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Abstract

Treatment of chronic bacterial infections, such as tuberculosis (TB), requires a remarkably long course of therapy, despite
the availability of drugs that are rapidly bacteriocidal in vitro. This observation has long been attributed to the presence of
bacterial populations in the host that are ‘‘drug-tolerant’’ because of their slow replication and low rate of metabolism.
However, both the physiologic state of these hypothetical drug-tolerant populations and the bacterial pathways that
regulate growth and metabolism in vivo remain obscure. Here we demonstrate that diverse growth-limiting stresses trigger
a common signal transduction pathway in Mycobacterium tuberculosis that leads to the induction of triglyceride synthesis.
This pathway plays a causal role in reducing growth and antibiotic efficacy by redirecting cellular carbon fluxes away from
the tricarboxylic acid cycle. Mutants in which this metabolic switch is disrupted are unable to arrest their growth in response
to stress and remain sensitive to antibiotics during infection. Thus, this regulatory pathway contributes to antibiotic
tolerance in vivo, and its modulation may represent a novel strategy for accelerating TB treatment.
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Introduction

Over fifty years after the discovery of antimycobacterial drugs,

Mycobacterium tuberculosis remains an endemic pathogen throughout

much of the world. Based on immunological tests, one-third of the

global population has been exposed to this organism, which

sickens 10 million and kills 2 million yearly [1]. Arguably, the most

important factor limiting TB control efforts is the remarkably long

antibiotic regimen that is necessary to eradicate the pathogen [2].

Despite the availability of drugs that rapidly kill the bacterium in

vitro, treatment with these agents requires at least 6 mo.

Incomplete treatment is both ineffective and promotes the

selection of drug-resistant strains.

The reasons that antibiotics are less effective in vivo remain

unclear but likely reflect the altered metabolic state of the

bacterium in this environment [3]. In the mammalian host, M.

tuberculosis is challenged by a variety of pressures, including low

oxygen, iron limitation, low pH, and changes in nutrient

availability [4–7]. In vitro, many bacteria respond to similar

environmental stresses by arresting their growth and assuming a

quiescent or dormant state in which they remain viable until the

environment once again becomes favorable [8]. Similarly, M.

tuberculosis dramatically reduces both its growth and metabolic

activity in chronically infected animals, doubling only once every

100 h or more [9,10]. Since virtually all antibiotics preferentially

kill rapidly replicating bacteria [3,11], it has been hypothesized

that the reduced growth and metabolic activity of these quiescent

populations is responsible for the ‘‘antibiotic-tolerance’’ observed

during infection [12].

While the physiologic state of these slowly replicating myco-

bacterial populations in vivo is difficult to investigate directly, in

vitro models have been developed to mimic this condition. The

best defined of these models is long-term hypoxic culture, which

has been proposed to mimic the oxygen tension found in some TB

lesions [13]. When M. tuberculosis is cultured under oxygen-limiting

conditions, this obligate aerobe ceases replicating and adopts an

antibiotic-tolerant state that can be maintained almost indefinitely

[14,15]. While macromolecular synthesis slows dramatically

during this period, continual ATP production is required for

survival, indicating that cellular metabolism remains at least

nominally active [13].

Taken together, these observations indicate that M. tuberculosis is

able to adopt a relatively quiescent antibiotic-tolerant state both in

vitro and within the host. Previous efforts to eradicate non-

replicating bacterial populations have generally focused on the

development of drugs that directly kill these organisms. As an

alternative to this approach, we sought to define the bacterial

functions that govern mycobacterial growth and could therefore

be manipulated to increase drug sensitivity. In this work, we define

a functional pathway that enables the bacterium to reduce its

metabolic rate in response to environmental stress. Mutants

lacking this regulatory pathway remain markedly more sensitive to
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antibiotics during infection, demonstrating that this specific

response contributes to the antibiotic tolerance observed in vivo.

Results

Identification of Growth-Regulatory Pathways
To understand the mechanisms controlling the growth of M.

tuberculosis during infection, we sought to identify mutants that had

lost the ability to arrest their growth and continued to replicate in

hypoxic culture. We subjected a library of transposon mutants to a

low oxygen environment sufficient to arrest the growth of wild type

M. tuberculosis [6] and used transposon site hybridization [16] to

identify the set of mutants that were overrepresented after 6 wk of

culture, suggesting a growth or survival advantage.

Prominent among the 34 identified genes (Table S1) were

several predicted to encode the enzymes necessary to produce

triacylglycerol (TAG) from glycerol and acyl-CoA (Figure 1A).

The gene that appeared to play the most important role, tgs1,

encodes a well-characterized TAG synthase that represents the

dominant triglyceride synthetic activity under hypoxia [17,18].

The importance of the tgs1 gene under this condition is likely due

to its transcriptional induction via the DosR regulator, which

controls the earliest response to hypoxia [19]. Consistent with the

known regulatory relationship between tgs1 and DosR, our genetic

screen also indicated that dosR mutants were overrepresented in

the library exposed to hypoxia. The similar phenotypes of mutants

lacking virtually every step in this pathway indicated that DosR-

triggered TAG accumulation was critical for hypoxia-induced

growth arrest.

To verify the predictions of our genetic screen, we generated a

mutant lacking the tgs1 gene. In aerated broth cultures, both wild

type and Dtgs1 mutant bacteria accumulated only small amounts

of TAG and grew at similar rates (unpublished data). However,

when these bacteria were cultured in sealed vials to produce

hypoxia [15], the Dtgs1 mutant failed to accumulate the TAG

observed in wild type or complemented mutant cells and grew to a

density that was 10-fold higher than wild type (Figure 1B). To

confirm that the Dtgs1 mutant continued to replicate under

hypoxia, we calculated the doubling time of the bacteria by

quantifying the segregation of an unstable plasmid that was lost at

a constant rate per cell division [9]. Indeed, while wild type

bacteria completely arrested growth once hypoxia was established,

the Dtgs1 mutant continued to replicate for at least 14 more days

(Figure 1C). Even between 14 and 21 d, when the total number of

Dtgs1 bacteria did not change significantly, the cells continued to

segregate the plasmid. This confirmed that the Dtgs1 strain was

unable to arrest its growth, and even the apparent stasis of this

strain represented a state of balanced growth and death. While the

cause of death remains uncertain, the cytosolic ATP concentration

of the mutant decreased as oxygen was consumed (Figure S2),

indicating that replication in the absence of this preferred electron

acceptor produced an untenable metabolic state.

M. tuberculosis accumulates TAG under a variety stresses,

including hypoxia, iron limitation, and low pH [17,20,21],

indicating that TAG synthesis might modulate growth under

multiple conditions. Indeed, we found that while each of these

conditions retarded the growth of wild type bacteria and the

complemented mutant, the Dtgs1 strain continued to grow at a

relatively rapid rate (Figure 1D–E). While the DosR regulon was

known to be induced during hypoxia [19], this regulator had not

been shown to act in these other conditions. To determine if the

same regulatory circuit was operational, we used a reporter

derived from the promoter of the well-characterized DosR target,

acr [22]. We found that this promoter was strongly induced under

low iron conditions and weakly induced by low pH (Figure S3).

Induction under these conditions is likely due to the recently

described activation of DosR by alterations in cellular redox state

[23]. Despite this difference in degree of induction, we found that

a mutant lacking the dosR gene behaved similarly to the Dtgs1 in

each condition, indicating that this sensor kinase was important for

all of these responses.

TAG Synthesis Inhibits Growth by Reducing TCA Flux
When M. tuberculosis or related environmental bacteria are

exposed to stress, they accumulate large cytosolic stores of

triglycerides [20,24]. This dramatic production of lipid suggested

that the growth regulatory effects of tgs1 induction might be due to

the wholesale redirection of carbon flux into TAG synthesis and

away from intermediary metabolic pathways. Since acetyl CoA is

a primary substrate of both the TCA cycle and TAG synthesis, we

hypothesized that TAG production lowered the growth and

metabolic rate of the organism by directly competing for this

metabolite (see Figure S1).

Acetyl CoA is incorporated into the TCA cycle by citrate

synthase, which condenses it with oxaloacetate (OAA) to form

citrate (Figure 1A). To test whether TAG synthesis competes with

citrate synthase for acetyl CoA, we supplied wild type M.

tuberculosis with exogenous OAA, which we expected to promote

citrate synthase activity by increasing substrate concentration. As

anticipated, this treatment mimicked the Dtgs1 mutation by

enhancing growth in both hypoxic and iron-restricted cultures

(Figures 2A, S4). Other related metabolites had no effect on

growth, supporting the conclusion that OAA enhances growth

under these conditions by stimulating citrate synthase activity.

Similarly, we tested this model by overexpressing the citA gene,

encoding citrate synthase. This excess enzyme activity appeared to

effectively compete for acetyl CoA, as the overexpression strain

(citA*) resembled the Dtgs1 mutant in both hypoxic and low iron

culture; that is, bacteria continued to grow and failed to

accumulate TAG (Figure 2B,C). Both citA overexpression and

oxaloacetate addition in hypoxic conditions appeared to have an

even more pronounced effect than tgs1 deletion, as the viability of

these cultures decreased more rapidly than the Dtgs1 strain once

oxygen was depleted.

To verify that titrating the flux between these two competing

pathways produced the expected changes in growth rate, we

employed a small molecule inhibitor of TAG degradation. The

Author Summary

Despite the availability of antibiotics that rapidly kill
bacteria in vitro, the treatment of chronic bacterial
infections, such as tuberculosis, requires long-term drug
therapy. The reasons for this are unclear, but many have
hypothesized that the slow replication and concomitantly
low metabolic rate of bacteria in the host environment
produce an ‘‘antibiotic-tolerant’’ state. We have tested this
hypothesis by identifying the bacterial pathways respon-
sible for slowing the growth and metabolism of Mycobac-
terium tuberculosis in response to stress. We found that
diverse growth-limiting stresses trigger a common signal
transduction pathway that slows bacterial growth by
redirecting cellular carbon fluxes away from central
metabolic pathways and towards storage. Disruption of
this metabolic switch increased the antibiotic sensitivity of
the bacterium during infection, verifying that this response
significantly contributes to antibiotic tolerance and sug-
gesting new strategies for accelerating therapy.

Mycobacterial Growth and Antibiotic Sensitivity
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Figure 1. Triglyceride synthesis mutants continue to replicate under growth-limiting conditions. (A) The predicted TAG biosynthetic
pathway of M. tuberculosis and its relationship to the TCA cycle. Mutations in the underlined genes were predicted by Transposon Site Hybridization
to result in overrepresentation after hypoxia. OAA, oxaloacetate; MAG, monoacylglycerol; DAG, diacylglycerol. (B) Dtgs1 bacteria grow to a higher cell
density in hypoxic cultures. (C) Dtgs1 mutants continue to replicate in hypoxic culture. The replication dynamics of the indicated strains were
assessed by quantifying the rate at which unstable plasmid pBP10 was lost (right axis, open symbols). The ‘‘cumulative bacterial number’’ (left axis,
closed symbols) represents the total number of organisms that would have been present if cell death was negated. Arrows in (B) and (C) indicate the
initiation of hypoxia based on methylene blue decolorization. (D and E) Growth of M. tuberculosis strains at an initial pH of 5.5 (D) and in low iron
medium (E). Optical density measurements are shown (similar data were obtained by quantifying CFU). Means 6 SD of two independent experiments
each performed in duplicate or triplicate are shown. Insets demonstrate the lack of TAG accumulation (upper species) in Dtgs1 bacteria, as assessed
by thin layer chromatography. Each TLC was developed independently. In inset, ‘‘a,’’ H37Rv; ‘‘b,’’ Dtgs1; and ‘‘c,’’ complemented strain Dtgs1+pTGS1.
doi:10.1371/journal.pbio.1001065.g001
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Figure 2. TAG synthesis modulates growth by consuming acetyl CoA. (A) Oxaloacetate (OAA) stimulates bacterial growth in low iron
medium. Growth of H37Rv expressing gfp was assessed in 384-well plates by fluorometry. Wells contained medium alone, succinate (SUC), fumarate
(FUM), pyruvate (PYR), or oxaloacetate (OAA). Each metabolite was added at increasing concentrations (0.1, 0.5, 1, 2, and 5 mM). Fluorescence
intensity of the plates was measured after 10 d of growth and normalized to control wells containing a Sybr green standard. (B and C) Growth of the
indicated strains was assessed in hypoxic (B) or low iron cultures (C). ‘‘citA*’’ indicates citrate synthase overexpressing strain. The inset in (B) shows
TAG accumulation by H37Rv (a) and the citA* strain (b) under hypoxic conditions. (D) Addition of tetrahydrolipostatin (THL) to low iron cultures
inhibits growth in a tgs1-dependent manner. Growth inhibition was determined from the optical density cultures after 21 d. Means 6 SD of two

Mycobacterial Growth and Antibiotic Sensitivity
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accumulation of TAG is antagonized by cellular lipases that

release the acyl chains for degradation (Figure S1). Thus, we

expected that inhibiting this reverse, lipase-dependent, pathway

would promote carbon accumulation in TAG and thereby inhibit

growth under stress. To test this prediction, we added tetra-

hydrolipostatin (THL), a broad-spectrum lipase inhibitor, to

bacteria cultured under conditions that induce TAG synthesis

and retard growth. As predicted, the addition of THL caused a

dose-dependent decrease in the growth of wild type, but not tgs1-

deficient, bacteria (Figures 2D and S5).

Finally, to directly demonstrate that the TCA cycle and TAG

synthesis compete for the same carbon pool, we quantified the

relative rates of carbon flux into these two pathways by metabolic

labeling with [14C]-acetate. Under hypoxic conditions, we found

that the deletion of tgs1 and overexpression of citA had a similar

effect. Both manipulations increased acetate flux into CO2 via the

TCA cycle, at the expense of TAG production (Figure 2E). The

antagonistic effect of TAG synthesis on TCA flux was indepen-

dently verified by monitoring the abundance of amino acids,

which represent relatively stable markers of the TCA activity. We

found that the intracellular concentrations of lysine, threonine,

and alanine, amino acids derived from oxaloacetate or affected by

its turnover, were decreased in wild type bacteria as they lowered

their metabolic activity during adaptation to hypoxia (Figure S6).

In contrast, deletion of tgs1 or overexpression of citA reversed this

decline, verifying that TCA activity remained relatively high in

these strains. In sum, the opposing effects of the Tgs1 and CitA

enzymes on both growth and carbon flux indicate that TAG

production restricts the growth of wild type bacteria by diverting

carbon away from growth-promoting pathways such as the TCA

cycle.

Modulation of Carbon Fluxes Can Reverse Antibiotic
Tolerance In Vitro and In Vivo

Since decreased metabolic activity generally correlates with

lower antibiotic efficacy, we speculated that TAG synthesis might

contribute to the drug-tolerant phenotype induced by stress. We

tested this hypothesis using in vitro conditions that trigger TAG

accumulation. Indeed, we found that the Dtgs1 mutant remained

significantly more sensitive to a variety of antibiotics under

tolerance-inducing conditions such as hypoxia and iron limitation

(Figure 3). The antibiotics used were chemically distinct and

targeted diverse cellular pathways, suggesting that the general

hypersensitivity of the Dtgs1 bacteria was due to a fundamental

alteration in cellular metabolism. As expected, the increased

multidrug-susceptibility of the Dtgs1 mutant was much less

pronounced under favorable growth conditions in which this gene

is not induced (Figure S7). Under these conditions, the mutant was

no more susceptible than wild type to any of the drugs tested,

except the fatty acid synthesis inhibitor, isoniazid (INH). We

conclude that while TAG synthesis may influence INH sensitivity

through multiple mechanisms, the multidrug susceptibility of the

Dtgs1 mutant is due to a general increase in growth rate and/or

metabolic activity. This conclusion was supported by the

remarkable antibiotic sensitivity of the citA* strain that we observed

in tolerance-inducing cultures (Figure 3). This strain was killed

even more rapidly than the Dtgs1 mutant, verifying that metabolic

rate is a major determinant of antibiotic susceptibility under these

conditions.

Induction of the tgs1 gene and TAG accumulation occur during

infection [20], and TCA activity appears to be limited in this

environment [25]. Therefore, we next investigated whether TCA

limitation by TAG synthesis was also required for antibiotic

tolerance in vivo. The Dtgs1 mutation did not overtly disrupt the

physiology of the bacterium in vivo, as only subtle defects in

bacterial viability were observed in mice infected with the mutant

(Figure S8). Despite this apparently normal behavior, the

metabolic state of the mutant was clearly different from wild type,

as the Dtgs1 strain remained significantly more sensitive to several

antibiotic regimens targeting different cellular functions (Figure 4).

Consistent with a central role for TCA activity in antibiotic

tolerance in vivo, we found that overexpressing citrate synthase

had a more pronounced effect. The citA* strain displayed a modest

growth or survival defect in mice (Figures 4A,B and S8), indicating

that increased TCA flux under these conditions decreased overall

fitness. More importantly, this strain remained even more sensitive

to antibiotics during infection than the Dtgs1 mutant, as we had

previously observed under in vitro stress conditions. After 28 d of

monotherapy, the number of viable wild bacteria had only

decreased 20-fold, while the number of viable citA overexpressors

was reduced below the limit of detection (Figure 4A,B).

Discussion

Many organisms accumulate TAG in preparation for long

periods of inactivity. Previously, this response had been largely

thought to serve a carbon storage function, allowing the rapid

restoration of metabolism upon resuscitation [18]. More recently,

it has been proposed that TAG synthesis may be important for

redox homeostasis in cells with low respiratory activity [26]. In

addition to these potential functions, we now show that TAG

synthesis represents an active stress response that can play a causal

role in governing growth, metabolic rate, and antibiotic suscep-

tibility by redirecting cellular carbon fluxes (Figure S1).

Reducing metabolic rate in response to stress is likely to be

advantageous for a variety of reasons. In the most general terms,

continual growth under conditions lacking a critical nutrient or

cofactor can result in catastrophic imbalances in cellular

metabolism, as we observed in the hypoxia model. While the

Dtgs1 and citA* strains have a temporary fitness advantage over

wild type bacteria in hypoxia, these mutants are unable to sustain

this advantage due to an increased rate of cell death. A similar

failure to reduce metabolic activity under growth-limiting stress

also resulted in the attenuation of the citA* strain in vivo.

An additional important consequence of the low metabolic rate

of M. tuberculosis during infection is decreased antibiotic sensitivity.

We found that the redirection of carbon into TAG synthesis was

critical for assuming this antibiotic tolerant phenotype under a

variety of different in vitro and in vivo stresses. As anticipated,

antibiotic sensitivity was correlated with replication rate under

many conditions, but this correlation was not absolute. For

example, increased replication could not account for the

heightened susceptibility of the citA* strain relative to the Dtgs1

mutant in vitro, as both strains appeared to grow similarly at the

time of treatment. Replication rate alone was also unlikely to

independent experiments each performed in duplicate or triplicate are shown. The inset shows TAG accumulation by H37Rv (a) and the tgs1 strain (b)
with the highest tested concentration of THL. Lipid extracts were normalized to represent the same bacterial mass. (E) Radiolabeled acetate (14C1,2)
was introduced into hypoxic vials after 7 d of sealed culture. The left four bars indicate the cpm of CO2 sampled from the headspace after 6 h. The
right four bars indicate relative abundance of 14C-labeled TAG on the same time point. Inset shows a representative TLC plate that was quantified.
Means 6 SD of triplicate experiments are shown for CO2 measurements.
doi:10.1371/journal.pbio.1001065.g002
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Figure 3. Metabolic modulation reverses the antibiotic tolerance induced by low iron and hypoxic conditions. Bacterial survival in the
presence of the indicated antibiotics under hypoxic conditions (A, C, E, G) and in low iron media (B, D, F, H). Isoniazid (‘‘INH’’, 2 and 0.25 mg ml21, A
and B), streptomycin (‘‘SMP’’, 2 and 1 mg ml21, C and D), ciprofloxacin (‘‘CIP’’, 4 and 1 mg ml21, E and F), and ethambutol (‘‘EMB’’, 5 and 3 mg ml21, G
and H) were introduced into each culture. Antibiotics were added to the hypoxic vials after 14 d of culture. Means 6 SD of two independent
experiments each performed in duplicate are shown.
doi:10.1371/journal.pbio.1001065.g003
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Figure 4. Modulating carbon fluxes reverses the antibiotic tolerance induced during infection. Mice were infected via the aerosol route
with the indicated bacterial strains. Total bacterial burden in the spleens (A, C, E) and lungs (B, D, F) is shown. Mice were treated at the indicated times
with isoniazid (‘‘INH’’, A, B), ethambutol (‘‘EMB’’, C, D), or isoniazid plus pyrazinamide (‘‘INH+PZA’’, E, F). Dotted line represents the detection limit of
the experiment. ‘‘ND’’ indicates no colonies detected. ND* indicates two colonies were detected but neither retained the citA overexpression plasmid.
Means 6 SD from three to five mice are shown.
doi:10.1371/journal.pbio.1001065.g004
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account for the hypersensitivity of these strains in vivo. We did not

observe increased numbers of viable bacteria in the tissues of mice

infected with Dtgs1 or citA* strains and were unable to detect

progressive histopathology or the accumulation of bacterial

chromosomes by quantitative PCR (unpublished data) that would

be anticipated if continual growth and death were occurring [10].

Thus, we conclude that the increased metabolic activity (i.e., TCA

flux) of these strains reversed the general antibiotic tolerance

induced in vivo, even though replication was effectively suppressed

by the combination of stresses produced by host immunity. Many

antibiotics kill bacteria not by inhibiting a specific cellular target

but by producing toxic metabolic byproducts [27–29]. Most of

these products, particularly reactive oxygen species, are produced

in a TCA-dependent manner in antibiotic-treated bacteria [27],

suggesting that the drug sensitivity of the more metabolically active

Dtgs1 and citA* strains was likely due to the increased production of

toxic intermediates.

Despite the central role played by the tgs1 gene in restricting

growth under a number of environmental stresses, the induction of

this gene is certainly not the only mechanism regulating metabolic

rate in response to stress. The observation that citrate synthase

overexpression has a quantitatively larger effect than tgs1 deletion

suggests that this enzyme may compete with multiple redundant

acetyl CoA-consuming pathways of which Tgs1-mediated TAG

synthesis is only one. Indeed, we identified a second TAG synthase

in our genetic screen (Table S1) that is also likely to contribute to

metabolic regulation. In addition, mycobacteria are known to

accumulate glycogen upon nitrogen starvation [30], and increased

flux into the gluconeogenic pathway could also consume acetyl

CoA and limit metabolism. Thus, while tgs1 plays an indispensable

role in limiting mycobacterial growth under the DosR-stimulating

conditions described here, it is likely that other pathways

contribute under different conditions. A number of additional

genes, such as those encoding both succinate- and pyruvate

dehydrogenase, were identified in our screen (Table S1). Further

study will be required to determine if these enzymes also act by

redirecting carbon fluxes or if distinct mechanisms are responsible.

The propensity for mycobacteria to accumulate TAG in

response to stress has been described previously [20,31], but the

physiological role of this response has remained unclear. Our work

demonstrates that TAG synthesis represents an active stress

response in M. tuberculosis that promotes antibiotic tolerance both

in vitro and in vivo by reducing growth and metabolic activity.

This supports the hypothesis that quiescent bacterial populations

are responsible for the relative inefficacy of antibiotics in vivo. We

suggest that the manipulation of these metabolic regulatory

pathways might represent a novel strategy to improve antibiotic

efficacy, once the consequences of such an intervention on

pathogenesis and the acquisition of drug resistance are more

thoroughly understood.

Materials and Methods

Bacterial Strains, Plasmids, and Culture Conditions
Mycobacterium tuberculosis H37Rv (ATCC 27294) and Escherichia

coli DH5a were used. For aerated culture, M. tuberculosis (Mtb) was

grown in Middlebrook 7H9 broth (Difco) supplemented with

0.05% Tween-80 and ADC enrichment, or on 7H10 agar with

10% OADC enrichment (Becton Dickinson) at 37uC. Hygromycin

and kanamycin were added at 50 and 25 mg/ml, respectively. All

cultures including aerated and TAG-accumulating cultures (below)

were initiated at 2.56106 CFU/ml. For low pH culture, 7H9

broth was adjusted to pH 5.5 with 0.1 N HCl. When necessary,

tetrahydrolipstatin (THL), from 20 mg/ml stock in methanol, was

added. For low iron culture, Sauton’s media with 0.05% Tween-

80 was mixed with 20 g/l Chelex (BioRad). The chelated solution

was sterile filtered and supplemented with MgSO4 (4.2 mM) and

FeCl3 (0.1 mM). The inocula was washed with 10 mM EDTA for

10 min and then washed twice with iron-free PBS containing

0.05% Tween-80.

For hypoxic cultures, bacteria were inoculated into 17 ml of

7H9 broth supplemented with Tween-80 and ADC in a 25 ml

screw cap vial, which was sealed with a teflon/silicon screw cap

(Wheaton) and parafilm. Cultures were agitated using a small

magnetic stir bar rotating at 100–150 rpm/min. At a specific time

point, two or three vials were opened and viable bacterial numbers

were enumerated on 7H10 agar.

For measurement of replication during hypoxia, H37Rv and

Dtgs1 strains carrying plasmid pBP10 [32] were inoculated into

hypoxic culture, as described above. The percentage of mycobac-

teria carrying the plasmid and theoretical doubling time were

determined as described [9].

For bacterial culture in 384-well plates, inocula of H37Rv

carrying pMSP12::GFP [33] were prepared in 7H9 broth as

described above and dispensed into a 384-well plate (25 ml of

culture per well) containing low iron media. The relevant

metabolic intermediates were added to each well at final

concentrations of 0.1, 0.5, 1, 2, 5, and 10 mM. Plates were

incubated at 37uC. Fluorescence was quantified using a plate

reader. Designated wells containing PBS + Tween-80 and 10 nM

of SYBR Green dye (Bio-Rad) were used to normalize between

readings.

Genetic Manipulation of Mtb
The tgs1 gene (nucleotide #’s 3497344-3494008, as annotated

at http://genolist.pasteur.fr/TubercuList/) was replaced by a

hygromycin-resistance marker using the pJM1 suicide plasmid, as

described [34]. For complementation, the open reading frame

(ORF) of tgs1 including 167 bps upstream nucleotides encompass-

ing the putative promoter was cloned into the integrating plasmid

pMV306, and the resulting plasmid was transformed into M.

tuberculosis. The dosR deletion mutant was generously provided by

Dr. David Sherman. To constitutively express citA (Rv0889c), the

citA ORF was cloned into pAL5000-based plasmids, pUV15tetO

and pMV261. The strain bearing pUV15tetO::citA was used for

all presented data. However, all results were confirmed using the

strain harboring pMV261::citA. The empty vector pUV15tetO

had no effect on Mtb growth.

Transposon Site Hybridization
Two independent libraries of 105 himar-1 transposon mutants

were seeded (OD600 of 0.02) into 50 ml conical tubes containing

35 ml of 7H9 medium including Tween-80 and OADC. Cultures

were agitated as described above at 37uC for 6 wk, and oxygen

consumption was verified by the decolorization of methylene blue.

After selection, the surviving mutants were recovered by plating on

7H10 agar in parallel with the initial library. Hypoxic and control

pools were then compared in duplicate using TraSH, essentially as

described [35]. Mutants that were significantly overrepresented

after hypoxic culture were defined using the following criteria:

arbitrary fluorescence intensity .300 in one of the two channels,

fluorescence ratio (hypoxic/control) .3, and t test p value ,0.05

after false testing correction (GeneSpring GX. Agilent).

Drug Treatment In Vitro and Biochemical Analysis
Isoniazid (INH, Sigma), Ethambutol (EMB, Sigma), Strepto-

mycin-sulfate (SMP, Sigma), and Ciprofloxacin (CIP, Bayer) were

used. Indicated concentrations of drug were added at the initiation

Mycobacterial Growth and Antibiotic Sensitivity
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of aerated and low iron cultures or injected at 14 d of post-

incubation into hypoxic cultures using a gas-tight syringe

(Hamilton). At each time point, the bacterial viability in two to

three independent cultures was quantified by washing bacteria

twice in PBS + Tween-80 and plating.

To analyze TAG content, bacteria were washed in PBS two

times, and total cellular lipids were extracted with chloroform:-

methanol (2:1). The lipid extracts were dried and redissolved in the

same solvent. TAG from bacterial cells, corresponding to

26107 CFU, was resolved by thin-layer chromatography using

glass-baked 250-mm-thick silica gel plates (Whatman) using toluene

and acetone (99:1) or hexane and diethylether (9:1) as a solvent.

TAG was stained by cerium molybdate and visualized after

heating.

Bacterial ATP concentrations of hypoxic cultures were

measured using the BacTiter-Glow kit (Promega). Adonosine 5-

triphospate disodium (Sigma) was used as a standard.

Relative amino acid levels were measured by Ultrahigh

Performance Liquid Chromatography/Electrospray Ionization

Tandem Mass Spectrometry with quadruplicate samples of

bacterial extracts from 109 cells, as described in [36].

For metabolic flux determination, 2 mCi of 1,2-14C-acetate

(American Radiolabeled Chemicals) was injected into hypoxic

vials at 7 d and the vials were incubated for 1–6 h. The amount of
14CO2 in the headspace of each vial was measured using a

BACTEC TB-460 (Becton Dickinson Co.). CPM increased

linearly for the first 6 h after acetate addition. All data shown

were sampled during this period. TAG was quantified using a

phosphorimager (Fuji Film BAS-2500) following TLC separation.

Infections and Drug Therapy
C57BL/6 mice were infected through the aerosol route with

Mtb at 200–300 CFUs/lung using a Glas-col aerosol exposure

system. At the indicated time points, groups of three to five

untreated mice were sacrificed, the lungs and spleens were

homogenized in PBS containing 0.05% Tween-80, and dilutions

were plated on 7H10 agar to enumerate CFU. The indicated

groups of mice were treated with antibiotics beginning at 4 wk of

postinfection. Drug was delivered ad libitum by adding the

following concentrations to drinking water: 100 mg/ml INH,

600 mg/ml EMB, and 600 mg/ml Pyrazinamide (PZA, MP

Biomedicals). All drug-containing water was replaced weekly.

Water consumption was monitored to determine the delivered

daily dose (INH: 26.560.9 mg/kg, PZA and EMB:

132.664.7 mg/kg). No significant difference in consumption was

observed between groups. To measure CFU in drug-treated mice,

the bacteria in organ homogenates were pelleted by centrifugation

and washed with PBS containing 0.05% Tween-80 before plating.

Supporting Information

Figure S1 Competing acetyl CoA utilizing pathways modulate

growth and antibiotic sensitivity in M. tuberculosis. Under favorable

growth conditions, nutritional carbon is efficiently incorporated

into central metabolic pathways, such as the TCA cycle, fueling

growth by providing the cell with energy and biosynthetic

precursors. Under these conditions, the bacterium is sensitive to

antibiotics, which preferentially target rapidly metabolizing cells. A

variety of environmental stresses trigger expression of the DosR

regulon, leading to the expression of the tgs1 gene and the

conversion of mono- and di-acylglycerol (‘‘MAG’’ and ‘‘DAG’’)

into TAG. This response redirects the flow of carbon away from

growth-promoting pathways and into fatty acid synthesis,

effectively retarding the growth and metabolic activity of the

organism. Under these conditions, the low growth and metabolic

activity of the organism renders it relatively insensitive, or

‘‘tolerant’’ to antibiotics. Genetically manipulating the flux of

carbon between these two competing pathways alters both the

growth rate and antibiotic sensitivity of M. tuberculosis.

(TIF)

Figure S2 Dtgs1 mutants are unable to maintain energy

homeostasis during inappropriate growth under hypoxia. Graph

shows the amount of ATP extracted from bacteria that were

cultured for the indicated times in sealed vessels. Means 6 SD of

two independent experiments each performed in duplicate are

shown.

(TIF)

Figure S3 DdosR and Dtgs1 mutants show similar growth

phenotypes under stress. Mutants lacking either of these genes

were cultured in low iron (A) or low pH (B). Means 6 SD of

replicate cultures are shown. (C) Relative acr promoter activity was

determined using an acr-luciferase reporter (pacr-lux [22]). Log

phase aerobically grown bacteria (‘‘O2’’) are compared with

bacteria cultured in low pH media, low Fe media, or in hypoxic

culture. Asterisks indicate a significant difference from the ‘‘O2’’

sample (* p , 0.05, ** p , 0.01).

(TIF)

Figure S4 Oxaloacetate transiently enhances viability under

hypoxic conditions. Oxaloacetate (‘‘OAA’’) was introduced at 7 d

into hypoxic cultures. Viable cell numbers increased initially and

thereafter declined. Means 6 SD of two independent experiments

each performed in duplicate are shown (* p , 0.05).

(TIF)

Figure S5 Addition of tetrahydrolipostatin (THL) to low iron

and pH cultures inhibits growth of H37Rv in a tgs1-dependent

manner. As indicated in Materials and Methods, a variety of

concentrations of THL was added to low iron and pH media at

the initiation of culture. Each data point represents the average of

triplicate cultures.

(TIF)

Figure S6 Intracellular amino acid abundance indicates that

Dtgs1 and citA* strains remain metabolically active in hypoxia. The

relative abundance of the indicated amino acids in whole cell

extracts was determined by liquid chromatography followed by

mass spectrometry. Wild type H37Rv in log phase aerobic growth

or after 2 wk of hypoxic culture (open or dotted bars, respectively)

are compared with hypoxic cultures of the Dtgs1 or citA* strains

(black or hashed bars, respectively). Measurements are the average

of quadruplicate cultures. Values are expressed relative to the

hypoxic sample, and asterisks indicate a significant difference from

this sample (* p , 0.05, ** p ,0.01).

(TIF)

Figure S7 Dtgs1 mutant is not hypersensitive to most drugs

under favorable growth conditions. The indicated strains were

treated with isoniazid (‘‘INH’’, 0.25 mg ml21, A), streptomycin

(‘‘SMP’’, 1 mg ml21, B), ciprofloxacin (‘‘CIP’’, 1 mg ml21, C), or

ethambutol (‘‘EMB’’, 1 mg ml21, D) for the indicated times and

bacterial survival was monitored by plating. Means 6 SD of two

independent experiments each performed in duplicate are shown.

(TIF)

Figure S8 Effect of modulating carbon fluxes on the growth and

survival of M. tuberculosis in untreated mice. C57BL/6 mice were

infected via the aerosol route with the indicated bacterial strains.

Total bacterial burden in the lungs (A) and spleen (B) are shown.
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Means 6 SD from three to five mice are shown. These data are

representative of two independent experiments.

(TIF)

Table S1 Mutants found to be overrepresented after hypoxic

culture. Replicate libraries of transposon mutants were subjected

to 6 wk of culture in sealed vials and compared to the initial pool

using transposon site hybridization. Mutants that were significant-

ly overrepresented (criteria are described in the Materials and

Methods section) are presented.

(XLS)
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