

two portions: one portion was lysed with 1% Triton X-100 and

subjected to bacterial recovery analysis by plate count. The other

portion was used for the quantitative real time reverse

transcription PCR (qRT-PCR) assay. All experiments were

performed in triplicate.
qRT-PCR assay

RNA was extracted using the RNA-easy Isolation Reagent

(Vazyme, Nanjing, China). cDNA was obtained by reverse

transcription using the ReverTra Ace qPCR RT Master Mix

with gDNA remover (Toyobo, Osaka, Japan). qRT-PCR was

performed in technical duplicate (three biological replicates for a

treatment group) using the ChamQ Universal SYBR qPCR

Master Mix (Vazyme, Nanjing, China) in a QuantStudio 3

Real-Time PCR System (Thermo Fisher Scientific, CA, USA).

Gene expression was analyzed with the comparative threshold

cycle (2−DDCt) method using b-actin as the internal control (51).

The primers are listed in Table 1.
Statistical analysis

For the cellular infection and qRT-PCR, data were analyzed with

Student’s t test, and statistical significance was defined as p < 0.05.
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Results

Temperature has a significant impact on
E. tarda infection

To examine the effect of temperature on E. tarda infection in

flounder, the infection study was performed with flounder

acclimatized at 15°C (low temperature) or 23°C (high

temperature) (Figure S1A). The fish acclimatized at each

temperature were divided into the infected and control groups.

The infected groups were named LI (low temperature infection)

or HI (high temperature infection), and the respective control

groups were named LC (low temperature control) or HC (high

temperature control). At 24 hpi, the spleen bacterial load in the

HI group was 51.3-fold of that in the LI group (Figure S1B),

indicating a strong effect of temperature on the ability of

flounder to block bacterial infection.
Metabolite profiles of flounder infected
by E. tarda at different temperatures

Comparative metabolomic analysis was conducted to

examine the metabolite response to infection and temperature.

A total of 9733 and 7428 MS peaks were identified in the

negative and positive ionization modes, respectively. Four

comparisons, i.e., LI versus LC (LI−LC), HI versus HC (HI

−HC), HC versus LC (HC−LC), and HI versus LI (HI−LI) were

conducted to examine the metabolic changes in response to E.

tarda or temperature. Specifically, LI−LC and HI−HC assessed

the change caused by bacterial infection at 15°C and 23°C,

respectively; HC−LC assessed the change caused by

temperature in the absence of infection; HI−LI assessed the

change caused by temperature under the condition of E. tarda

infection. OPLS-DA discrimination showed clear metabolic

differentiation in both the negative and positive ionization

modes between LI and LC, HI and HC, HC and LC, and HI

and LI (Figure 1), thus establishing a robust model for

metabolite classification. Based on the OPLS-DA, VIP > 1 and

p < 0.05 were set as the screening criteria for differential

metabolites, and a total of 89, 74, 23, and 101 differential
TABLE 1 Primers used for qRT-PCR.

Gene name Forward primer(5′-3′) Reverse primer(5′-3′)

TNF-a CTGGTGTGGAAGAACGACGA CGTGAGGTGTTTTTCCGCTG

IL-1b GTCCACCTATGTGCACCCTT CATTTGTTCTCGACACGCTCC

IL-6 CTCCAGTCGAATACGAGCCC ACTCTTTCTGGTGGTGAGCG

IL-8 GCCTGAGAAGCCTAGGAGTG TGACTCTCTTCACCCACGGA

IL-27b TGGCTGCGATGTTGGTTACT TTCAGGCCAGGAGCAAAGAG

b-actin GCACGGTATTGTGACCAACTGG CAGGGGAGCCTCTGTGAGC
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FIGURE 1

OPLS-DA score plots. The OPLS-DA score plots of LI−LC (A, B), HI−HC (C, D), HC−LC (E, F) and HI−LI (G, H) were obtained in negative
(A, C, E, G) and positive ionization modes (B, D, F, H).
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metabolites were identified in LI−LC, HI−HC, HC−LC, and HI

−LI, respectively (Table S1-S4).
E. tarda-responsive metabolites

For the identification of Significantly Differential

Metabolites (SDMs), VIP > 1, p < 0.05 and |fold change| >

2 were set as the threshold. Thirty-three and 31 SDMs were

identified in LI−LC and HI−HC, respectively (Table S1, S2).

Nine SDMs, i.e., guanosine, hypoxanthine, maltotriose, D-

maltose, DL-2-aminoadipic acid, L-pipecolic acid, glutaric

acid, isobutyric acid, and glycerol 3-phosphate, were shared

by LI−LC and HI−HC (Figure 2, Figure S2). The 33 SDMs in

LI−LC were categorized into the top 10 KEGG pathways of

Aminoacyl-tRNA biosynthesis, Phenylalanine, tyrosine and

tryptophan biosynthesis, Phenylalanine metabolism, Lysine

degradation, Arginine biosynthesis, Histidine metabolism,

beta-Alanine metabolism, D-Arginine and D-ornithine

metabolism, Valine, leucine and isoleucine biosynthesis,

and Ubiquinone and other terpenoid-quinone biosynthesis

(F igure S3A, Table S5) . The 31 SDMs in HI-HC

were categorized into the top 10 KEGG pathways of Lysine

degradation, Starch and sucrose metabolism, Purine

metabolism, Biosynthesis of unsaturated fatty acids,

Ascorbate and aldarate metabolism, Pyrimidine metabolism,

alpha-Linolenic acid metabolism, Histidine metabolism,

Glycerolipid metabolism, and Pentose and glucuronate

interconversions (Figure S3B, Table S6).
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Temperature-responsive metabolites

Five and 59 SDMs were identified in HC−LC and HI−LI,

respectively (Table S3, S4, Figure S4). As shown in Figure 3 and

Figure S5, two SDMs, i.e., 3-methoxy-4-hydroxyphenylglycol

sulfate and O-phosphoethanolamine, were shared by HC−LC

and HI−LI. Three SDMs, i.e., UDP-N-acetylglucosamine,

taurochenodeoxycholate, and inosine, were exclusively

identified in HC−LC. Fifty-seven SDMs were exclusively

identified in HI−LI (Table 2), of which, 47.37% were amino

acids, 14.04% were other organic acids, 14.04% were

carbohydrates, 8.77% were lipids, and 5.26% were nucleotides

(Figure S6A). Thirteen and 44 of these metabolites were

increased and decreased in abundance, respectively (Figure

S6B). The 57 SDMs were categorized into the metabolic

pathways of Aminoacyl-tRNA biosynthesis, Valine, leucine

and isoleucine biosynthesis, Lysine degradation, Phenylalanine,

tyrosine and tryptophan biosynthesis, Arginine biosynthesis,

Phenylalanine metabolism, Glycerophospholipid metabolism,

Pentose phosphate pathway, Galactose metabolism, and

Alanine, aspartate and glutamate metabolism (Figure 4, Table 3).
Potential Metabolite Markers of
Temperature Effect (MMTE) during
bacterial infection

To identify the SDMs that could potentially serve as the

biomarkers indicative of the effect of temperature on metabolism

during E. tarda infection, the SDMs of LI−LC versus HI−LI and
BA

FIGURE 2

Heatmap representation of the SDMs in LI−LC and HI−HC. The relative metabolite abundance in LC−LI (A) and HC−HI (B) are shown. Red and
blue represent up- and down-regulation, respectively. ★, metabolites occurring in both LI−LC and HI−HC.
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B

A

FIGURE 3

Heatmap representation of the SDMs in HC−LC and HI−LI. The relative metabolite abundance in HC−LC (A) and HI−LI (B) are shown. Red and
blue represent up- and down-regulation, respectively. ★, metabolites occurring in both HC−LC and HI−LI.
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TABLE 2 List of the 57 SDMs in HI−LI. "+" and "-" indicate up- and down-regulations, respectively, at high temperature compared to low
temperature.

Metabolites VIP Fold change p-value m/z rt(s)

L-Anserine 3.68 +5.69 1.61E-06 241.13 819.70

Dimethyl sulfone 3.13 +5.12 5.81E-07 226.98 725.40

alpha-D-Galactose 1-phosphate 1.08 +4.27 1.25E-02 241.01 720.80

Protocatechuic acid 1.89 +3.41 8.34E-08 153.02 689.08

D-Pinitol 1.06 +3.16 2.07E-03 261.03 944.86

DL-2-Aminoadipic acid 1.37 +3.12 6.83E-05 144.06 798.12

L-Saccharopine 1.12 +2.77 3.02E-05 275.12 819.47

Glycerol 3-phosphate 1.37 +2.72 1.35E-04 171.01 777.84

Glutaric acid 8.04 +2.39 1.23E-07 131.03 689.12

Isobutyric acid 2.47 +2.29 1.62E-06 87.04 689.13

N-Acetylglucosamine 1-phosphate 1.15 +2.29 2.72E-06 300.05 797.92

2-Oxoadipic acid 11.49 +2.14 5.06E-08 141.02 666.69

D-Ribose 5-phosphate 2.51 -2.02 3.03E-04 289.03 836.59

sn-Glycerol 3-phosphoethanolamine 1.18 -2.03 4.04E-02 216.06 778.73

N-Acetyl-L-alanine 2.01 -2.04 1.27E-04 130.05 446.69

DL-Serine 3.94 -2.05 1.05E-04 104.03 678.82

Pro-Asp 3.91 -2.07 2.09E-04 291.12 914.23

Thioetheramide-PC 5.74 -2.16 1.90E-02 758.58 142.21

ketoisocaproic acid 2.82 -2.16 1.85E-02 129.05 222.04

Phosphorylcholine 1.42 -2.17 7.35E-05 242.08 711.53

L-Aspartate 6.01 -2.18 2.77E-03 132.03 725.44

Lys-Ser 1.72 -2.24 1.54E-04 275.17 907.40

SOPC 1.36 -2.29 1.82E-05 787.61 308.38

Succinate 3.02 -2.30 9.14E-05 136.06 598.66

L-Threonine 5.11 -2.30 2.44E-04 118.05 635.86

2-Methoxybenzoic acid 2.18 -2.35 2.97E-03 152.05 522.31

D-Ornithine 2.03 -2.38 7.78E-04 131.08 968.69

L-Valine 5.66 -2.40 2.05E-06 118.08 597.20

UDP-Glucose 1.22 -2.40 3.71E-03 565.05 801.17

Pro-Gln 2.47 -2.43 1.82E-03 304.15 886.65

Argininosuccinic acid 2.36 -2.44 1.50E-05 289.11 854.80

trans-cinnamate 2.32 -2.44 5.54E-04 147.04 456.64

6-Phospho-D-gluconate 1.18 -2.44 6.99E-04 275.02 886.42

Guanosine 1.84 -2.46 1.24E-02 282.08 480.56

N-Acetyl-D-lactosamine 1.33 -2.47 1.64E-03 404.12 661.05

L-Leucine 16.75 -2.47 5.16E-04 130.09 466.98

N6-Methyl-L-lysine 1.58 -2.48 8.31E-04 161.13 1070.15

N6-Acetyl-L-lysine 3.62 -2.49 5.18E-06 187.11 636.67

L-Tyrosine 7.30 -2.53 5.91E-04 180.07 538.85

L-Arginine 4.47 -2.55 1.73E-03 173.10 966.58

L-Phenylalanine 9.55 -2.66 1.44E-03 166.08 514.27

Tyramine 7.51 -2.67 9.72E-04 120.08 514.45

Alpha-D-Glucose 1.40 -2.71 5.03E-06 179.06 467.09

Adenosine 3’-monophosphate 1.87 -2.77 1.53E-02 346.05 731.88

D-4-Hydroxyphenylglycine 1.30 -2.85 1.13E-04 168.07 753.34

L-Tryptophan 3.53 -2.89 4.20E-03 203.08 458.97

L-Threonate 2.33 -2.90 1.59E-02 135.03 554.94

DL-Methionine sulfoxide 4.41 -2.93 4.19E-04 164.04 662.89

(Continued)
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the SDMs of HI−HC versus HI−LI were compared. Twenty-two

common SDMs were identified between LI−LC and HI−LI

(Figure 5A) and named Group-1 MMTE. These metabolites

exhibited fold changes ranging from -2.24 to +5.70 (Table 4).

They were categorized into the metabolic pathways of

Aminoacyl-tRNA biosynthesis, Phenylalanine, tyrosine and

tryptophan biosynthesis, Lysine degradation, Phenylalanine

metabolism, Arginine biosynthesis, D-Arginine and D-

ornithine metabolism, Glycerophospholipid metabolism,

Valine, leucine and isoleucine biosynthesis, Tyrosine
Frontiers in Immunology 09
metabolism, and Ubiquinone and other terpenoid-quinone

biosynthesis (Figure S7, Table S7). Sixteen common SDMs

were identified between HI−HC and HI−LI (Figure 5B) and

named Group-2 MMTE. These metabolites exhibited fold

changes ranging from -7.87 to +26.03 (Table 5). They were

categorized into the metabolic pathways of Lysine degradation,

Linoleic acid metabolism, Glycerophospholipid metabolism,

Ascorbate and aldarate metabolism, alpha-Linolenic acid

metabolism, Histidine metabolism, Glycerolipid metabolism,

Starch and sucrose metabolism, Pentose and glucuronate
TABLE 2 Continued

Metabolites VIP Fold change p-value m/z rt(s)

L-Methionine 4.28 -3.06 3.67E-03 148.04 506.72

Guanosine 5’-monophosphate (GMP) 1.32 -3.09 4.44E-02 362.05 794.25

1,2-dioleoyl-sn-glycero-3-phosphatidylcholine 3.13 -3.10 4.20E-02 786.61 138.88

Arg-Phe 1.40 -3.17 3.80E-04 286.17 602.04

L-Pipecolic acid 6.35 -3.19 3.11E-05 130.08 1042.18

Ribitol 1.04 -3.57 1.33E-05 151.06 409.91

D-gluconate 4.47 -3.66 9.93E-04 195.05 665.90

L-Lysine 7.40 -4.47 6.44E-05 145.10 984.57

Pro-Gly 1.16 -5.47 1.08E-04 345.17 698.36
frontie
FIGURE 4

KEGG enrichment (top 10) of the unique SDMs in HI−LI. The p-value was set as < 0.05.
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interconversions, and Galactose metabolism (Figure S8,

Table S8).

The effects of selected MMTE on E. tarda
infection and flounder immune response

To examine the effects of MMTE on E. tarda infection, four

metabolites, i.e., L-lysine and L-methionine from Group-1

MMTE, UDP-glucose from Group-2 MMTE, and L-pipecolic

acid shared by Group-1 and Group-2 MMTE, were selected and

tested for their effects on E. tarda infection of flounder

leukocytes. The results showed that L-methionine and UDP-

glucose significantly suppressed the infection of E. tarda into

flounder cells, while L-lysine and L-pipecolic acid had no

obvious effect (Figure 6A). qRT-PCR analysis of the pro-

inflammatory gene expression in these cells showed that L-

methionine significantly enhanced the expression of IL-1b
(3.23-fold), IL-6 (2.93-fold), IL-27b (2.15-fold), and TNF-a
(1.63-fold) (Figure 6Ba); UDP-glucose significantly increased

the expression of IL-1b (3.27-fold), IL-6 (2.14-fold), IL-8 (5.27-

fold) and IL-27b (2.63-fold) (Figure 6Bb). L-pipecolic acid also

significantly enhanced the expression of IL-1b (1.89-fold) and

IL-27b (1.93-fold) but to lesser extents (Figure 6Bc). L-lysine had
no apparent effect on the expression of these genes (Figure 6Bd).
Frontiers in Immunology 10
Discussion

Water temperature alteration as a result of global warming

can exacerbate bacterial diseases, such as edwardsiellosis, in fish,

thus compromising farming productivity and sustainability (7,

24, 52–54). The causing agent of edwardsiellosis, E. tarda, senses

the ambient temperature alteration via the PhoP-Q system and

up-regulates the expression of virulence genes when the

temperature reaches above 23°C (20, 26). In consistence, the

occurrence of edwardsiellosis increases at high summer

temperatures in farmed brook trout (Salvelinus fontinalis),

channel catfish (Ictalurus punctatus) and rainbow trout

(Oncorhynchus mykiss) (8). In the present work, we found that

at 24 hpi, the dissemination of E. tarda in flounder was

dramatically increased at 23°C compared with that at 15°C,

indicating that, like the observations in other fish, higher

temperature facilitated E. tarda infection in flounder.

To examine whether metabolic change played a role in

this process, comparative metabolomics was conducted at 24

hpi when the fish under both infection conditions (15°C and

23°C) were still alive and, therefore, metabolically and

immunologically active.

Previous studies showed that bacterial infection induces

profound metabolic reprograming in the host (32, 33). In this
TABLE 3 Top 10 KEGG enriched pathways of the unique SDMs in HI−LI. The p-value was set as < 0.05. Up and down arrows indicate up- and
down-regulations, respectively.

Metabolic pathway Hits p-
value

Metabolites

Aminoacyl-tRNA biosynthesis 10 8.77E-
07

L-Valine (↓), L-Phenylalanine (↓),
L-Arginine (↓), L-Aspartate (↓),
L-Methionine (↓), L-Lysine (↓),
L-Leucine (↓), L-Tryptophan (↓),
L-Tyrosine (↓), L-Threonine (↓)

Valine, leucine and isoleucine biosynthesis 4 5.37E-
05

L-Threonine (↓), L-Leucine (↓), L-Valine (↓), Ketoisocaproic acid (↓)

Lysine degradation 5 8.00E-
04

L-Lysine (↓), L-Saccharopine (↓), DL-2-Aminoadipic acid (↑), 2-Oxoadipic acid (↑), L-Pipecolic acid
(↓)

Phenylalanine, tyrosine and tryptophan
biosynthesis

2 5.53E-
03

L-Phenylalanine (↓), L-Tyrosine (↓)

Arginine biosynthesis 3 8.21E-
03

L-Arginine (↓), L-Aspartate (↓), Argininosuccinic acid (↓)

Phenylalanine metabolism 2 2.38E-
02

L-Phenylalanine (↓), L-Tyrosine (↓)

Glycerophospholipid metabolism 4 2.85E-
02

Phosphorylcholine (↓), Choline phosphate (↓), Glycerol 3-phosphate (↑), sn-Glycerol 3-
phosphoethanolamine (↓)

Pentose phosphate pathway 3 2.91E-
02

D-Ribose 5-phosphate (↓), 6-Phospho-D-gluconate (↓), D-gluconate (↓)

Galactose metabolism 3 4.97E-
02

Alpha-D-Glucose (↓), UDP-glucose (↓), alpha-D-Galactose 1-phosphate (↑)

Alanine, aspartate and glutamate metabolism 3 4.97E-
02

L-Aspartate (↓), Argininosuccinic acid (↓), Succinate (↓)
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work, we analyzed the metabolomes of flounder in the absence

and presence of E. tarda infection at 15°C and 23°C. Five SDMs

were identified in the absence of bacterial infection (HC−LC), 59

SDMs were identified under the condition of E. tarda infection

(HI−LI), and 57 SDMs were found to be present exclusively in

HI−LI, which reflected the metabolic response of flounder to

elevated temperature during E. tarda infection. These SDMs

were highly enriched in amino acid metabolism pathways.

Specifically, the bio-syntheses for L-valine, L-phenylalanine, L-

arginine, L-aspartate, L-methionine, L-lysine, L-leucine, L-

tryptophan, L-tyrosine, and L-threonine were significantly

downregulated. In fish, amino acids constitute a major portion

of energy substrates at relative high temperatures (55). For

example, in Atlantic salmon (Salmo solar), amino acids, rather

than glucose, were used for energy production upon chronical

temperature elevation (56). In turbot (Scophthalmus maximus),

the abundance of multiple amino acids significantly decreased in
Frontiers in Immunology 11
response to thermal stress (55). In our study, the extensive

decrease of amino acids in flounder upon temperature

elevation during infection implied a deficiency of amino acid-

based energy source.

It has been recognized that, upon infection, host utilizes amino

acid metabolism to restrict pathogen invasion and modulate the

immune response (57, 58). For instance, L-arginine is the precursor

of nitric oxide, an important bioactive molecule with both direct

antimicrobial activity and immune signaling function (58). It can be

converted to ornithine, the precursor of bioactive polyamines

including putrescine, spermidine, and spermine, which have

immune modulation activities (58). L-phenylalanine can be

catabolized to phenylpyruvate, NH3, and H2O2, the latter product

(H2O2) possesses direct bactericidal property, which is reinforced by

the basification effect of NH3 (59). In view of the robust

participation of amino acids in immune response, the decreased

amino acid levels at high temperature observed in our study likely
B

A

FIGURE 5

Venn diagrams showing the intersection between the SDMs in LI−LC and HI−LI (A) and the SDMs in HI−HC and HI−LI (B). The blue circles
represent LI−LC (A) and HI−HC (B). The pink circles represent HI−LI.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1010948
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2022.1010948
TABLE 4 List of the 22 SDMs shared between LI−LC and HI−LI. "+" and "-" indicate up- and down-regulations, respectively.

Metabolites LI−LC HI−LI

VIP Fold change p-value VIP Fold change p-value

DL-2-Aminoadipic acid 1.19 +5.70 4.98E-03 1.37 +3.12 6.83E-05

L-Methionine 4.62 +4.02 1.78E-02 4.28 -3.06 3.67E-03

L-Tryptophan 3.91 +3.07 3.54E-03 3.53 -2.89 4.20E-03

L-Lysine 7.27 +2.93 8.73E-04 7.40 -4.47 6.44E-05

Alpha-D-Glucose 1.51 +2.72 3.22E-04 1.40 -2.71 5.03E-06

L-Arginine 4.91 +2.64 1.06E-03 4.47 -2.55 1.73E-03

D-Ornithine 2.29 +2.59 2.62E-04 2.03 -2.38 7.78E-04

Pro-Gly 1.16 +2.58 2.46E-03 1.16 -5.47 1.08E-04

Phosphorylcholine 1.65 +2.55 5.94E-05 1.42 -2.17 7.35E-05

L-Aspartate 6.90 +2.50 1.41E-03 6.01 -2.18 2.77E-03

Glycerol 3-phosphate 1.05 +2.48 1.19E-05 1.37 +2.72 1.35E-04

D-gluconate 4.17 +2.45 1.08E-02 4.47 -3.66 9.93E-04

Tyramine 8.77 +2.37 2.35E-03 7.51 -2.67 9.72E-04

L-Tyrosine 7.65 +2.37 1.01E-03 7.30 -2.53 5.91E-04

L-Phenylalanine 11.28 +2.35 3.46E-03 9.55 -2.66 1.44E-03

L-Pipecolic acid 6.74 +2.29 7.53E-04 6.35 -3.19 3.11E-05

Pro-Gln 2.59 +2.08 7.83E-03 2.47 -2.43 1.82E-03

Arg-Phe 1.44 +2.06 4.10E-03 1.40 -3.17 3.80E-04

Glutaric acid 4.37 +2.05 1.53E-03 8.04 +2.39 1.23E-07

Isobutyric acid 1.39 +2.02 2.64E-03 2.47 +2.29 1.62E-06

L-Leucine 16.12 +2.01 3.46E-03 16.75 -2.47 5.16E-04

Guanosine 3.57 -2.24 2.98E-04 1.84 -2.46 1.24E-02
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TABLE 5 List of the 16 SDMs shared between HI−HC and HI−LI. "+" and "-" indicate upregulation and downregulation, respectively.

Metabolites HI−HC HI−LI

VIP Fold change p-value VIP Fold change p-value

DL-2-Aminoadipic acid 1.83 +26.03 4.89E-08 1.37 +3.12 6.83E-05

L-Anserine 4.30 +8.54 4.75E-07 3.68 +5.69 1.61E-06

Protocatechuic acid 1.95 +7.22 3.54E-09 1.89 +3.41 8.34E-08

Glutaric acid 8.99 +6.42 6.96E-11 8.04 +2.39 1.23E-07

Isobutyric acid 2.80 +6.05 8.19E-10 2.47 +2.29 1.62E-06

L-Saccharopine 1.17 +4.16 1.70E-06 1.12 +2.77 3.02E-05

Dimethyl sulfone 3.24 +3.89 2.02E-06 3.13 +5.12 5.81E-07

3-Methoxy-4-Hydroxyphenylglycol Sulfate 3.81 +2.29 9.79E-03 4.61 +3.56 6.21E-04

Glycerol 3-phosphate 1.18 +2.10 7.95E-04 1.37 +2.72 1.35E-04

Thioetheramide-PC 10.43 -3.15 3.13E-03 5.74 -2.16 1.90E-02

L-Pipecolic acid 1.08 -3.30 4.35E-02 6.35 -3.19 3.11E-05

1,2-dioleoyl-sn-glycero-3-phosphatidylcholine 3.86 -3.35 3.84E-02 3.13 -3.10 4.20E-02

SOPC 2.22 -3.52 3.30E-03 1.36 -2.29 1.82E-05

2-Methoxybenzoic acid 4.30 -3.81 1.19E-05 2.18 -2.35 2.97E-03

UDP-Glucose 2.14 -5.15 1.94E-06 1.22 -2.40 3.71E-03

Guanosine 1.20 -7.87 3.18E-05 1.84 -2.46 1.24E-02
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weakened the immune defense of flounder, resulting in elevated

dissemination of E. tarda.

During E. tarda infection, the levels of succinate, aspartate,

and arginosuccinate in flounder significantly decreased at high

temperature. In mammals, succinate is an important mediator of

immune signaling (60). Cytosolic accumulation of succinate

leads to stabilization of the transcription factor hypoxia-

inducible factor-1a (HIF-1a) and consequently induction of

IL-1b expression, epigenetic alteration, and mitochondrial

reactive oxygen species (ROS) production (30, 61). Moreover,

succinate can be exported to the extracellular milieu, where it

acts as the natural ligand for SUCNR1, a G protein–coupled

receptor, and exerts a role akin to cytokine in inflammatory

regulation (61). In M1 macrophages, which exhibits a metabolic
Frontiers in Immunology 13
shift in response to acute bacterial infection, the Krebs cycle was

interrupted between succinate and fumarate, resulting in

succinate accumulation (62). The broken Krebs cycle is re-

fueled with fumarate by the aspartate-arginosuccinate shunt

(63). In flounder, considering the enhanced infectivity of E.

tarda at high temperature, succinate likely mediated a

temperature-sensitive immunometabolic response against

bacterial infection. In line with our observation, a recent study

identified succinate as the crucial biomarker for phagocytosis in

the monocytes/macrophages of Nile tilapia (Oreochromis

niloticus), and exogenous succinate potentiated the

phagocytosis of multiple bacteria including E. tarda (64).

Given the emerging role of metabolic intermediates in driving

immune activation and regulation, it has been proposed that
B

A

FIGURE 6

The effects of selected metabolites on Edwardsiella tarda infection and cytokine expression. (A) Flounder leukocytes were pre-incubated with L-
lysine, L-methionine, L-pipecolic acid, or UDP-glucose for 6 h, and then infected with E tarda for 2h Cell-infected bacteria (shown as Colony
Forming Unit, CFU) were determined by plate count. (B) The cells treated above were subjected to qRT-PCR to analyze the expression of TNF-
a, IL-1b, IL-6, IL-8, and IL-27b. **, p < 0.01. For both panels, values are the means ± SEM of three independent experiments. **, p < 0.01.
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metabolism could be harnessed to combat severe pathogens such

as multi-resistant bacteria and coronavirus (36, 65). In zebrafish

(Danio rerio), tilapia (Oreochromis niloticus) and crucian carp

(Carassius auratus), crucial metabolic biomarkers that enhanced

host survival from bacterial infection were identified (5, 38, 66). In

this study, we identified L-methionine and UDP-glucose as two

effective metabolic biomarkers. L-methionine is known to supply

methyl group through S-adenosylmethionine for the post-

translational modification of immune effector proteins and

nucleic acids, whereby facilitating cytokine expression in T cells

and macrophages (67). In mice, chronic lung infection by

Pseudomonas aeruginosa was cured by L-methionine in

combination with antibiotics. In aquaculture fish species such as

European seabass (Dicentrarchus labrax) and grass carp

(Ctenopharyngodon idella), dietary methionine and methionine

hydroxy analogue were found to be able to boost immunity and

promote disease resistance (68, 69). UDP-glucose is a native

agonist for P2Y14 receptor (P2Y14R), a G-protein–coupled

receptor widely distributed in immune cells. Upon activation,

P2Y14R inhibits adenylyl cyclase for the synthesis of cAMP, a

second messenger participating in the signaling of various

immune events such as inflammatory cytokine expression/

secretion and pyroptosis (70, 71). In flounder, P2Y14R was

reported to be involved in the inflammatory signaling (72). In

the present work, we discovered that during E. tarda infection, L-

methionine and UDP-glucose levels were significantly lower at 23°

C than at 15°C, and exogenously added L-methionine and UDP-

glucose effectively attenuated the infectivity of E. tarda and

induced the expression of the proinflammatory cytokines of

TNF-a, IL-1b, IL-6 and IL-27b. These findings suggest that L-

methionine and UDP-glucose are able to improve the immune

defense against E. tarda in flounder, thus highlighting the

potential of L-methionine and UDP-glucose in the development

of metabolic therapies against edwardsiellosis under the

circumstances of global warming. Previous reports showed that

diet deficiency of L-lysine enhanced the expression of

proinflammatory cytokines in largemouth bass (Micropterus

salmoides) and grass carp (Ctenopharyngodon idella) (73, 74). In

this study, we found that exogenous L-lysine had no effect on the

expression of TNF-a, IL-1b, IL-6, IL-8 or IL-27b in flounder

leukocytes. The ineffectiveness of L-lysine could be due to a

number of factors, such as the dose, the species and the

physiological status of the fish, and the time of examination.

In conclusion, the present study profiled the temperature

effect on the metabolic response of flounder to E. tarda infection

and identified the biomarkers that promoted host resistance to E.

tarda at high temperature. Our results revealed the existence of

temperature-regulated metabolic reprogramming in fish during

bacterial infection, and highlighted an increasing risk of fish

disease caused by water temperature elevation as a foreseeable

consequence of global warming. In addition, our study also

suggested a potential for the development of metabolic

reengineering therapy against fish disease.
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