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 22 
SUMMARY 23 

Here, we report the spatial organization of RNA transcription and associated enhancer dynamics in the 24 
human spinal cord at single-cell and single-molecule resolution. We expand traditional multiomic 25 
measurements to reveal epigenetically poised and bivalent active transcriptional enhancer states that 26 
define cell type specification.  Simultaneous detection of chromatin accessibility and histone modifications 27 
in spinal cord nuclei reveals previously unobserved cell-type specific cryptic enhancer activity, in which 28 
transcriptional activation is uncoupled from chromatin accessibility.  Such cryptic enhancers define both 29 
stable cell type identity and transitions between cells undergoing differentiation.  We also define glial cell 30 
gene regulatory networks that reorganize along the rostrocaudal axis, revealing anatomical differences in 31 
gene regulation. Finally, we identify the spatial organization of cells into distinct cellular organizations and 32 
address the functional significance of this observation in the context of paracrine signaling.  We conclude 33 
that cellular diversity is best captured through the lens of enhancer state and intercellular interactions that 34 
drive transitions in cellular state.  This study provides fundamental insights into the cellular organization of 35 
the healthy human spinal cord. 36 
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 40 

INTRODUCTION 41 

The human spinal cord is the principal conduit for somatosensory input and motor output, enabling voluntary 42 
and autonomic movements.  To support these functions, neurons and glia are patterned across two 43 
anatomic axes: rostrocaudal and dorsoventral. The rostrocaudal axes are defined by vertebral segments, 44 
along which motor neurons are arranged in columns to support control of the arm (cervical), axial (thoracic), 45 
and leg (lumbar) muscles. The dorsoventral axis is characterized by Rexed laminae, in which stereotyped 46 
neuronal subtype cytoarchitecture controls discrete sensorimotor processing steps.  While the patterning 47 
of neurons across the spinal cord is well established, the question of how glial cells respond to the local 48 
demands of neural circuitry remains unclear.  The cellular organization of the spinal cord is similar between 49 
the thoracic and lumbar regions, yet differences in cellular responses emerge in ALS1 and cancer2.  These 50 
differences may result from anatomic differences in glial reactivity to pathological states. We reasoned that 51 
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such responses arise from cell type-specific differences in gene regulation prompted by intercellular 52 
signaling. Combinatorial patterns of gene regulation may establish distinct glial cellular states along the 53 
rostrocaudal axis of the spinal cord, explaining how motor circuits may be differentially 54 
supported.  Furthermore, cellular subtypes may have the potential to access different physiological states, 55 
depending on their anatomical position in the spinal cord and differences in specific communal cellular 56 
interactions.  Regulatory plasticity, defined as a cell’s ability to transition to an altered cellular state, arises 57 
from the convergence of chromatin state, encoded genetic determinants, in concert with induction by 58 
autocrine and paracrine signaling3. Transcriptional activation, therefore, is a consequence of cellular 59 
induction, followed by orchestrated changes in chromatin valence, transcription factor binding to cis-60 
regulatory DNA elements, and long-range enhancer interactions with promoters. The capacity to 61 
orchestrate such transitions constitutes an additional dimension of cellular diversity, driven by poised 62 
enhancer states and complex cell-cell interactions.  Cellular diversity can thus be recast in the context of 63 
cellular plasticity and locally interacting networks of cells that provide environmental cues to trigger cellular 64 
state changes.   65 

Here, we characterize the transcriptional, epigenetic, and spatial diversity of neurons and glia in the human 66 
spinal cord, define the regulatory logic that enables their specification, and uncover a fundamental 67 
epigenetic mechanism for gene activation that enables specialized function.  We consider transcriptional 68 
activation in the context of dynamic changes in chromatin states, transcription factor binding to distal 69 
regulatory elements, and engagement with the basal transcriptional machinery4.  Additional regulatory 70 
mechanisms include dynamic patterns of DNA methylation and transcription factor activity5.  Remarkably, 71 
poised enhancer states and distal regulatory elements with unrealized transcriptional potential are retained 72 
following development, yielding differences in cellular plasticity6.  Initially, we identified enhancer dynamics 73 
at the single cell level, revealing regulatory strategies and differential gene expression patterns associated 74 
with cellular identity and anatomically defined constraints in cellular states between the thoracic and lumbar 75 
spinal segments.  We then defined cellular subtypes based on common regulatory variation and pinpointed 76 
previously undetected active enhancers in the absence of chromatin remodeling with cell type and anatomic 77 
specificity. These observations provide novel insights into the cellular organization of the human spinal cord 78 
in the context of segment-level enhancer dynamics.   79 
Finally, we introduce the detection of cellular networks as a third level of spatial organization: repeat 80 
patterns of cell types that recurrently exist in proximity to one another, tile throughout a cross-section of the 81 
spinal cord, and are likely responsible for self-contained paracrine signal transduction in the central nervous 82 
system.  We developed an approach to project high-depth transcriptomic measurements onto single cell 83 
and spatially resolved multiplexed in situ profiled spinal cord sections.  These spatial data were used to 84 
identify neighborhoods of interacting cells.  Analysis of complementary receptor-ligand pairs shared by cells 85 
within a neighborhood made it possible to link molecular induction with the regulatory capacity of these 86 
populations.  Ultimately, these mechanisms lead to the formation of interacting cellular communities that 87 
support physiological function with anatomic specificity.  Taken together, our findings recast cellular identity 88 
within the human spinal cord through the lens of regulatory plasticity and anatomic organization.  Our 89 
analyses provide a molecular and cellular template by which future studies of neurodegenerative diseases 90 
can be compared. 91 

 92 
RESULTS  93 

Cellular Diversity is Driven by Restricted Regulatory Logic in the Human Spinal Cord  94 

The stoichiometry of neurons and glia in the healthy human spinal cord was previously described7,8, but the 95 
regulatory logic underlying cellular specification, and importantly, the programs that are requisite for 96 
transitions to altered states during disease, have not been assessed.  We, therefore, started by 97 
characterizing cellular heterogeneity and the underlying transcription factor activity differences between 98 
cellular subtypes in the spinal cord.  We profiled gene expression and chromatin accessibility in 150,000 99 
nuclei from the thoracic (T4) and lumbar (L4) regions of six healthy donor spinal cords (Figure 1A).  Nuclei 100 
from Donor 1 were processed independently for gene expression and chromatin accessibility, while nuclei 101 
from Donors 2-6 were profiled through simultaneous multiomic measurements.  We detected an average 102 
of 2000 genes and 7000 fragments per nuclei (Supplementary Figure 1A).  To minimize the deleterious 103 
effects of a postmortem interval, we established a surgical procedure in which spinal cord tissue was 104 
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obtained from organ donors within 60 minutes of tissue donation (Donors 2-6), thereby minimizing 105 
artifactual transcriptional changes observed in hypoxic conditions.  We integrated multiomic data across 106 
spinal cord segments and identified 37 major neuronal and glial cell populations resident in the healthy 107 
spinal cord.  The postmortem interval effect from Donor 1 resulted in a sharp decrease in neuronal recovery 108 
but had a negligible impact on cluster composition.  The observed glial and neuronal cell type classifications 109 
are consistent with the expected stoichiometry of cell types in the adult human spinal cord and between 110 
donors and segment levels (Supplementary Figure 1B,C).   111 

Cross-modal data integration requires that datasets be merged into a shared feature space, which can be 112 
challenging without a priori known anchor genes.  We therefore developed an unsupervised computational 113 
strategy based on optimal transport9 to harmonize transcriptional readout with chromatin accessibility.  To 114 
establish this approach, we separated simultaneous assays of chromatin accessibility and transcriptome 115 
derived from individual nuclei, in order to generate a ground truth synthetic dataset.  Multiomic data from 116 
each case were aggregated and subjected to canonical correlation analysis and singular value 117 
decomposition for coarse co-embedding into a shared feature space. We then utilized entropically 118 
regularized optimal transport, minimizing the Wasserstein distance associated with pairing chromatin 119 
accessibility with snRNA-seq data.  This approach accurately co-embedded data, surpassing the accuracy 120 
observed in existing methods (Supplementary Figure 1D).  Nuclei from Donors 2-6, which had been 121 
simultaneously profiled for RNA and chromatin accessibility, show near total integration (Figure 1B).  Donor 122 
1, in which separate nuclei preparations were independently measured at higher depth, shows similarly 123 
high concordance between modalities.  For downstream analysis, we focused on nuclei from Donors 2-6 124 
(deceased transplant organ donor tissue).  We subclustered the neurons and identified 20 populations of 125 
cholinergic, excitatory, and inhibitory neurons spanning the dorso-ventral axis of the spinal cord, consistent 126 
with the known organization of neurons in the Rexed laminae (Figure 1C).   127 

We observed extensive heterogeneity in the basal transcriptional state of glial cells in the healthy spinal 128 
cord (Figure 1D, Supplementary Table 1).  Oligodendrocytes are divided into two dominant populations, 129 
Oligo1 (OPALIN, CA2) and Oligo2 (KLK6, ELOVL2).  Histologically, oligodendrocytes can be defined by 130 
their preferred myelination targets: multiple thin axons or a dedicated large axon10.  We speculate that the 131 
enriched myelination program in Oligo2 may predispose this population to the support and maintenance of 132 
thick, descending tract axons.  We also observe a small population of Olig3 (ENPP6), which corresponds 133 
to a rare population of newly formed oligodendrocytes in the adult human spinal cord.  Oligodendrocyte 134 
progenitor cells (OPCs) are evenly distributed across three main clusters: synapse-associated 135 
OPC1(PTPRT), migratory OPC2 (MET), and resting OPC3 (TNR).  A rare population of OPC4 shares 136 
transcriptional signatures with OPC1 and OPC2 and may represent a transition state between the two.  137 
Healthy microglia are predominantly distributed across three states: phagocytotic Micro1 (SPP1), 138 
scavenging Micro2 (P2RY12), and resting Micro3 (PLXDC2).  In addition, we observed two populations of 139 
proliferating microglia, Prolif1 corresponding to actively dividing Micro2, and Prolif3 corresponding to 140 
actively dividing Micro1, suggesting that the physiological state of a progeny microglial cell is determined 141 
by the state of its parent cell.  Astrocytes are distributed across 4 major populations: fibrous Astro1 (AQP4), 142 
protoplasmic Astro2 (GJB6), paranodal Astro3 (CNTNAP1), and Astro4 (RFX4), along with a rare 143 
population of regulatory Astro5 (PTGDS).  We also identified populations of fibroblasts (COL1A2), 144 
endothelial (CLDN5), and ependymal (CFAP299) cells.  Finally, infiltrating B-cells (BLK) and T-cells (ITK) 145 
were observed predominantly from a single donor, while a small population of macrophages (MRC1) was 146 
distributed across Donors 2-6.  The coverage of this dataset spans the cell types known to be resident in 147 
the adult spinal cord and identifies the heterogeneous nature of resting glial states. 148 

We then identified the cis regulatory programs that govern cell type specification and maintenance of glial 149 
and immune cells by leveraging the stereotyped architecture genes, based on chromatin accessibility 100 150 
kb upstream of transcription start sites as the range for enhancer element detection.  For each gene 151 
enriched in a cluster, we calculated the motif activity of a comprehensive panel of transcription factors (TFs), 152 
which serve as a computational proxy for TF participation in cell type-specific gene regulation (Figure 1E).  153 
Microglia, derived from the yolk sac and sharing a common lineage with macrophages11, have a distinct 154 
regulatory profile from other glial cells capable of producing a characteristic immune response (SPI1, IRF2, 155 
PRDM1).  Due to their shared precursors, microglia and macrophages share a regulatory logic with 156 
macrophages, differing only through the unique activity of BHLHE40, a core regulatory transcription factor 157 
required for lipid clearance12.  T cells and B cells, infiltrating immune cells, are modulated by a distinct 158 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

immune program, including E2F2 and PAX5.  Astrocytes are uniquely enriched for HSF1 activity, a 159 
repressor of neurotoxic reactivity13.  They are also strongly enriched for the canonical regulatory factor X 160 
(RFX) and nuclear factor I (NFI) transcription factor motifs, both of which display a significant overlap with 161 
OPCs.  OPCs can differentiate into both oligodendrocytes and protoplasmic astrocytes14, which may explain 162 
their shared astrocytic regulatory program in vivo.  OPCs also share common motif activity with 163 
oligodendrocytes driven by the bHLH transcription factor ASCL1 but display a stronger reliance on OLIG2 164 
and SOX8 than their mature counterparts.  These two transcription factors are critical for remyelination 165 
programs15,16, and their preferential activity in OPCs rather than mature oligodendrocytes suggests the 166 
importance of adult-generated OPCs in recovery from demyelinating disorders.  Both oligodendrocyte 167 
subtypes are uniquely regulated by SOX2, SOX9, and SOX10, transcriptional programs responsible for 168 
their terminal differentiation and myelination capacity17-19.  Taken together, these data provide a view of the 169 
complex landscape of cell types in the healthy human spinal cord, along with the underlying regulatory logic 170 
that maintains their committed cellular states.  171 

Spinal Enhancer Dynamics Operate in the Absence of Chromatin Potential 172 

Epigenetic regulation of gene expression is only partially governed by histone displacement from regulatory 173 
sequences, as evidenced by poor concordance between transcriptional readout and ATAC measurements 174 
at proximal regulatory regions20-23.  We, therefore, sought to identify a complementary regulatory strategy 175 
that explains cell type specification.  Histone modifications are an evolutionarily conserved mechanism for 176 
defining active and silenced chromatin regions and, as such, are drivers for transcriptional activation and 177 
silencing.  Active enhancers and promoters are marked by Histone H3 acetylation (H3K27ac), while gene 178 
repression is marked by Histone H3 trimethylation (H3K27me3).  In combination with these two 179 
modifications, a third histone mark, H3K4me1, defines bivalent or poised sites that are primed for changes 180 
in activation.   Here, we show that integrating measurements for these modifications with chromatin 181 
accessibility enables the identification of cryptic enhancers that function independently of histone 182 
displacement and regulate genes critical for cellular specification. 183 

To study this phenomenon in the human spinal cord, we developed an approach that makes it possible to 184 
simultaneously measure ATAC-seq and histone modifications in individual nuclei.  This method leverages 185 
a single nuclei sequential antibody directed barcoded tagmentation assay (Sequential Tagmentation with 186 
Barcoded Sequencing, STAB-seq) directed against histone modifications (H3K27ac, H3K4me1, 187 
H3K27me3) which, when analyzed in tandem, identify bivalent active (H3K27ac/H3K4me1), bivalent poised 188 
(H3K27me3/H3K4me1), primed (H3K4me1), and silenced (H3K27me3) proximal and distal regulatory 189 
elements6,24-28. Antibodies specific for these modifications were incubated with spinal cord nuclei, followed 190 
by treatment with secondary antibody and incubation with Protein A-Tn5 loaded with calling cards 191 
(barcoded transposable elements). We followed antibody-directed tagmentation with a general 192 
tagmentation using a transposon complex lacking calling cards (Figure 2A).  Thus, the assay 193 
simultaneously detects the enhancer state alongside all accessible chromatin, providing cell-type-specific 194 
information.  We profiled ~90,000 nuclei isolated from the T4 and L4 spinal cord segments from two 195 
deceased transplant organ donors, conducting assays for H3K27ac, H3K4me1, and H3K27me3, followed 196 
by a non-barcoded tagmentation.  We detect an average of 1600 fragments per nuclei from reads containing 197 
calling cards, and 3200 fragments per nuclei for unbarcoded reads (Supplementary Figure 2A).  The 198 
introduction of histone modification-specific calling cards in STAB-seq does not interfere with unbarcoded 199 
ATAC profiles, which are consistent between all three modifications profiled (Supplementary Figure 2B).  200 
These data were integrated utilizing optimal transport, with cellular identity robustly detected by unbarcoded 201 
chromatin accessibility (Figure 2B, Supplementary Figure 2C).  Aggregate tracks identified the presence of 202 
bivalent active and poised chromatin with mutual exclusivity (Figure 2C, Supplementary Figure 2D).  203 
Regulatory regions for genes specifically expressed in oligodendrocytes, OPCs, microglia, and astrocytes 204 
show different acetylation profiles between the cell types, defining cellularly distinct transcriptionally active 205 
chromatin (Figure 2D).   206 

We first asked if histone valence, the contribution of activating versus repressive histone modifications, at 207 
a gene regulatory region can define a glial state.  We focused on RUNX2, a pioneering transcription factor 208 
that has the capacity to alter chromatin accessibility in regulatory regions of its downstream target genes29.  209 
RUNX2 is constitutively expressed in microglia30, inhibiting ameboid transitions31.  While RUNX2 is normally 210 
not expressed in astrocytes, its activation is critical for the suppression of astrocytic reactivity and scarring 211 
after injury or immunological challenge32.  This pattern of expression suggests that RUNX2 should have a 212 
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positive valence in microglia and incomplete repression (facultative as opposed to constitutive silencing) in 213 
astrocytes.  The histone code supporting this model of regulation is bivalency: bivalent active (BA) in 214 
microglia and bivalent poised (P) in astrocytes.  Our STAB-seq results revealed that this is, in fact, the exact 215 
mechanism for RUNX2 regulation in glial populations of the spinal cord (Figure 2E).  We considered 216 
whether this regulatory pattern occurs more generally between astrocytes and microglia and identified 217 
combinatorial changes in activating and repressive histone modifications at regulatory sites for hundreds 218 
of genes within these glial subtypes (Figure 2F).   219 

We then asked if altered chromatin accessibility is a prerequisite for histone valence to impact gene 220 
expression.  We highlight HPSE2, which is specifically expressed in astrocytes and prevents the clearance 221 
of plaques from the CNS33.  Given its cell type-specific expression, it would be reasonable for the HPSE2 222 
regulatory elements to be uniquely accessible in astrocytes.  Remarkably, while this is true for two proximal 223 
regulatory regions for HPSE2 (o), we found that a third region is equally accessible in both glial types (x) 224 
(Figure 2G).  This peak is uniquely regulated by chromatin valence–acetylation in astrocytes and 225 
trimethylation in microglia.  We refer to such sites as cryptic enhancers, regulatory regions of the genome 226 
that are governed not by chromatin remodeling but rather by histone valence.  Cryptic enhancers contribute 227 
to the dissonance between the observed expression of a gene and its calculated gene activity score based 228 
on chromatin accessibility.   229 
We extended our analysis to determine if distal elements contribute to transcriptional activation by using 230 
optimal transport to integrate single nuclei multiomic assays for chromatin accessibility and RNA 231 
transcription with our STAB-seq results.  ATAC-seq data from both measurements were used by optimal 232 
transport to anchor our results.  This approach offers a platform to directly connect changes in chromatin 233 
accessibility, enhancer state, and gene activation (Figure 2H, Supplementary Figure 2E).  We then modified 234 
and employed Scarlink34, a linear regression model, that makes possible the detection of changes in 235 
chromatin modification states, accessibility, and their impact on transcriptional activation.  We observed 236 
wholesale changes in histone modifications in cell type specific enhancers, revealing changes in bivalency 237 
in the absence of chromatin remodeling.  Finally, we asked if transcription factor activity (TFA) at distal 238 
enhancers was biased towards accessibility dependent versus independent regulation.  The results across 239 
microglial and astrocyte populations identify transcriptional enhancer classes that impact glial gene 240 
activation, which is not detected in traditional multiomic analyses (Figure 2I).  The NFIX family of 241 
transcription factors (TFs) activate astrocytic genes during development35, which include genes that 242 
mediate homeostasis.  We observed a requirement for chromatin reorganization 100kb upstream of target 243 
genes for these TFs. However, these target genes are activated in microglial populations only in enhancers 244 
in which histones are constitutively displaced.  Conversely, Regulatory Factor X (RFX) TFs, which impact 245 
the regulation of a broad range of genes, including MHC class II genes36, show significant activity in 246 
microglia in the absence of chromatin remodeling but require remodeling in astrocytes.  Surprisingly, these 247 
are not recognition sites for canonical pioneering transcription factors.  Instead, they constitute a novel 248 
class of valence-dependent transcription factor binding sites that leverage cryptic enhancers to regulate 249 
gene expression.  Taken together, these findings demonstrate previously unappreciated enhancer 250 
dynamics that operate with cell type specificity. 251 

Distinct Cell Type Specific Gene Regulatory Networks in the Thoracic and Lumbar Segments 252 
While the neuraxial distribution of motor neuron columns has previously been well described37-39, the 253 
accompanying glial diversity across spinal segments has not been examined.  Statistics from clinical studies 254 
in ALS40-43 and cancer2  suggest that cells between the thoracic and lumbar regions have inherently different 255 
responses to disease pathology. However, the underlying molecular basis for this is not understood.  We 256 
reasoned that such responses are a consequence of differences in regulatory plasticity along the 257 
rostrocaudal axis. To understand the inherent differences between glial cell regulatory dynamics between 258 
the T4 and L4 segments of the spinal cord, which may obscured during coembedding (Supplementary 259 
Figure 3A), we separated the nuclei from each segment and independently performed differential gene 260 
expression and accessibility measurements to identify cell types, which remained consistent with the labels 261 
from the joint space.  We used optimal transport to align the profiles from each modality and identified the 262 
nuclei and clusters with shared features (Figure 3A).  To minimize uninformative signal from spurious 263 
background accessibility changes, we further used optimal transport to project active chromatin signal, 264 
identified by H3K27ac peaks, onto the data from segment isolated nuclei. 265 
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We asked if transcription factors have inherently biased activity in glial cells, which depend on rostrocaudal 266 
positioning.  To do so, we employed the Inferelator44 in multitask mode to construct gene regulatory 267 
networks (GRNs), creating a prior based upon transcriptionally active chromatin.  Based on this analysis, 268 
we identified changes in TFA with cell type specificity across the thoracic and lumbar spinal segments.  We 269 
assigned TFs based on their cognate recognition sequences, as provided by the JASPAR TF database45.  270 
We found that a subset of TFs are globally activated in a segment-dependent manner across multiple cell 271 
types, while others show strong cell type dependency (Figure 3B).  None of the TFs we examined were 272 
inversely enriched between segments in different cell types.  Of the globally enriched TFs, many have a 273 
role in modulating inflammatory responses in the CNS.  In the lumbar region, astrocytes and OPCs have 274 
elevated activity of DDIT3, a key regulator of the unfolded protein response, which could position these cell 275 
types to transition more towards reactivity than their thoracic counterparts46-48.  Oligodendrocytes and 276 
microglia show elevated NFKB1, which constitutes opposing effects in these cell types: protective against 277 
inflammation in oligodendrocytes49, and pro-inflammatory in microglia50.  In the thoracic region, NFIA activity 278 
is enriched in astrocytes, OPCs, and oligodendrocytes, creating a differential potential to responses to injury 279 
or insult51,52.  This analysis revealed that glial transcriptional programs are poised to differentially react 280 
depending on which segment of the spinal cord they reside, and could therefore contribute to the differential 281 
responses seen across segments under diseased conditions.   282 
We then identified unique regulatory programs that define cell type-specific rostrocaudal differences in the 283 
spinal cord (Figure 3C, Supplementary Figure 3B, Supplementary Table 2).  We found that lumbar and 284 
thoracic astrocytes have inverse activity of CPEB1 and EGR1, respectively, corresponding to 285 
phenotypically distinct populations: migratory53 vs neurotrophic54.  OPCs show differential activity of key 286 
oncogenic transcription factors, with pro-tumor MYBL155 and MYBL256 overrepresented in the thoracic 287 
region and tumor-suppressing YY157 and ZIC158 in the lumbar region.  This observation is consistent with 288 
the clinical consensus that a predominance of spinal cord tumors is located in the thoracic region of the 289 
spinal cord2.  Relative to their thoracic counterparts, oligodendrocytes in the lumbar segment have 290 
increased baseline activity of TFs associated with stress responses traditionally seen in response to 291 
inflammation and remyelination, including ATF6A59, STAT360, and IRF761.  Microglia in the thoracic segment 292 
enact homeostatic maintenance programs through the activity of TFs, including IKZF162, ZNF76863, and 293 
ZNF30664, while lumbar microglia are more reliant on the activity E2F165, VDR66, and SIX267, suggesting a 294 
mechanism for how an imbalance in a seemingly global signaling program can trigger a region-specific 295 
response in microglia that then spreads to other regions.  We built cell type-specific GRNs to understand 296 
how gene targets are affected by anatomically skewed TFAs (Figure 3D, E).  While TFA enrichment can 297 
be shared by multiple cell types, we found that their gene targets are largely cell type-specific and non-298 
overlapping between TFs (Supplementary Table 3).  This observation suggests a finely tuned regulatory 299 
program in which a disturbance at a single node is propagated internally within a cell population before 300 
spreading to other cell types through a secondary mechanism. 301 

Dynamic Enhancer Activation Can Proceed in the Absence of Changes in Chromatin Accessibility 302 

Having established that integrating chromatin accessibility and histone valence reveals novel regulatory 303 
strategies in a stable population of cells, we asked how dynamic remodeling of chromatin drives cell state 304 
transitions.  We leveraged the continuous adult differentiation of OPCs to oligodendrocytes as a model for 305 
an active developmental trajectory.  Oligodendrocyte populations are replenished at 0.3% per year in the 306 
healthy adult human CNS, a rate much lower than the mouse 68,69. Despite the importance of these adult-307 
born oligodendrocytes in disease-associated remyelination70, the regulatory logic associated with adult 308 
gliogenic commitment is poorly understood.  Furthermore, the molecular basis for the development of two 309 
oligodendrocyte subtypes has not been resolved.   310 

We built a pseudotemporal trajectory to determine the time-ordered sequence of events that control the 311 
differentiation of OPCs into one of the two mature oligodendrocyte lineages.  A bottleneck to studying 312 
branched differentiation trajectories is the difficulty in computationally modeling bifurcations in pseudo 313 
temporally ordered cells. Traditional approaches, such as RNA velocity71, are insufficient to model the 314 
transitions that OPCs undergo during differentiation (Figure 4A).  To overcome this limitation, we used 315 
single cell Topological Data Analysis (scTDA), an algorithm that retains the shape of data in high 316 
dimensional space72.  scTDA provides a continuous developmental trajectory, thus pseudotemporally 317 
ordering the cells with efficacy (Figure 4B).  In contrast to RNA velocity, scTDA revealed three branches in 318 
the OPC to oligodendrocyte transition centered around an expectedly sparse population of actively 319 
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differentiating precursors (Figure 4C, Supplementary Figure 4A).  We assigned a starting pseudotime of 0 320 
to cells in the root node, a position in the graph that maximizes both transcriptional entropy and, 321 
subsequently, the distance to terminal nodes in the graph.  The root node resides within the actively 322 
differentiating OPC population.  From this node, cells traverse one of 3 trajectories: they can transit from 323 
active to quiescent OPCs (Branch 0), commit to an Oligo1 cellular fate (Branch 1), or commit to an Oligo2 324 
cellular fate (Branch 2).  Cells in nodes proximal to the rooted node, as calculated by the minimal number 325 
of edges between them, are assigned an early pseudotime, while cells distal to it are assigned a late 326 
pseudotime.  scTDA reveals that the discrete OPC clusters seen by UMAP using traditional dimensional 327 
reduction are smoothly distributed along a continuum of cell states, suggesting that the physiological 328 
functions of OPC subtypes are directly linked to their distance from terminal differentiation.  Conversely, 329 
the less defined UMAP division between two oligodendrocyte subtypes resolved into a developmentally 330 
demarcated split between two distinct mature populations.  Driving this branched fate decision is a change 331 
in the transcriptional profiles of cells in pseudotime (Figure 1D, Supplementary Figure 4B).  We identified 332 
the regulatory program responsible for this divergent fate commitment by analyzing motif activity across 333 
pseudotime in each of the branches (Figure 4E).  Like neonatal OPCs, adult OPCs are maintained in a 334 
quiescent state by the transcription factor SOX573.  These progenitors undergo a cascade of regulatory 335 
changes as they transition to active OPCs, driven by the activity of ASCL1, a transcription factor associated 336 
with remyelination programs74.  FOXO1 is a regulator of oligodendrocyte differentiation in mice75, and is 337 
part of the regulatory progression that instigates Branch1 specification.  NKX6-2, a transcription factor 338 
implicated in mouse oligodendrocyte differentiation76,77, has elevated activity selectively during Branch2 339 
oligodendrocyte specification.  These changes in motif activities across branches suggest a dynamic 340 
remodeling of chromatin and altered enhancer states that promote OPC to oligodendrocyte differentiation. 341 

We then examined changes in histone modifications at regulatory sites during oligodendrocyte 342 
differentiation.  ASCL1, a transcription factor that is active specifically in OPCs 74, shows a combination of 343 
two enhancer states in progenitor cells (active and bivalent active).  Upon repression in mature 344 
oligodendrocytes, both sites transition to a poised, but not fully silenced, state (Figure 4F).  This is a 345 
reproducible shift across enhancers for genes that are repressed upon cell fate commitment (Figure 4G).  346 
Conversely, the genomic region encompassing the proximal regulatory and coding sequences for the 347 
mature oligodendrocyte myelination gene MAG is fully repressed in OPCs.  Upon differentiation, the 348 
enhancer for MAG becomes bivalent active while the TSS region is fully active, supporting a de-repression 349 
model for genes activated in mature oligodendrocytes (Figure 4H).  These dynamics are reproducible 350 
across distal enhancers for genes that are induced upon oligodendrocyte differentiation (Figure 4I).   351 

Finally, we asked whether these enhancer dynamics occur dependently or independently of chromatin 352 
accessibility changes.  Two enhancers of TNR, a gene expressed in OPCs, illustrate the complexity of this 353 
regulatory mechanism.  The upstream enhancer switches from bivalent active to poised independent of 354 
chromatin accessibility changes, while the intronic enhancer is silenced and concordantly decreases in 355 
accessibility (Figure 4J).  A comprehensive analysis of enhancer peaks involved in the OPC to 356 
oligodendrocyte differentiation reveals almost mutually exclusive regulatory dynamics of TFs that rely on 357 
chromatin accessibility changes and those that do not (Figure 4K).  OLIG2, the critical developmental bHLH 358 
transcription factor, serves as a master regulator of oligodendrocyte differentiation and a crucial activator 359 
of myelination genes and has an integral impact on glioblastoma and responses to injury and disease78-80. 360 
Despite OLIG2 motif activity being a major determinant of OPC identity when considering glial cell 361 
heterogeneity in ATAC measurements, a striking property of the OLIG2 consensus sequence is its 362 
localization in cryptic enhancers.  The activity of OLIG2 is enriched in OPC-specific genes at constitutively 363 
accessible enhancers, where it is preferentially regulated by histone acetylation.  Conversely, SOX10, the 364 
principal regulator driving oligodendrocyte differentiation, exhibits motif activity that acts in concert with 365 
changes in chromatin accessibility.  Consistent with the de-repression model for mature oligodendrocyte 366 
gene activation (such as MAG), OLIG2 target expression in oligodendrocytes is inversely related to histone 367 
methylation.  These results point to a complex regulatory program driving the formation and maintenance 368 
of adult oligodendrocytes in the spinal cord that depends in equal parts on chromatin restructuring and 369 
remodeling of histone valence at constitutively accessible sites.  370 

Spatially Organized Cellular Networks in the Human Spinal Cord 371 
Neuronal cytoarchitecture is highly stereotyped in the spinal cord, with motor columns and Rexed laminae 372 
defining neuraxial positioning.  The corresponding glial organization is not well defined.  Given the 373 
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importance of proximal paracrine signaling in mediating intercellular communication, we asked how 374 
astrocytes, microglia, OPCs, and oligodendrocytes pattern across the cross-section of the spinal cord to 375 
facilitate homeostatic function.  Specifically, we asked if glial cells form local cellular networks that are 376 
distinct from traditional cytoarchitectural constraints and have, therefore, been overlooked.  We examined 377 
the spatial organization of cells in the L4 lumbar segment of a deceased transplant organ donor, developing 378 
an approach to identify and quantify patterns of stereotypical cellular networks along the dorsoventral and 379 
mediolateral axes (Figure 5A).  We used STARmap81 to spatially profile 146 genes with single cell and 380 
single molecule resolution, inclusive of glial subtype-specific markers (Supplementary Table 4). We 381 
clustered the in situ profiled cells and observed a reproducible transcriptional signature of glial subtypes 382 
consistent with the snRNA-seq dataset (Figure 5B, Supplementary Figure 5A) and generated a cartograph 383 
to spatially identify cell types in the tissue (Figure 5C).  For each cell, we calculated, within a radius of 384 
60µm, the composition of the surrounding cell types.  These proximal cells formed the basis for calculating 385 
a cellular network (CN).  We defined the network profile of each cell as the cumulative count of cell types 386 
within the given radius.  We aggregated the neighborhood profiles for each cell type by performing k-387 
Nearest Neighbor (k-NN) clustering82 and determined cluster stability by bootstrapping.  Community 388 
detection was performed on the resulting k-NN graphs to identify repeated cellular networks tiling across 389 
the lumbar segment (Figure 5D, Supplementary Figure 5B-F). 390 
CNs define a reproducible stoichiometry of cells proximal to the cell type being analyzed.  When considering 391 
motor neurons, we discovered that they segregate into two networks: Network 0, in which motor neurons 392 
are surrounded predominantly by astrocytes (GJB6+), and Network 1, in which motor neurons are 393 
surrounded predominantly by Micro2, a microglial population enriched for P2RY12+, a purinergic receptor 394 
that characterizes motile microglia.  These findings strongly point to preset vulnerability and resistance in 395 
motor neurons that may be linked to pre-existing intercellular cues.  We also observed that Network 0 motor 396 
neurons have significantly more proximal Oligo2 (KLK6+) neighbors, while Network 1 has more OPC2 397 
(MET+) neighbors.  These observations provide a rationale for differential paracrine signaling that may 398 
confer resistance or vulnerability to motor neuron stress.  In contrast to motor neurons, more recent studies 399 
indicate that key differences in white matter and grey matter astrocytic reactivity occur during both aging 400 
and neurodegenerative disease.  As a reflection of their diverse functional impact on neuronal homeostasis, 401 
astrocytes display regional and key molecular differences.  We, therefore, sought to extend our analyses 402 
to capture the impact of cellular networks on the astrocytic state.  Grey matter astrocytes (Astro2, GJB6+) 403 
are found in 4 CNs: Network 0 astrocytes are commonly found near Micro2 (P2RY12+) microglia, and 404 
Network 2 astrocytes preferentially associate next to Micro1 (SPP1+) microglia.  Network 1 astrocytes 405 
localize adjacent to other grey matter astrocytes, and Network 3 astrocytes reside proximal to Oligo1 406 
(OPALIN+).  In the white matter, Astro1 (AQP4+) reside in 6 CNs, preferentially neighbored by Micro2, 407 
Micro1, Astro1, Astro3 (CNTNAP1+), oligodendrocytes, or Astro4 (RFX4+).  These CNs are tiled across the 408 
spinal cord and are spatially intermingled (Figure 5E). 409 

To understand the functional significance of the organization of these CNs, we characterized the 410 
intercellular signaling pathways within individual neighborhoods of cells.  We used optimal transport to 411 
project high-depth gene expression measurements from snRNA-sequencing onto our spatially profiled 412 
data.  This provided a spatially resolved dataset with transcriptional depth.  We then used CellphoneDB83 413 
to identify receptor-ligand interactions between distinct cell types within each CN.  We identified a panel of 414 
unique receptor-ligand pairs that are dedicated to cells in different spatial communities (Figure 5F, 415 
Supplementary Table 5).  The information exchanged between grey matter astrocytes and microglia is 416 
different depending on which community they are a part of and distinct from the information exchanged 417 
between white matter astrocytes and microglia.  These spatially restricted patterns of signaling reveal a 418 
previously unrecognized level of cellular heterogeneity and provide additional insights into the selective 419 
vulnerability of cells to stress, inflammation, and neurodegeneration (Figure 5G). 420 

 421 

DISCUSSION  422 

In this study, we accomplished four principal objectives.  First, we established a multiomic cell atlas of the 423 
thoracic and lumbar segments of the healthy adult human spinal cord, defined the corresponding cis-424 
regulatory elements driving their specification, and established an optimal transport approach to integrating 425 
these data.  Second, we developed and applied STAB-seq to track enhancer states and chromatin 426 
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remodeling in individual spinal cord nuclei.  We uncovered previously unidentified cryptic enhancer classes, 427 
defined their dynamics in both stable cellular populations and in actively differentiating cells, and proposed 428 
a potential role for enhancer chromatin valence in disease processes.  Cryptic enhancer transitions 429 
challenge multi-omic studies predicated upon chromatin potential as the arbiter of gene activation and 430 
bridge the dissonance commonly observed between mRNA expression and ATAC-inferred gene activity.  431 
Third, we defined anatomically localized transcription factor activities and concordant reorganization of cell 432 
type-specific gene regulatory networks across the rostrocaudal axis of the spinal cord.  We extended this 433 
approach to identifying the regulatory dynamics of oligodendrocyte subtype specification and transition to 434 
quiescence in OPCs.  Finally, we demonstrated that cellular identity can be recast in the context of cellular 435 
networks.  We also described network-specific paracrine signaling pathways based on expressed receptor-436 
ligand pairs, which support homeostasis.  Critical in these findings is the redefinition of alpha motor neurons 437 
by the cellular neighborhoods in which they reside, characterized by distinct distributions of proximal 438 
astrocytes, microglia, and oligodendrocyte subtypes.  In the white matter of the spinal cord, two populations 439 
of seemingly identical astrocytes are selectively engaged by phagocytotic or scavenging microglial 440 
populations. Such repeatable and stereotyped cellular neighborhoods provide evidence of a previously 441 
unappreciated cytoarchitectural axis in the spinal cord. 442 

Nonequivalent Regulatory Potential Across Spinal Segments 443 
Previous studies of the mammalian spinal cord focused on transcription as an arbiter of cellular diversity 444 
and function8. We extend those  results, profiling histone modifications and transcriptional state in spinal 445 
nuclei isolated from the thoracic and lumbar regions of the spinal cord.  The data revealed distinct 446 
differences in transcription factor activities between glial subpopulations along these anatomic axes. More 447 
broadly, our studies identified substantial rewiring of glial gene regulatory networks along the rostrocaudal 448 
axis.  Defined as the influence of transcription factors (TFAs) on gene activation, differences in TFAs within 449 
glial subpopulations suggest critical differences in the potential responsiveness of these cell types to stress.  450 
Disease Associated Glia (DAGs) in the spinal cord have been well-documented in the context of 451 
transcriptional readouts, with perplexing focal pathological effects84.  Our work suggests that DAGs may 452 
result from seemingly identical glial cells, from a transcriptional vantage point, with differing underlying 453 
transcription factor activity.  During neurodegenerative disease conditions, such as amyotrophic lateral 454 
sclerosis, disease initiation is asymmetric. By way of example, thoracic onset ALS is exceedingly rare, 455 
impacting 3% of cases85.  Our work points towards the need for further study of glial contributions to 456 
selective motor neuron degeneration in context of the anatomic influence transcription factor families have 457 
on  transcription. 458 

Cryptic Human Enhancers Impact Regulatory Dynamics 459 

Chromatin potential, defined as the reorganization of chromatin towards accessibility to transcription, has 460 
been described as a predictor of transcriptional activation. Traditional single nuclei multiomic assays rely 461 
on correlations between changing chromatin accessibility and RNA abundance, and therefore depend upon 462 
chromatin potential for regulatory site determination. We hypothesized that cryptic enhancers exist that 463 
activate transcription, absent canonical chromatin potential.  We, therefore, developed and applied STAB-464 
seq with a specific interest in detecting enhancers within the thoracic and lumbar segments of the spinal 465 
cord that could refine our understanding of glial gene activation.  We identified cryptic enhancers, controlling 466 
transcriptional activation absent discernible reorganization of chromatin accessibility in both static glia and 467 
differentiating oligodendrocyte progenitor cells.  These enhancers are best defined as upstream regulatory 468 
regions that are constitutively accessible, and are identified through transitions towards H3K27Ac 469 
modification and subsequent gene activation. We identified these regulatory regions across all major glial 470 
subpopulations, demonstrating their ability to define glial subtypes, their potential contributions towards 471 
cellular reactivity, and their involvement in oligodendrocyte subtype specification.  The constitutive 472 
accessibility of these enhancers may arise from several biological processes.  On one hand, these 473 
enhancers may arise from developmental considerations. For example, progenitors such as pMNs, that 474 
give rise to both OPCs and motor neurons86, may yield mutually exclusive cryptic enhancer states in each 475 
cell type.  A developmental dead end in an OPC may result in a constitutively accessible state that is 476 
activated in motor neurons.  Alternatively, the accessibility of these enhancers may result from mitotic 477 
bookmarking during development, whereby transcription factor binding during mitosis mitigates chromatin 478 
closure and enhances TF binding to its cognate binding site in daughter cells87.  Interestingly, the presence 479 
of these enhancers may increase in the brain and spinal cord as a function of age.  Studies of epithelial 480 
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stem cells have demonstrated that inflammation in these cells renders their daughter cells poised to activate 481 
immune genes through maintenance of chromatin accessibility88.  We reason that stressors occurring 482 
during aging may increase the abundance of these cryptic enhancers, rendering glia and neurons poised 483 
to activate responsive transcriptional programs.  Ultimately, our studies point towards the importance of 484 
transcription factor binding as a more faithful indication of transcriptional activity rather than chromatin 485 
accessibility, which has been argued elsewhere89.  Both the impact of these cell type specific cryptic 486 
enhancers on the kinetics of gene activation and their intersection with noncoding genetic variation in 487 
neurodegeneration requires further investigation. 488 

Cytoarchitectural Organization as a Framework for Cellular Identity 489 

We hypothesized that, rather than being randomly distributed throughout the spinal cord, each glial cell 490 
resides within one of several stereotyped intercellular networks.  If true, cellular identity could be recast in 491 
the context of surrounding cells. We applied the Starmap in situ sequencing approach for clarification, and 492 
developed a computational framework using community detection to test our hypothesis. Previous studies 493 
in the mouse cortex showed that non-neuronal cells become spatially proximal during aging, preferentially 494 
colocalizing, pairwise, with cell type specificity90. Our studies demonstrate that glia not only have a pairwise 495 
preference for proximal cells, but they form repeated cellular networks that organize across the tissue.  496 
Importantly, our analysis demonstrated that alpha motor neurons appear to participate in one of two 497 
networks, preferentialy surrounded by different distributions of proximal astrocytes, microglia, and 498 
oligodendrocyte subtypes. Historically, differences between motor neuron subclasses have relied upon 499 
intrinsic transcriptional definitions that struggle to explain selective resistance or vulnerability to 500 
degeneration. One possibility is that selective motor neuron vulnerability in ALS is a consequence of 501 
vulnerable motor neuron populations within in the observed networks enriched for astrocytes, aggravating 502 
local signalling that has been shown to impact neural viability91.  A bulk spatial study of the human spinal 503 
cord in ALS has shown that disease severity correlates with proximity to the initial site of symptom onset, 504 
however this study did not have the spatial resolution necessary to define cell type-specific contributions to 505 
disease92.  White matter and grey matter astrocytes, known to occupy non-overlapping spatial territories 506 
that have traditionally been considered self-contained93, also reside within discrete cellular networks with 507 
stereotyped neighboring cells.  We postulate that these networks facilitate dedicated paracrine signaling, 508 
and identify the expression of unique receptor-ligand combinations between astrocyte, microglia, and 509 
oligodendrocyte subtypes that reside in different networks. Our work reveals an enrichment of phagocytic 510 
microglia within a white matter astrocyte network, suggesting that cytokines produced by these microglia 511 
have the potential to drive reactive gliosis and elicit a focus for neurodegeneration94. 512 

Taken together, the approaches developed in this study reveal multiple layers of spatial and epigenetic 513 
regulation of cell states in the healthy human spinal cord.  Our findings invite a deeper exploration of the 514 
impact of local intercellular communication and chromatin remodeling on the diverse cellular transitions 515 
observed during neurodegenerative disease.  Although an abundance of resources exists to define 516 
heterogeneity within the central nervous system, our work challenges the notion that the transcriptome is 517 
sufficient to capture cellular identity.  Rather, poised enhancer states and local cellular networks providing 518 
inductive paracrine signals provide a deeper insight into cellular populations predisposed to resilience or 519 
degeneration during injury or insult in the human spinal cord.  This approach, applied to parallel studies of 520 
diseased states is likely to provide novel insights into neurodegenerative disease mechanisms. 521 
Limitations of the study 522 

This study offers multiomic and single cell resolved spatial transcriptomic data generated from tissue 523 
isolated from deceased transplant organ donor non-neurological control cases.  There does not exist a 524 
published dataset for comparison and therefore our study is statistically underpowered with respect to small 525 
or rare cellular subpopulations.  We therefore have not included these cellular groups in our analyses.  526 
Given that single cell spatial transcriptomic approaches, such as Starmap, require probe panel design and 527 
therefore there may be additional transcriptional events that characterize intercellular interactions. 528 

 529 
Lead contact 530 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 531 
the lead contact, Abbas Rizvi (ahrizvi@wisc.edu). 532 
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FIGURE TITLES AND LEGENDS 551 

Fig. 1. Regulatory Logic and Transcriptional Activity in the Adult Human Spinal Cord. 552 

(A)  UMAP embeddings of independently measured snRNA and ATAC from (left) 40,000 nuclei from T4 553 
and L4 spinal segments of a postmortem donor and (right) 100,000 simultaneously profiled nuclei from T4 554 
and L4 spinal segments of five organ donors.  Stoichiometry of cell types is consistent between donors and 555 
modalities.  (B) Optimal transport-based integration of snRNA-seq (blue) and snATAC-seq (orange) yields 556 
accurate co-embedding of data into a shared multimodal feature space. (C) Subclustering of neurons based 557 
on gene expression reveals expected cholinergic, excitatory, and inhibitory populations spanning the 558 
dorsoventral axis, as shown by marker gene expression in the dot plot. (D) Unbiased clustering of single 559 
nuclei gene expression reveals heterogeneous cellular subtypes, which can be identified by marker gene 560 
expression as shown in the dot plot.  (E) Motif activity analysis of aggregated snATAC measurements 561 
reveals discrete regulatory programs in cellular subtype specification. 562 

Fig. 2. Enhancer Profiling Dissects Chromatin Potential from Accessiblity Independent Regulatory 563 
Activity.  564 

(A) Experimental workflow of Sequential Tagmentation with Barcoded Sequencing (STAB-seq) for the 565 
introduction of a histone modification-specific calling card prior to traditional unbarcoded ATAC.  (B) UMAP 566 
representations of (left) 10X-based single nuclei chromatin accessibility and (right) unbarcoded STAB-seq 567 
chromatin accessibility show the equivalent distribution of major cell types between modalities.  (C) 568 
Aggregated STAB-seq reads for H3K27ac (green), H3K4me1 (blue), and H3K27me3 (red) along a 4.6Mb 569 
track of chromosome 17, demonstrating mutually exclusive active or silent chromatin regions.  (D) STAB-570 
seq reads for H3K27ac aggregated by cell type show selectively active enhancers at cell type-specific 571 
marker genes.  (E) At the RUNX2 locus, astrocytes and microglia show an inverse relationship between 572 
activating and repressing histone modifications: Bivalent Active (BA, H3K27ac+H3K4me1) in microglia and 573 
Poised (P, H3K27me3+H3K4me1) in astrocytes.  (F) Triangle plot demonstrating a consistent elevation of 574 
H3K27ac and decrease in H3K27me3 in enhancers that are active in microglia (left) and silenced in 575 
astrocytes (right).  (G) Out of three regulatory peaks at the HPSE2 locus, two show concordant increases 576 
in ATAC accessibility and H3K27ac signal in astrocytes vs microglia (o, consistent with chromatin 577 
remodeling), while one demonstrates increased H3K27ac signal in astrocytes absent a significant change 578 
in ATAC accessibility between cell types (x, consistent with a cryptic enhancer).  (H) Schematic of 3 modality 579 
integration of snSTAB-seq, snRNA-seq, and snATAC-seq, enabling peak-gene associations, regulatory 580 
site discovery, and transcription factor analyses.  (I) Matrix plot showing the significance of TFA scores 581 
between astrocytes and microglia organized by TF preference for cryptic vs. remodeling-dependent 582 
enhancers between cell types.  Peak-associated gene expression was calculated to be enriched in 583 
astrocytes (A) or microglia (M). The STAB coefficient, defined as the level of modification enrichment at TF-584 
associated peaks between the two cell types, was calculated as enriched (up), depleted (down), not 585 
significant (n/s), or not considered (n/a). 586 

Fig. 3. Distinct Regulatory Patterns of Thoracic and Lumbar Glial Cells. 587 

(A)  Nuclei from organ donors profiled simultaneously for snRNA and snATAC were aggregated and 588 
clustered separately from the T4 (top) and L4 (bottom) regions of the spinal cord to retain biological 589 
variation.  Optimal transport was used to align RNA and ATAC measurements between segments. (B)  590 
Differential motif enrichment in the T4 and L4 regions of the spinal cord across the four major glial 591 
populations shows robust differences between segments.  (C) Dot plot of cell type specific motif activity 592 
enrichment in the L4 (top) and T4 (bottom) segments of the adult human spinal cord demonstrate distinct, 593 
non-overlapping patterns of regulation between segments.  D)  Schematic of GRN graph organization.  (E) 594 
Cell type-specific GRNs define discrete regulation of T4 and L4 gene targets between glial populations. 595 

 596 

 597 
 598 
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Fig. 4. Gene Regulation of Adult OPC to Oligodendrocyte Differentiation. 599 

(A) Pseudotemporal ordering of OPCs and oligodendrocytes using RNA velocity does not recapitulate the 600 
trajectory of OPC to Oligodendrocyte differentiation. (B) Schematic of scTDA, an algorithm for 601 
pseudotemporal ordering of branched processes and graph-based analysis of differential gene expression 602 
and chromatin accessibility.  (C) scTDA applied to the adult OPC to oligodendrocyte differentiation process 603 
reveals 3 branches in oligodendrocyte cell fate specification: OPC (Branch 0), Oligo1 (Branch 1), and Oligo2 604 
(Branch 2).  The rooted node (starting point pseudotime 0) is centered in the graph and outlined in red and 605 
falls within the actively differentiating OPC population.  (D) Scaled expression of genes enriched in a single 606 
branch, plotted as a function of pseudotime across the three branches, shows minimal overlap in temporal 607 
expression patterns with other branches.  (E) Independently pseudotemporally ordered motif activity (red) 608 
and transcription factor expression (green) for each branch shows a wave of regulatory logic associated 609 
with cell fate determination.  (F) Silencing of ASCL1 gene expression in mature oligodendrocytes 610 
corresponds to a regulatory shift at enhancer loci from bivalent active (BA) and active (A) to poised (P) 611 
states.  (G)  Triangle plot demonstrating consistent inverse relationships between H3K27ac and H3K27me3 612 
signal at enhancer peaks that are active in OPCs (left) and silenced in oligodendrocytes (right).  (H) The 613 
MAG locus, a myelinating gene expressed upon oligodendrocyte differentiation, is fully repressed in OPCs 614 
(R), and is derepressed and gains a bivalent active (BA) enhancer peak upon differentiation.  (I) Triangle 615 
plot demonstrating consistent inverse relationships between H3K27ac and H3K27me3 signal at enhancer 616 
peaks that are active in oligodendrocytes (left) and silenced in OPCs (right).  (J) The TNR locus shows a 617 
complex regulatory pattern in which two peaks, both bivalent active in OPCs and poised in 618 
oligodendrocytes, show differential dependence on chromatin accessibility changes.  The intronic 619 
regulatory peak is silenced in concordance with the loss of chromatin accessibility, while the upstream peak 620 
changes chromatin valence independently of chromatin accessibility change.  (K) Matrix plot showing the 621 
significance of TFA scores between OPCs and oligodendrocytes organized by TF preference for cryptic vs. 622 
remodeling-dependent enhancers between cell types.  Peak-associated gene expression was calculated 623 
to be enriched in OPCs (OP) or oligodendrocytes (OL). The STAB coefficient, defined as the level of 624 
modification enrichment at TF-associated peaks between the two cell types, was calculated as enriched 625 
(up), depleted (down), not significant (n/s) or not considered (n/a).  TFs demonstrate largely mutually 626 
exclusive preferences for valence at enhancer regions that either correlate with changes in chromatin 627 
accessibility (accessibility dependent) or are independent of chromatin accessibility changes (cryptic 628 
enhancers). 629 
 630 
Fig. 5.  Spatial Transcriptomics and Community Detection Identify Stereotyped Neighborhoods of 631 
Cellular Composition.  632 
(A) Schematic overview of spatial data analysis and community detection.  Optimal transport is used to 633 
accurately project high-depth snRNA-seq measurements onto in situ profiled cells.  For each cell type, the 634 
spatial relationships between cells are calculated by kNN clustering, and cellular networks are defined by 635 
reproducible and stable communities of proximal cells.  (B) Dot plot of in situ transcriptomic data identifies 636 
glial clusters consistent with snRNA-seq based on scaled expression of marker genes.  (C) Cartograph 637 
showing glial subtypes and MNs in the in situ sequenced L4 spinal cord cross-section.  The dotted black 638 
line designates the grey matter/white matter boundary.  The red boxes correspond to representative regions 639 
of white matter (WM), grey matter (GM), and ventral horn (VH).  (D) Top: kNN graph and community 640 
detection identify cellular networks (CNs) for MNs (left), grey matter astrocytes (center), and white matter 641 
astrocytes (right). Bottom: stacked bar graphs show the cumulative percent contribution of proximal cell 642 
types for each CN.  (E) Zoomed in cartographs of boxed regions in C visualizing enriched cell types in two 643 
CNs for MNs (left), GMA (middle), and WMA (right).  For clarily, only the cell types that are differentially 644 
enriched between CNs are shown. For each plot, the analyzed cell type is outlined by a circle (MN radius 645 
80µm, GMA and WMA radius 60µm), within which cells are considered proximal.  Cell type stoichiometry 646 
within the radius for each community is reproducible, tiles across the tissue, and is consistent with the 647 
stacked bar graph in D.  (F) CellphoneDB analysis highlighting ligand-receptor pairs that are unique to cell 648 
type interactions within a CN.  Left: MNs in CN 0 and 1 show distinct interactions with astrocytes, microglia, 649 
and oligodendrocytes.  Right: GMAs in CN 0 and 2 and WMAs in CN 0 and 1 show distinct interactions with 650 
microglia. (G) Schematic of different signaling pathways that MNs in CN 0 and CN 1 participate in. 651 
 652 
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SUPPLEMENTAL FIGURES 653 

Supplementary Figure 1: Libraries across donors show consistent quality control metrics. A) Unique 654 
molecular identifiers (UMIs), genes detected, ATAC fragments, and fraction of reads in peaks (FRiP) are 655 
consistent across all deceased transplant organ donor tissues and between segments for donor 1 (analyzed 656 
separately).  B) RNA and ATAC UMAP representations for each sample show consistent cellular 657 
heterogeneity.  C) Batch effects are not observed when merging libraries from deceased transplant organ 658 
donor tissues.  D) OT outperforms other methods for co-embedding RNA and ATAC measurements into a 659 
shared feature space. Top: ROC for OT (blue), Liger (green), and Seurat (orange).  Bottom: contour plots 660 
show enhanced coembedding of RNA and ATAC datasets using OT (right) compared with Seurat (left). 661 
 662 
Supplementary Figure 2:  STAB-seq integration of gene expression with chromatin valence.  A) 663 
Barcoded (dual calling card, modification specific) and unbarcoded (global Tn5 tagmentation product) FRiP 664 
metrics and fragment counts per nuclei are consistent between the three modifications.  B) UMAP 665 
representations of STAB-seq libraries show consistent major cell type recovery between modifications 666 
profiled.  C) Coembedding the unbarcoded reads from all STAB-seq samples show no batch effects in the 667 
UMAP representations and consistent cell type recovery compared with traditional ATAC profiling.  D) Dual 668 
calling card containing fragments show expectedly low spearman correlation between silencing 669 
(H3K27me3) and activating (H3K27ac) histone marks between cell types.  E) OT pairing of multiome 670 
sequencing with STAB-seq enables accurate integration of gene expression with STAB-seq histone 671 
modification in single cells, as shown by STAB-seq UMAP representations colored by inferred RNA 672 
expression. 673 
 674 
Supplementary Figure 3:  Segment dependent gene expression differences between the thoracic 675 
and lumbar spinal cord.  A) UMAP representation of thoracic and lumbar nuclei demonstrates that 676 
segment level differences cannot be resolved through traditional clustering methods based on gene 677 
expression.  B) Dotplots demonstrating cell type specific gene expression differences between two spinal 678 
cord segments. 679 

 680 
Supplementary Figure 4:  scTDA representations of the OPC to oligodendrocyte differentiation 681 
trajectory.  A) The scTDA representation is consistent between Donors 2-6 (shown) and Donor 1.  B) 682 
Scaled gene expression of subtype-specific genes along the scTDA trajectory shows enrichment between 683 
branches and throughout differentiation.  684 
 685 
Supplementary Figure 5:  Stereotyped Cellular Networks between glial subtypes in the spinal cord.  686 
A) OT calculated confusion matrix between nuclei in clusters profiled via 10x and the nuclei in clusters 687 
defined through STARmap show strong consistency in cell type identification (scaled by number of nuclei 688 
in each cluster).  B) Stability of cellular networks for MNs, GMA, and WMA. Top: the resolution parameters 689 
(grey vertical line) for each cell type were chosen as the intersection of the highest jaccard index (red) and 690 
lowest p-value (blue). Bottom: violin plots showing stability of cellular networks through bootstrapping.  C-691 
F) Cellular networks for Micro1, Micro 2, Oligo1, Oligo2 in STARmap profiled spinal cord cross-sections. 692 
Top: Aggregated cell type contributions for CNs. Middle top: knn graphs for CNs for each cell type. Middle 693 
bottom: resolution parameters chosen via jaccard stability and p-value. Bottom: violin plots showing stability 694 
of CNs through bootstrapping. 695 
 696 

  697 
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METHODS 698 

Study Participant Details  699 
For five adult male, non-neurological control deceased transplant organ donors (Donors 2-6), tissues 700 
were acquired by the Collaborative Biorepository for Translational Medicine, from deceased transplant 701 
organ donors under Research Ethics Committee approval (ref 15/EE/0152, East of England 702 
Cambridge South Research Ethics Committee) and informed consent from the donor families.  The 703 
spinal cord from one adult male donor (Donor 1) was resected post-mortem at Columbia University 704 
Medical Center under Research Ethics Committee approval and with informed consent from the donor 705 
family. 706 
 707 
Tissue Resection from Deceased Transplant Organ Donors 708 
Samples were collected from donors proceeding to organ donation shortly after cessation of 709 
circulation; the chest is opened, the aorta is cross-clamped and organs are perfused under 710 
pressure in-situ with cold organ preservation solution (Belzer UW® Cold Storage Solution, Bridge to 711 
Life (Europe) Ltd.) and cooled with topical application of ice. After the organs for transplantation were 712 
removed, the spinal cord samples were collected by removing a wedge of vertebrae from the T4 and 713 
L4 regions, exposing the vetebral foramen and dissecting a full thickness length of the corresponding 714 
region of the spinal cord.  Samples for this study were all obtained within 60 minutes of cessation of 715 
circulation, placed in cold preservation for transport on ice (at 4°C) to the laboratory. The tissue 716 
samples were immediately padded dry with sterile filter paper and snap frozen in liquid nitrogen vapour 717 
on a Parafilm M (PM 999, Bemis Co Inc, Neenah, WI) coated aluminium foil boat before being stored 718 
at -80°C and transported on dry ice. 719 
 720 
Nuclei Isolation 721 
50-100mg of tissue was shaved from a cross-section of the spinal cord on dry ice, transferred to 4mL 722 
of ice-cold homogenization buffer (5mM CaCl2, 3mM Mg(CH3COO)2, 10mM Tris-HCl pH7.8, 1mM 723 
DTT, 320mM sucrose, 0.1mM EDTA, 0.1% NP-40, 0.1mM PMSF) in a dounce homogenizer, and 724 
incubated on ice for 2 minutes.  The tissue was physically dissociated using sequential 10 strokes of 725 
the loose pestle followed by 10 strokes of the tight pestle.  The nuclei suspension was filtered through 726 
a 40um mesh filter into a 15mL conical tube, and diluted with an equal volume of ice-cold 50% Optiprep 727 
salt solution (50% Optiprep (Sigma, D1556), 5mM CaCl2, 3mM Mg(CH3COO)2, 10mM Tris-HCl 728 
pH7.8, 1mM DTT). The tube was gently inverted to mix.  The resulting 25% Optiprep/nuclei suspension 729 
was layered over an isosmotic 29% Optiprep solution (29% Optiprep, 5mM CaCl2, 3mM 730 
Mg(CH3COO)2, 10mM Tris-HCl pH7.8, 1mM DTT, 160mM sucrose), and spun in a swinging bucket 731 
centrifuge at 6,000g for 30 minutes at 4C.  The supernatant was completely removed through slurping 732 
off from the top of the meniscus to prevent debris carryover, and nuclei were resuspended in the 733 
appropriate buffer for downstream processing.   734 
 735 
Library Generation 736 
10X Multiome GEX+ATAC 737 
The Chromium Next GEM Single Cell Multiome ATAC + Gene Expression reagents (10x Genomics, 738 
1000285) were used to generate simultaneous cDNA and ATAC libraries.  Briefly, nuclei were 739 
resuspended in 1mL Lysis Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 3mM MgCl2, 1% BSA, 0.1% 740 
Tween-20, 0.1% NP-40, 0.01% Digitonin, 1mM DTT, 1U/uL Protector RNase Inhibitor [Sigma-Aldrich, 741 
03335402001]) and incubated on ice for 2 minutes, diluted with 1mL Lysis Buffer without detergents, 742 
and pelleted at 500g for 5 minutes.  Nuclei were resuspended in 1x Nuclei Dilution Buffer + 1mM DTT 743 
+ 1u/uL Protector RNase Inhibitor at 3,230 nuclei/uL, and assessed for structural integrity and 744 
monodispursion.  16,100 nuclei were input into 10x Genomics tagmentation followed by Chromium 745 
(Next GEM Chip J) droplet encapsulation.  7 cycles of pre-amplification PCR were performed, followed 746 
by 14 PCR cycles for gene expression (GEX) libraries and 7 PCR cycles for ATAC libraries.  Libraries 747 
were purified with double size selection (GEX: 0.6x and 0.8x; ATAC: 0.6x and 1.25x) using SPRIselect 748 
(Beckman Coulter, B23317), and run on a Bioanalyzer for quantification and structure assessment. 749 
GEX libraries were multiplexed for sequencing on a NextSeq 550 using High Output 150 reagents at 750 
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28x90x10x10 cycles. ATAC libraries were multiplexed for sequencing on a NextSeq 550 using High 751 
Output 150 reagents at 50x49x8x16 with a custom sequencing recipe of 8 dark cycles for Index 2. 752 
 753 
snATAC-seq 754 
The BioRad SureCell ATAC-seq Library Prep Kit (BioRad, 17004620) was used to generate snATAC-755 
seq libraries following manufacturer’s recommendation. Briefly, nuclei were resuspended in PBS + 756 
0.1% BSA + 0.01% Tween-20 + 1x Roche EDTA-free protease inhibitor.  Nuclei were concentrated to 757 
3,640 nuclei/uL in PBS + 0.1% BSA, and assessed for structural integrity and monodispursion.  60,000 758 
nuclei were input into SureCell tagmentation followed by ddSeq droplet encapsulation.  8 cycles of in-759 
droplet indexing PCR was performed, and 2.5uL of the amplified product was input into KAPA (Roche, 760 
KK2602) qPCR to determine second-round PCR cycle number.  Libraries were amplified to log-linear 761 
phase (7-9 cycles) with the SureCell ATAC-seq Library Prep Kit reagents, purified with two rounds of 762 
1x AMPure XP (Beckman Coulter, A63881), and run on a Bioanalyzer for quantification and structure 763 
assessment.  Libraries were multiplexed for sequencing on a NextSeq 550 using High Output 150 764 
reagents at 118x40x8 cycles, with the custom Read 1 sequencing primer (BioRad SureCell ATAC-seq 765 
Library Prep Kit).  766 
 767 
High Depth snRNA-seq 768 
Nuclei were resuspended in PBS + 0.2U/uL Superasin (Thermo Fisher, AM2694) + 1ug/mL DAPI.  769 
Single nuclei were sorted on a high speed MoFlo XDP FACS sorter into individual wells of a 384 well 770 
plate containing 1uL PBS + 0.1U/uL Superasin.  Each plate was immediately snap frozen and stored 771 
at -80C until processing.  All reagent delivery was performed with a high speed Biomek FXP liquid 772 
handling robot, and all reactions unless otherwise noted were kept at 4C.  The following modifications 773 
were made to the SCRB-seq95 protocol for library generation.  Primer sequences are consistent with 774 
the SCRB-seq publication.  384 well plates containing sorted nuclei were thawed at room temperature 775 
for 30 seconds before addition of 1uL of a 2uM primer mix per well (a common template switch oligo 776 
and a well-specific barcoded RT primer).  Plates were incubated at 72C for 3 minutes, then 777 
immediately transferred to a 384 well metal block on ice. 3uL RT buffer (6.67U/ul Maxima H- (Thermo 778 
Fisher, EP0753), 1.67mM dNTP, 1.67x RT Buffer, 0.67U/uL Superasin, 1:5,000,000 ERCC spike-in) 779 
was added to each well.  Plates were incubated at 42C for 90 minutes, followed by 10 cycles of 50C 780 
for 2 minutes and 42C for 2 minutes, with a final 70C inactivation incubation for 10 minutes.  Plates 781 
were immediately transferred to ice, and 7uL of PCR mix (0.35uM SingV6 common forward and 782 
reverse primer, 0.033U/uL KAPA HiFi DNA Polymerase (KAPA, 07958846001), 1.67x HiFi Fidelity 783 
Buffer, 0.5mM dNTP) was added per well.  PCR amplification was performed at 98C for 3 minutes, 18 784 
cycles of [98C for 15 seconds, 67C for 30 seconds, 72C for 6 minutes], followed by a final 5 minute 785 
72C elongation step and 4C hold.  The number of PCR cycles had been optimized for this tissue using 786 
test plates.  The 384 in-well reactions were pooled, purified with 0.8x AMPure XP (Beckman Coulter, 787 
A63881) according to manufacturer’s recommendation, and eluted in 50uL ultrapure water. 1ul of 788 
purified cDNA was used as input for Illumina Nextera XT tagmentation according to manufacturer’s 789 
recommendation, with a unique N7xx index for plate identification and a common i5 PCR primer 790 
(P5NEXT) for 5’ end cDNA-specific amplification.  PCR cycles for library amplification were determined 791 
per library, and ranged from 12-18 cycles.  Libraries were purified with one round of 0.8x ampure 792 
followed by 1 round of 0.65x ampure.  Library structure and concentration for each plate was 793 
determined on a Bioanalyzer, and libraries from all plates were multiplexed for sequencing on a 794 
NextSeq 550 with the High Output 75 kit (17 cycles Read1, 8 cycles Index1, 58 cycles Read2). 795 
 796 
STAB-seq Transposome Complex Assembly 797 
40uM of a single ME-A_Calling Card oligo was annealed with 40uM ME-R oligo (5’Phosph-798 
CTGTCTCTTATACACATCT) in 1x  reassociation buffer (10mM Tris pH8.0, 50mM NaCl, 1mM EDTA), 799 
cooling from 98C to 4C at 0.1C/second. 40uM of a single ME-B_Calling Card oligo was annealed with 800 
40uM ME-R oligo in the same way.  The components for the transposome complex (TC) were pipet 801 
mixed on ice using 2.5ul of each annealed oligo, 7.5ul of 1.5x TC buffer (75mM HEPES-KOH pH7.2, 802 
150mM NaCl, 1.5mM DTT, 0.15% Triton X-100, 15% glycerol), and 7.5ul of 0.3mg/mL pA-Tn5 (Active 803 
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Motif, Cat#30721001).  The TC was incubated at room temperature for 50mins, and then diluted to 804 
1uM by adding 11ul of storage buffer (50% glycerol in 1x TC buffer). This 1uM TC can be stored for 805 
at least one month at -20C without loss of activity. 806 
 807 
STAB-seq Assay 808 
The following modifications were made to the single nuclei Cut&Tag96 protocol for antibody-directed 809 
nuclei tagmentation.  Nuclei counting was performed on a hemocytometer with 405 wavelength by 810 
diluting the sample 1:2 with PBS + 0.1% BSA + 2ug/mL DAPI; DAPI was excluded from all incubation 811 
buffers.  Nuclei were resuspended in Wash Buffer with EDTA (20mM HEPES pH7.5, 150mM NaCl, 812 
0.5mM spermidine, 1x Roche EDTA-free protease inhibitor, 0.01% NP-40, 2mM EDTA), lightly fixed 813 
with 0.1% PFA for 2 minutes at room temperature, quenched by addition of glycine to a final 814 
concentration of 75mM, and pelleted at 500g for 5 minutes in a swinging bucket centrifuge.  The 815 
following steps were performed in a 200uL volume, unless otherwise noted.  Nuclei were washed once 816 
in 1mL Wash Buffer with EDTA, and resuspended in 400uL Wash Buffer with EDTA.  100k nuclei were 817 
used as input into STAB-seq.  Nuclei were incubated overnight rotating at 4C with 1:50 primary 818 
antibody (H3K4me1 [Abcam, ab8895], H3K4me2 [Millipore Sigma, 07-030], H3K27ac [Active Motif, 819 
39133], H3K27me3 [Cell Signaling Technology, 9733]).  Nuclei were washed three times in Wash 820 
Buffer (500g for 5 minutes), then incubated 1 hour rotating at room temperature with Guinea Pig anti-821 
Rabbit secondary antibody (Antibodies-Online, ABIN101961).  Nuclei were washed 3 times in Wash 822 
Buffer (500g for 5 minutes), then resuspended in High Salt Wash Buffer (20mM HEPES pH7.5, 300mM 823 
NaCl, 0.5mM spermidine, 1x Roche EDTA-free protease inhibitor tablets, 0.01% NP-40) with 1:50 824 
custom calling card-loaded pA-Tn5 TC (20nM) to uniquely label histone modifications, and incubated 825 
for 1 hour rotating at room temperature.  Nuclei were washed three times in High Salt Wash Buffer 826 
(300g for 3 minutes), then resuspended in 100uL Tagmentation Buffer (High Salt Wash Buffer + 10mM 827 
MgCl2) and incubated shaking at 37C for 1 hour.  Nuclei were pelleted (300g for 3 minutes), washed 828 
once with High Salt Wash Buffer (300g for 3 minutes), and resuspended to a final concentration of 829 
3,640 nuclei/uL in PBS + 0.1% BSA.  60,000 nuclei were subjected to a second round of tagmentation 830 
with unbarcoded Tn5 using the BioRad SureCell ATAC-seq Library Prep Kit (BioRad, 17004620) 831 
according to manufacturer’s recommendation.  After the second tagmentation, nuclei were pelleted 832 
(500g for 5 minutes), and half the supernatant was removed to concentrate nuclei to 2,400 nuclei/uL.  833 
Concentrated monodispursed nuclei were used as input into the ddSeq droplet generator, and custom 834 
5uM STAB-N7xx indexing primers were used in place of the provided N7xx indexes.  Manufacturer’s 835 
recommendations were followed for ddSeq droplet encapsulation, in-droplet indexing PCR (8 cycles), 836 
and amplified DNA purification.  2.5uL of the amplified product was input into qPCR to determine the 837 
appropriate number of second round PCR cycles.  Libraries were amplified to log-linear phase (7-9 838 
cycles) with the SureCell ATAC-seq Library Prep Kit reagents, purified with two rounds of 1x ampure, 839 
and run on a Bioanalyzer for quantification and structure assessment.  Libraries were multiplexed for 840 
sequencing on a NextSeq 550 using High Output 300 reagents at 150x150x8 cycles, with custom 841 
Read 1 (BioRad SureCell ATAC-seq Library Prep Kit), and custom Read 2 and Index 1 sequencing 842 
primers. 843 
 844 
Custom In-House Primer Sequences 845 
ME-A_Calling Card 1  846 
TCGTCGGCAGCGTCGCTAGACTAGATGTGTATAAGAGACAG 847 
ME-A_Calling Card 2  848 
TCGTCGGCAGCGTCTCGCTATCAGATGTGTATAAGAGACAG 849 
ME-A_Calling Card 3  850 
TCGTCGGCAGCGTCCTAGCTCAAGATGTGTATAAGAGACAG 851 
ME-A_Calling Card 4  852 
TCGTCGGCAGCGTCCAGCATACAGATGTGTATAAGAGACAG 853 
ME-B_Calling Card 1  854 
GTCTCGTGGGCTCGGTCGATCTCAGATGTGTATAAGAGACAG  855 
ME-B_Calling Card 2  856 
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GTCTCGTGGGCTCGGGCTACACAAGATGTGTATAAGAGACAG  857 
ME-B_Calling Card 3  858 
GTCTCGTGGGCTCGGTATCAGCGAGATGTGTATAAGAGACAG  859 
ME-B_Calling Card 4  860 
GTCTCGTGGGCTCGGCTCGCAACAGATGTGTATAAGAGACAG 861 
STAB-N701 Indexing Primer 862 
CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTTCAGACGTGTGTCTCGTGGGCTCGG 863 
STAB-N702 Indexing Primer 864 
CAAGCAGAAGACGGCATACGAGATCTAGTACGGTTCAGACGTGTGTCTCGTGGGCTCGG 865 
STAB-N703 Indexing Primer 866 
CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTTCAGACGTGTGTCTCGTGGGCTCGG 867 
STAB-N704 Indexing Primer 868 
CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTTCAGACGTGTGTCTCGTGGGCTCGG 869 
STAB-N705 Indexing Primer 870 
CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTTCAGACGTGTGTCTCGTGGGCTCGG 871 
STAB-N706 Indexing Primer 872 
CAAGCAGAAGACGGCATACGAGATCATGCCTAGTTCAGACGTGTGTCTCGTGGGCTCGG 873 
STAB-N707 Indexing Primer 874 
CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTTCAGACGTGTGTCTCGTGGGCTCGG 875 
STAB-N708 Indexing Primer 876 
CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTTCAGACGTGTGTCTCGTGGGCTCGG 877 
STAB-customREAD2 Sequencing Primer  878 
GTTCAGACGTGTGTCTCGTGGGCTCGG 879 
STAB-customIndex1 Sequencing Primer  880 
CCGAGCCCACGAGACACACGTCTGAAC 881 
 882 
in situ Sequencing by STARmap 883 
in situ sequencing was performed following a modified version of the STARmap protocol. Briefly, tissue 884 
was sectioned at 16um onto poly-L-lysine treated coverslips, post-fixed, permeabilized, and hybridized 885 
with SNAIL primer and padlock probes overnight at 40° C. The following day, the probes were ligated 886 
using T4 ligase at room temperature and amplified using Phi29 polymerase at 30° C, both for two 887 
hours. Tissue was treated with BS(PEG)9 to facilitate cross-linking and anchored to a hydrogel matrix. 888 
Tissue was cleared of remaining proteins using Proteinase K for up to 24 hours at 37° C. Six rounds 889 
of sequencing and imaging were performed using a home-built fluidics setup based on previously 890 
described platform97, followed by detection of the polyA SNAIL primer and padlock probe and DAPI 891 
for cell segmentation. 892 
 893 
Gene Selection and Probe Design  894 
146 genes intersecting with cell type specific markers identified through snRNA-seq were selected for 895 
in situ profiling.  A minimum of four unique genes for pan-neuronal, excitatory neuron, inhibitory 896 
neuron, motor neuron, pan-astrocyte, grey matter astrocyte, white matter astrocyte, astrocyte 897 
subpopulations 1-5, proliferative cells, pan-microglial, microglia subpopulations 1-4, pan-OPC, pan-898 
oligo, and oligo subpopulations 1-2 were selected.  Probes for STARmap were designed utilizing the 899 
PaintSHOP98 command line workflow, with modifications to account for the length of STARmap probes 900 
vs. MERFISH probes. Briefly, we specified a desired probe length of 42-50 nucleotides, 10% 901 
formamide concentration, hybridization temperature of 40° C (as input to NUPACK99 for structural 902 
analysis) and kmer length of 21 nucleotides (as input to Jellyfish100 to check for kmers). The output 903 
probes were split into their SNAIL primer and padlock constituents with a 2-3 nucleotide separation 904 
between them. Primer and padlock halves were separated such that their melting temperatures 905 
differed by no more than 2° C. These primer and padlock candidates were appended with the 906 
corresponding common sequence (including a unique barcode for each gene as part of the padlock 907 
probe) and run through PBLAT101 to eliminate probes mapping <17 nt to the coding region of another 908 
target. Of the primer/padlock pairs that remained, we manually mapped them via BLAT102 to ensure 909 
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adequate separation between probe candidates (at least 100 nt between primer/padlock pairs) and to 910 
ensure that the constant regions of the primer or padlock probe did not map to the transcript of interest. 911 
If it was not possible to design four probes in an exon, due to transcript length, we supplemented the 912 
possible exonic probes with probes that met all criteria in the UTR. Separately, we designed a primer 913 
and padlock pair to map to the polyA tail of mRNAs to serve as a cell boundary marker. We utilized a 914 
separate common sequence backbone for the padlock probe to ensure no cross-talk occurred 915 
between this polyA probe and detection of other desired transcripts. This probe was detected after 916 
sequencing, using a universal detection probe complementary to this alternate padlock backbone 917 
attached to ATTO647 dye for visualization.  918 
 919 
Coverslip Treatment 920 
Cover slips were cleaned in an ultrasonic water bath by immersion in 2% RBS-35 (Thermo 27950) 921 
followed by 100% EtOH, washing three times with Milli-Q water in between, then allowed to dry in a 922 
90° C oven. Cover slips were silanized by treatment with 1% Bind-Silane (γ-923 
methacryloxypropyltrimethoxysilane; Cytivia 17133001) in acidic ethanol solution (95% EtOH 924 
supplemented with 5% glacial acetic acid) for one hour at room temperature, washed three times with 925 
100% EtOH, and placed in a 90° C oven for at least 30 minutes to dehydrate the silane layer. Cover 926 
slips were further functionalized by 0.01% Poly-L-Lysine (Sigma P8920) in 1X PBS for three hours, 927 
washed three times with Dnase/Rnase-free water, and allowed to dry before use. Functionalized cover 928 
slips could be stored in a dessicated chamber for several days before use. 929 
 930 
Tissue Preparation and Library Creation 931 
in situ sequencing was performed using a modified version of the STARmap protocol81. Tissue 932 
sections were collected at 16um on a cryostat onto 40 mm round coverslips (Bioptechs) and post-fixed 933 
with 10% neutral buffered formalin (Sigma HT5011) at room temperature for 15 minutes, then 934 
permeabilized using 0.25% Triton X-100 for 10 minutes, followed by 0.1% pepsin in 0.1 N HCl for one 935 
minute. Three washes with 1X PBS were performed between each step. The tissue was dehydrated 936 
in an EtOH series; 50%, 70%, and 100% twice for 5 minutes each. The tissue was then allowed to 937 
fully dry on the cover slip before further processing.  Tissue was re-hydrated in PBSTR, consisting of 938 
1X PBS + 0.1% Tween-20 (Sigma 655204-100ML) + SUPERaseIn RNase inhibitor (Invitrogen 939 
AM2696) for 5 minutes, and then blocked using hybridization buffer without probes for 30 minutes at 940 
40° C. Hybridization buffer consisted of 2X SSC, 10% formamide (Invitrogen AM9342), 20 mM 941 
ribonucleoside-vanadyl complex (RVC; NEB S1402S), 0.1 mg/mL salmon sperm DNA (Invitrogen 942 
AM9680), and 100 nM of the appropriate SNAIL probes, including the polyA primer and padlock probe 943 
if desired. After blocking, tissue was hybridized in 100 uL of hybridization buffer plus probes in a 944 
humidified chamber at 40° C overnight with gentle shaking.  After hybridization, samples were washed 945 
twice with PBSTR for 20 minutes followed by one wash with PBSTR + 4X SSC for 20 minutes. All 946 
washes were performed at 40° C. The sample was then briefly washed once more with PBSTR at 947 
room temperature. Probe ligation and rolling circle amplification were performed as describe in the 948 
STARmap protocol. Briefly, wash buffer was exchanged with ligation mix, consisting of 1X T4 ligase 949 
buffer, 1X BSA (Invitrogen AM2618), 0.2 U/uL SuperaseIn, and a 1:50 dilution of T4 DNA ligase 950 
(Thermo Fisher EL0012). Ligation was allowed to proceed for two hours at room temperature with 951 
gentle agitation. Samples were washed twice with PBSTR at room temperature, then placed in rolling 952 
circle amplification mix, consisting of 1X Phi 29 buffer, 250 uM dNTPs (Invitrogen 18427088), 1X BSA, 953 
0.2 U/uL Superase-In, 20 uM 5-(3-aminoallyl)-dUTP (Invitrogen AM8439), and a 1:50 dilution of Phi 954 
29 DNA polymerase (Thermo Fisher EP0094). Amplification was performed for two hours at 30° C 955 
with gentle agitation. Tissue was washed twice post-amplification with PBST (no Rnase inhibitor). The 956 
addition of 5-(3-aminoallyl)-dUTP to the rolling circle amplification mix introduced a functional amine; 957 
we then treated the tissue with BS(PEG)9, a crosslinking agent, to facilitate cross-linking between 958 
probes and the hydrogel formed in the next step. BS(PEG)9 was resuspended in anhydrous DMSO 959 
as per manufacturer’s recommendation, then diluted to 50 mM in PBST. Treatment proceeded at room 960 
temperature with gentle shaking for one hour, then crosslinking was halted by treatment with 1 M Tris-961 
HCl, pH 8.0 for thirty minutes. Polymerization buffer, consisting of a final concentration of 4% 19:1 962 
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Acrylamide/Bis-Acrylamide (Bio-Rad 1610144) and 2X SSC, was degassed under vacuum for 15 963 
minutes. Separately, a 20% (vol/vol) solution of N,N,N’,N’-Tetramethylethylenediamine (TEMED; 964 
Sigma, T9281) and a 20% (wt/vol) solution of Ammonium Persulfate (AP; Sigma A3678) were 965 
prepared and kept on ice until use. The sample was rinsed thoroughly with 2X SSC and then 966 
equilibrated in degassed polymerization buffer for 30 minutes at room temperature. Immediately 967 
before use, TEMED and AP were added to the polymerization mix at a final concentration of 0.05% 968 
(vol/vol) and 0.05% (wt/vol) respectively, and a 40-uL droplet was placed on a Gel Slick (Lonza, 50640) 969 
treated glass slide. The cover slip with tissue was gently inverted onto this droplet, avoiding the 970 
formation of air bubbles, to form a thin hydrogel. Polymerization was allowed to occur at room 971 
temperature in a humidified nitrogen chamber (reference for seqFISH+) until oxygen was purged from 972 
the chamber (approximately 10 minutes), then moved to 4° C for 30 minutes, followed by 37° C for 2.5 973 
hours. After hydrogel formation, the cover slip was gently detached from the glass slide and washed 974 
three times in PBST for five minutes each wash. Tissue was then digested at 37° C for up to 24 hours 975 
in a digestion buffer consisting of 50 mM Tris-HCl pH 8, 1 mM EDTA, 0.5% Triton X-100, 500 mM 976 
NaCl, 1% SDS, 30 mM glycine, and a 1:100 dilution of Proteinase K (NEB P8107S), changing the 977 
digest once. Tissue was then washed thoroughly with 2X SSC before imaging. 978 
 979 
Imaging for in situ Sequencing 980 
Tissue was stained with 1 ug/uL DAPI in 1X PBS for 10 minutes, then loaded into a Bioptechs FCS2 981 
flow cell for imaging. Reagent delivery was performed using a home-built fluidics system. Briefly, we 982 
used an IDEX valve controller (MXX778-605) to select the reagent for delivery, which was pumped 983 
using negative pressure by a peristaltic pump (Gilson MP3) at the outlet of the flow cell set to pump at 984 
approximately 500 uL/minute. For the first round of sequencing, tissue was washed by PBSTG (PBST 985 
supplemented with 30 mM glycine to quench any remaining stripping buffer) then incubated in 986 
sequencing mix for 3 hours. Sequencing mix consisted of 1X T4 buffer, 1X BSA, 10 uM of round 1 987 
reading probe, 5 uM of the fluorescent detection oligos, and a 1:25 dilution of T4 ligase. The sample 988 
was then washed with a wash buffer consisting of 10% formamide and 2X SSC, followed by GLOX 989 
imaging buffer consisting of 10% (wt/vol) glucose, 10 mM Tris-HCl pH 8, 2X SSC, 2 mM Trolox (Sigma 990 
238813), 50 uM Trolox Quinone (reference for making TQ), 0.5 mg/mL glucose oxidase (Sigma 991 
G2133-50KU), and a 1:1000 dilution of catalase (Sigma C3515). Imaging was performed on an Andor 992 
Dragonfly spinning disk confocal system (talk about all the specs of the scope) using a Nikon Ti2 stand 993 
equipped with the Perfect Focus System (PFS) to maintain positioning of the sample during fluidics 994 
flow. We first imaged the tissue by DAPI to select the region of interest and ensure the uniform flatness 995 
of the imaging area. We then proceeded to image all four spot channels plus DAPI. For each 996 
subsequent round, the sample was incubated in stripping buffer (80% formamide with 0.1% Triton X-997 
100), PBSTG, sequencing mix (supplemented with the appropriate readout probe), wash buffer, and 998 
imaging buffer, then imaged the sample. Six rounds of sequencing were performed, with four readout 999 
channels per round. After the sixth round of sequencing, the tissue was re-stained with DAPI and 1000 
stained with a universal detection probe coupled to ATTO 647 to detect poly-dT signal for cell boundary 1001 
segmentation.  1002 
 1003 
Image Processing 1004 
Vignetting correction of each FOV was performed utilizing a non-parametric method as previously 1005 
described.103 Since the non-uniformity of field illumination is relatively consistent across all fields of 1006 
view in a single experiment, a small subset of FOVs across the imaging plane were selected to 1007 
estimate vignetting correction parameters, and these parameters were averaged and applied to the 1008 
entire data set. To determine vignetting correction parameters, each relevant FOV was downsampled 1009 
by 4 across the x and y dimension to speed up processing, and a sigma value of 10,000 was used 1010 
over 10 iterations. These calculations were performed separately across each imaging channel.   1011 
 1012 
DAPI Segmentation 1013 
Cells were segmented by DAPI utilizing a multi-Otsu threshold and watershed transform provided by 1014 
the scikit-image library. After thresholding, we performed a distance transform on the binarized images 1015 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

and looked for the peak local maximum of the distances within a certain minimum distance. Markers 1016 
were generated from these local max labels. A watershed transform was then performed to segment 1017 
each cell. Anything smaller than the expected pixel area for a single cell was thrown out to eliminate 1018 
false positive cell detection. “Cells” detected that encompassed a pixel area far greater than expected 1019 
for a single cell were flagged for closer examination, as they most likely were actually composed of 1020 
more than one cell (under-segmented). We found the multi-Otsu thresholding approach helped to 1021 
mediate between over- and under-segmentation of closely packed cells without adding excess 1022 
complexity to the analysis pipeline. Re-thresholding under-segmented cells almost always yielded 1023 
more accurate segmentation results. 1024 
 1025 
oligo(dT) Segmentation 1026 
Cells boundaries were determined by segmentation of the polyA SNAIL probe signal. Images were 1027 
first Gaussian blurred to smooth the spot puncta, then the same method as for DAPI segmentation 1028 
was applied.  1029 
 1030 
Stitching 1031 
Relative FOV positions and approximate locations across the imaged field were provided in an XML 1032 
file generated by Fusion imaging software, and we utilized this information to provide a basis for FOV 1033 
stitching. Stitching was performed on DAPI images that were vignetting-corrected, smoothed and 1034 
downsampled by 4 in all spatial dimensions for memory conservation [to allow the entire dataset to be 1035 
loaded into memory]. Although we knew the approximate location of each FOV, natural movement of 1036 
the microscope stage during imaging introduced a small, few-pixel shift, so registration between 1037 
overlapping regions of each FOV was necessary for smooth stitching. Registration was performed in 1038 
the order of imaging based on that FOV’s overlap with the previous FOV. The estimated shifts between 1039 
FOVs were also spot-checked by ensuring they were consistent with shifts between other neighboring 1040 
FOVs. For example, if FOV1 and FOV2 overlap in all x pixels and 20% of y pixels, we can check that 1041 
the determined shift is correct by registering the overlap between FOV1 and FOV2 over all y pixels 1042 
and 20% of x pixels with the FOVs directly next to them. Segmented cells were stitched using these 1043 
estimated parameters, and re-labeled to avoid duplication of cell labels across the entire stitched 1044 
image. Detected spots were translated to their appropriate coordinates by FOV and shifted based on 1045 
the parameters generated above. To avoid minor registration discrepancies and duplication of spots 1046 
in overlapping regions as we built the stitched spots array, we only retained spots from the subsequent 1047 
FOV in the overlap. A cell by gene counts matrix was then created by taking the union between spot 1048 
locations and segmented cells.  1049 
 1050 
snRNA-seq and snATAC-seq Analysis 1051 
Pre-processing of 10X Multiome data 1052 
The 10X Multiome sequencing data for freshly resected thoracic and lumbar tissues were processed 1053 
using the cellranger-arc pipeline. Specifically, raw base call (BCL) files were demultiplexed to generate 1054 
fastq files. The “count” mode of cellranger-arc was then applied on each library. It should be noticed 1055 
that by default “cellranger-arc count” considered the intronic reads when analyzing gene expression, 1056 
which fitted our single-nuclei sequencing data. The outputs of “cellranger-arc count” in thoracic and 1057 
lumbar were aggregated separately by “cellranger-arc aggregate”, which yielded two tissue-specific 1058 
peak lists. We merged the peaks in the two lists and ran “cellranger-arc aggregate” again on all libraries 1059 
in terms of the merged peaks. The output was a cell-by-gene count matrix for RNA, a cell-by-peak 1060 
count matrix and a fragment file for ATAC. Cells from all libraries shared the same genes and peaks. 1061 
 1062 
Pre-processing of Donor 1 snRNA-seq 1063 
Two FASTQ files were generated for each of the SCRB-seq plate, namely the R1 and R2 files. Reads 1064 
in R1 file were 16-bp in length. The six nucleotides at the 5’-end of each read were cellular barcodes, 1065 
and the following ten nucleotides were molecular barcodes. Reads in R2 file were the nucleotide 1066 
sequences of RNA molecules. We aligned the reads in R2 file to the reference hg38 using STAR with 1067 
parameters “--outSAMtype BAM SortedByCoordinate --outSAMunmapped Within --outSAMattributes 1068 
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Standard”. The cellular and molecular barcodes were appended to the alignment record of each read 1069 
in the BAM file as the CB and UB tags, which made the BAM file capable to be the input of Velocyto. 1070 
We ran Velocyto on the BAM file to generate cell-by-count matrix. The 384 SCRB-seq barcodes were 1071 
input to Velocyto as the parameter “-b”, and the GTF file of human GENCODE v34 was input as the 1072 
annotation file. The multiple mapped reads were automatically filtered out by Velocyto and did not add 1073 
uncertainty to matrix generation. The output of Velocyto contained three matrices for each plate: 1074 
spliced, unspliced and ambiguous. We took the sum of the three matrices as the cell-by-count matrix, 1075 
while the spliced and unspliced matrices were also kept for the velocity analysis. In order to remove 1076 
pseudo genes, we only kept the genes that intersected with RefSeq genes. 1077 
 1078 
Pre-processing of Donor 1 snATAC-seq 1079 
We applied the Bio-Rad ATAC-seq analysis toolkit on the Bio-Rad single-nucleus ATAC-seq data. 1080 
Specifically, we ran the FASTQ quality control, FASTQ debarcoding, alignment, alignment QC, bead 1081 
filtration and bead deconvolution steps independently on every index. In the bead filtration step, we 1082 
reviewed the curves of reads per barcode in every index. The knee points needed to be manually 1083 
corrected in several indexes to make the number of retained cells close to expectation. After these 1084 
steps, a demultiplexed BAM file with cell source information was generated for each index. In order to 1085 
obtain a uniform peak list, we merged the BAM files from all indexes in all segments and called peaks 1086 
using “macs2 callpeak” with parameters “-n all -f BAM --nomodel --keep-dup all --extsize 200 --shift -1087 
100”. The cell-by-peak matrices were then generated by ChromVAR. We also converted the 1088 
demultiplexed BAM files to fragment files using Sinto. 1089 
 1090 
Batch Effect Correction 1091 
In order to achieve more robust and accurate cell type and subtype identification, we merged all 10X 1092 
Multiome RNA data from freshly resected thoracic and lumbar tissues. We managed to create a non-1093 
negative cell-by-gene matrix that was free of batch effect using Liger. After running Liger until the 1094 
OptimizeALS and QuantileAlignSNF steps, we obtained a cell loading matrix (H.norm) and a gene 1095 
loading matrix (W) were created. According to the design of Liger, batch effect was corrected in 1096 
QuantileAlignSNF step so that no batch effect existed in the cell loading matrix H.norm. We took the 1097 
product of the two loading matrices H.norm and W to recover a non-negative cell-by-gene matrix for 1098 
further analyses. In a similar way, we merged all the SCRB RNA-seq data from post-mortem cervical, 1099 
thoracic and lumbar, and created a cell-by-gene matrix without batch effect for post-mortem tissues. 1100 
For ATAC cells from freshly resected and post-mortem tissues, we calculated gene activity matrices 1101 
using Signac and created batch effect corrected gene activity matrices using the same approach. 1102 
 1103 
Clustering for Donors 2-6 1104 
We applied Scanpy to cluster the 10X Multiome RNA data from freshly resected tissues. Taking the 1105 
abovementioned batch corrected expression profile as input, we identified the highly variable genes 1106 
using the function scanpy.pp.high_variable_genes. Principal components were then calculated on the 1107 
expression of the highly variable genes. We selected 30 principal components because they could 1108 
explain more than 90% of the variance. Then we generated neighbor graph using scanpy.pp.neighbors 1109 
with n_neighbors = 50, and performed leiden clustering under different resolutions (0.01, 0.02, 0.05, 1110 
and from 0.1 to 1.5 by taking 0.1 as the increment step). Under each resolution, we calculated 1111 
Silhouette score using the principal component matrix on top of the resulting clusters. We adopted the 1112 
clustering results given by resolution = 0.1, which yielded 13 clusters and corresponded to maximal 1113 
Silhouette score. The clusters were annotated by reviewing the expression or gene activity scores of 1114 
general cell type markers in spinal cord. We further performed sub-clustering on each cell type to 1115 
identify different subtypes. Since the difference between subtypes was not as distinct as the difference 1116 
between major cell types, rigorous approaches should be carried out to ensure clustering stability. We 1117 
perform sub-clustering following the paradigm proposed by Scclusteval, in which the clustering stability 1118 
can be evaluated through sub-sampling. Below are the detailed steps: 1119 
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1. Take out the expression profiles of the cells in a certain cell type, identify highly variable genes, 1120 
calculate principal components and select the top principal components that explained at least 1121 
90% of total variance and calculated neighbor graph using n_neighbors = 50. 1122 

2. Perform leiden clustering under different resolutions (0.01, 0.02, 0.05, and from 0.1 to 1.5 by taking 1123 
0.1 as the increment step). Given a resolution 𝑅, we denote the set of cells in every cluster as 𝐶!,#, 1124 
1 ≤ 𝑖 ≤ 𝐾!, where 𝐾! is the number of clusters under resolution 𝑅. In order to ensure precise 1125 
subpopulation detection, we aim at selecting a resolution that results in as many clusters while 1126 
keeping stability. We evaluate the stability through subsampling in the next steps. 1127 

3. Randomly select 90% cells from the cell type, repeat step 1 and 2 on the subsampled cells. For 1128 
each resolution 𝑅, denote the set of cells in every cluster as 𝐷!,$

(&), 1 ≤ 𝑗 ≤ 𝑀!, where 𝑀! is the 1129 
number of clusters on the subsampled cells. The superscript (1) in the notation 𝐷!,$

(&) represents 1130 
the first round of subsampling. 1131 

4. For each resolution 𝑅, calculate the maximal Jaccard index between every original cluster and the 1132 
clusters on subsampled cells, which is defined as 1133 

𝐽!,#
(&) = max

$
𝐽𝑎𝑐𝑐𝑎𝑟𝑑 5𝐶6!,# , 𝐷!,$

(&)	9, 1134 

1 ≤ 𝑖 ≤ 𝐾!. 𝐶6!,# are the cells in 𝐶!,# that appear in the subsampled set. 1135 
5. Repeat step 3 and 4 for 𝑁 times. We set 𝑁 as 100 in our implementation. 1136 
6. For each resolution 𝑅, calculate the stability score as 1137 
𝑆! =

&

(∑ *+!,#*
$!
#%&

∑ =𝐶!,#= ∑ 1,-!,#(()./.12
(
34&

5!
#4& , 1138 

which is namely the proportion of maximal Jaccard index greater than 0.5 weighted by cluster size. 1139 
=𝐶!,#= is the number of cells in 𝐶!,#. 1{∙} is the indicator function. 1140 

Our observation is that 𝑆! has a general decreasing trend in terms of 𝑅. We select the 𝑅> corresponding 1141 
to the elbow point of 𝑆!, and the related clusters 𝐶!9,#, 1 ≤ 𝑖 ≤ 𝑅> are taken as the subtypes. 1142 
 1143 
Cluster Annotation for Donor 1 1144 
Given the obtained subtype labels for cells from freshly resected tissues, we inferred the subtypes for 1145 
RNA cells from the post-mortem tissues using the optimal transportation plan between RNA-seq data. 1146 
For each cell in the SCRB RNA-seq data, we went through the values in the optimal transportation 1147 
plan matrix between that cell and every cell in the 10X Multiome RNA data. We selected the cells in 1148 
10X Multiome RNA data that corresponded to the top 20 values, and the most frequent subtype 1149 
associated with the selected cells was taken as the subtype inference. In a similar way, we inferred 1150 
subtypes for the ATAC cells from post-mortem tissues using the optimal transportation plan between 1151 
the SCRB RNA-seq data and Biorad ATAC-seq data. 1152 
 1153 
Canonical Correlation Analysis 1154 
In this section, we let 𝑋 ∈ ℝ3×; and 𝑌 ∈ ℝ<×; denote the two data sets obtained after data 1155 
preprocessing [cf Anqi’s part], where 𝑛	and 𝑚	are the numbers of cells in the first and second data 1156 
sets respectively, and 𝑝	is the number of genes. We first embed 𝑋	and 𝑌	 in a common, low-1157 
dimensional common space 𝑍	using Canonical Correlation Analysis (CCA). The objective of CCA is to 1158 
find a linear projection of the data such that the correlation matrix 𝐶 = 𝑐𝑜𝑟𝑟(𝑋, 𝑌) is as large as 1159 
possible, where correlation is defined between two (empirical) random variables 𝑥, 𝑦 ∈ ℝ; as  1160 

𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
∑*#%& =>#?>@AB#?BC

DEFG(>)EFG(B)
,  1161 

and 𝑣𝑎𝑟(𝑥) = ∑;#4& K𝑥# − 𝑥M
H. In particular, CCA aims at finding projection matrices 𝐴 ∈ ℝ3×I and 1162 

𝐵 ∈ ℝ<×I, for some low dimension 𝑑 ∈ ℕ∗, such that 𝑐𝑜𝑟𝑟(𝐴K𝑋, 𝐵K𝑌) is maximized. In practice, we 1163 
compute the correlation matrix 𝐶 ∈ ℝ3×< between our two data sets, and we then compute a singular 1164 
value decomposition of 𝐶	: 𝐶 = 𝐴𝛴𝐵K . The left and right singular vectors 𝐴 ∈ ℝ3×I and 𝐵 ∈ ℝ<×I 1165 
 of this SVD provide the two embeddings that maximize the correlation. In our analysis, we set 𝑑	as 1166 
the dimension for which the explained variance achieves 99 %	of the total variance. 1167 
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 1168 
Optimal Transport 1169 
Once CCA has been used to embed 𝑋	and 𝑌	in a common embedding space, we use Optimal 1170 
Transport (OT) to align the cells. OT is a very common tool of applied mathematics that allows to 1171 
compare discrete probability measures by finding an alignment, or correspondence, between the 1172 
support of the measures. More formally, given a space 𝑋	endowed with a cost function 𝑐: 𝑋 × 𝑋 → ℝL, 1173 
and two discrete measures 𝜇 and 𝜈 on 𝑋	, namely measures that can be written as positive 1174 
combinations of Dirac measures, 𝜇 = 𝛴#4&3 𝑎#𝛿>#and 𝜈 = 𝛴$4&< 𝑏$𝛿B+ with weight vectors 𝑎 ∈ ℝL3 , 𝑏 ∈ ℝL< 1175 
satisfying 𝛴#𝑎# = 𝛴$𝑏$ (i.e., the measures have same total masses) and all 𝑥# , 𝑦$ ∈ 𝑋, the 𝑛 ×𝑚	cost 1176 
matrix 𝐶 = 5𝑐K𝑥# , 𝑦$M9

#$
 and the set of candidate transportation matrices, defined as 1177 

 𝛱(𝑎, 𝑏) ≔ {𝑃 ∈ ℝL3×<  :   𝑃1< = 𝑎, 𝑃K13 = 𝑏} 1178 
define a so-called optimal transport problem. The optimal transport plan 𝑃∗can be computed using the 1179 
following linear program: 1180 
𝑃∗ =𝑎𝑟𝑔 𝑎𝑟𝑔	⟨𝑃, 𝐶⟩		                             (1) 1181 
where ⟨⋅,⋅⟩ is the Frobenius dot product, i.e., ⟨𝑃, 𝐶⟩ = ∑3#4& ∑<$4& 𝑃#$𝐶#$. Unfortunately, it is well-1182 
known that solving the optimal transport problem is intractable when data sets are large. In particular, 1183 
our single–cell data are too large to compute the optimal solution 𝑃∗ exactly. A common and very 1184 
efficient workaround104 is to consider an entropic regularization of the optimal transport problem, 1185 
namely: 1186 
𝑃+,M∗ =𝑎𝑟𝑔 𝑎𝑟𝑔	⟨𝑃, 𝐶⟩ 		− 𝜖 ⋅ ℎ(𝑃)  (2) 1187 
where 𝜖 >  0	 and the negentropy ℎ	is defined as ℎ(𝑃) ≔ −𝛴#$𝑃#$K𝑙𝑜𝑔 𝑙𝑜𝑔	K𝑃#$ − 1M	M. Since the 1188 
negentropy is strongly convex, the regularized optimal transport problem admits a unique solution, 1189 
and can be computed efficiently. Indeed, it is known that 𝑃+,M∗  takes the following form: 1190 

𝑃+,M∗ = 𝑑𝑖𝑎𝑔(𝑢M) ⋅ 𝐾 ⋅ 𝑑𝑖𝑎𝑔(𝑣M) ∈ ℝ3×< 1191 

where 𝐾	is computed by exponentiating each term of 𝐶	with 𝐾 ≔ 𝑒?
,
-, and (𝑢M , 𝑣M) ∈ ℝ3 ×ℝ< can be 1192 

computed as the fixed points of the so-called Sinkhorn map: 𝑆: (𝑢, 𝑣) ↦ 5 F
5⋅E

, O
5.⋅P

9. 1193 
Note that these fixed points are the limits of any iterative sequence (𝑢QL&, 𝑣QL&) = 𝑆(𝑢Q , 𝑣Q), which 1194 
immediately gives an algorithm to estimate 𝑃+,M∗ , known as Sinkhorn iterations. The Sinkhorn 1195 
divergence is defined as the transport cost of the optimal regularized plan, 𝑆+M(𝑎, 𝑏) ≔ ⟨𝑃+,M∗ , 𝐶⟩ =1196 
(𝑢M)KK𝐾⨀ 𝐶M𝑣M(where ⨀ denotes the term-wise multiplication), and is known to converge 𝑆+M(𝑎, 𝑏) →1197 
⟨𝑃∗, 𝐶⟩ as 𝜖 → 0	, and more precisely 𝑃+,M∗  converges to the optimal transport plan solution of (1) with 1198 
maximal entropy. Finally, OT can be generalized to unbalanced OT whenever (2) is augmented with 1199 
two Kullback-Leibler terms: 1200 
 𝑃+,M,R∗ (𝑎, 𝑏) =𝑎𝑟𝑔 𝑎𝑟𝑔	⟨𝑃, 𝐶⟩ 		− 𝜖 ⋅ ℎ(𝑃) + 𝛿 ⋅ 𝐾𝐿(𝑃1<, 𝑎) + 𝛿 ⋅ 𝐾𝐿(𝑃K13, 𝑏)             (3) 1201 

=𝑎𝑟𝑔 𝑎𝑟𝑔	⟨𝑃, 𝐶⟩ 		− 𝜖ℎ(𝑃) + 𝛿q
3

#4&

(𝑃1<)# 𝑙𝑜𝑔 𝑙𝑜𝑔	 r
(𝑃1<)#
𝑎#

s	+ 𝛿q
<

$4&

(𝑃K13)$ 𝑙𝑜𝑔 𝑙𝑜𝑔	 r
(𝑃K13)$
𝑏$

s	 1202 

where 𝑃	 ranges now over the set 𝛱t of the positive 𝑛 ×𝑚	matrices. Again, cost (3) can be solved using 1203 
Sinkhorn iterations. In our analysis, we always use unbalanced OT between our data sets 𝑋u and 1204 
𝑌upreprocessed with CCA, using the Euclidean pairwise distance matrix 𝐷 = K∥ 𝑥Sw − 𝑦Tw ∥HM#$ ∈ ℝL

3×< 1205 

between 𝑋u  and 𝑌u  as the cost matrix 𝐶 ≔ 𝐷	, and uniform weight vectors 𝑎 = 5&
3
9
#
 and 𝑏 = 5 &

<
9
$
. The 1206 

entropic and marginal regularizations 𝜖  and 𝛿 are chosen in the list 1207 
{10U ⋅ 𝑚𝑒𝑑(𝐷)  :   𝑞 ∈ [−3,−2,−1,0,1,2,3]}, 1208 
where 𝑚𝑒𝑑(𝐷) is the median of D. More precisely, 𝜖 and 𝛿 are chosen as the smallest values in that 1209 
list such that numerical errors are avoided. OT transportation plans are computed with the POT Python 1210 
package. Once an optimal transportation plan 𝑃∗ ∈ ℝ3×< has been computed, we use it to transfer 1211 
information (such as, e.g., cell types). For a given cell 𝑥Sw , we aggregate the k-th largest values and 1212 
their indices 1213 
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𝐼𝑛𝑑V(𝑖) = ~𝑗#& , … , 𝑗#/  :  𝑃#,$#0
∗ ≥ 𝑃#,$#01

∗ ∀𝑞 ∈ {𝑖&, … , 𝑖V},  𝑞′ ∈ {1,… ,𝑚}  ∖  {𝑖&, … , 𝑖V}� 1214 

of row 𝑖	in matrix 𝑃∗, and select the most frequent information associated to this subset. Moreover, in 1215 
order to avoid selecting an arbitrary 𝑘	 for transferring information, we run this transfer for 𝑘  ∈1216 
{5𝑘′  :  𝑘′	 ∈  2, … ,20}, and select again the most frequent information among all transferred ones (one 1217 
for each value of 𝑘	). 1218 
 1219 
GRN analysis 1220 
Inferelator summary 1221 
The Inferelator method derives Gene Regulatory Networks (GRNs), elucidating interactions between 1222 
Transcription Factors (TFs) and genes, by integrating regulatory evidence and expression data105. 1223 
Regulatory evidence comprises a prior binary matrix of regulatory links between genes and TFs, 1224 
derived from evidence combining accessible chromosomal elements with TF.  An intermediate 1225 
computed state of the Inferelator is TF activity (TFA) estimates that can be used for cell specific 1226 
analysis of regulatory effects of TFs.  For the expression data, each cell is normalized to a count of 1227 
104. Genes expressed in >100 nuclei are retained. Subsequently, expression values undergo log 1228 
transformation with the addition of a pseudo count using Scanpy's log1p function106. For the analysis, 1229 
samples from Donors 2 and 3 are excluded due to an insufficient number of sampled cells for both 1230 
Thoracic and Lumbar regions across all relevant cell types. 1231 
 1232 
Lumbar Thoracic TFA 1233 
When constructing the regulatory evidence prior, each gene is mapped to a TF using the Inferelator-1234 
prior pipeline, TF motifs, and peaks from the accessome derived from snATAC-seq. A gene is 1235 
associated with a TF if any peak has a matching TF motif. The prior is then filtered to enrich well-1236 
matched motifs, retaining at most 5% of links. In this instance, 4.75% of the total possible prior 1237 
associations are retained using a motif match score threshold of 40.  GRN inference with the Inferelator 1238 
using the multi-task amusr workflow, splitting the data into two tasks: thoracic and lumbar. A unique 1239 
prior for each segment is constructed by including evidence only from accessible peaks in that 1240 
segment, resulting in two distinct priors. For thoracic and lumbar segments, there are 25,304 and 1241 
25,270 genes respectively, with 273 TFs common relevant to both segments. To ensure robust 1242 
network estimates, the data is bootstrapped 10 times.  Transcription Factor Activity (TFA) estimates 1243 
are computed for each TF and cell using task-specific priors according to the model: 1244 
 1245 

 1246 
 1247 
where  is the gene expression matrix with n genes and S samples,  is the TFA 1248 
with k TFs, and  is the GRN.   is unknown and to deconvolve and find TFA estimates we 1249 
impose a task specific prior  with elements  and use that to solve for an estimate of TFA; 1250 
 1251 

 1252 
 1253 
Differently Active TF Estimates 1254 
Using Scanpy's rank_gene_groups function, a t-test is performed for each cell type, comparing activity 1255 
between the Thoracic and Lumbar segments. A Benjamini-Hochberg adjusted p-value of  is 1256 
employed for all differentially active TF estimations unless otherwise specified. 1257 
 1258 
STAB-seq Data Analysis 1259 
STAB-seq Data Pre-Processing 1260 
We processed the STAB-seq data using Bio-Rad ATAC-seq analysis toolkit, while additional steps 1261 
were necessary to parse the calling cards and remove crosstalk. Below are the major steps: 1262 

• Parsing calling card: To ensure successful running of Bio-Rad ATAC-seq analysis toolkit, we 1263 
removed calling cards that were inserted in any sequencing reads. However, we assigned 1264 
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each read pairs a tag to record the presence of calling cards, which can be “dual” (both R1 1265 
and R2 mates had calling cards), “singleA” (only R1 mate had calling card), “singleB” (only R2 1266 
mate had calling card) and “unbarcode” (none of R1 or R2 mate had calling card). 1267 

• Running Bio-Rad analysis pipeline: We input the fastq files with calling cards being removed 1268 
to Bio-Rad ATAC-seq analysis toolkit and ran through the cell filtration step. Three files were 1269 
used in following steps: (1) BAM file generated by the alignment step; (2) BAM file generated 1270 
by cell filter step; (3) TXT table generated by the deconvolution step that recorded the bead 1271 
barcode and cell barcode translation. The major difference between the two BAM files was 1272 
that reads in the latter were deduplicated. 1273 

• Decrosstalk: The aim of this step was to filter out the crosstalk which occurred in PCR 1274 
amplification that a calling card was wrongly inserted to a molecule where it should not appear. 1275 
We started with adding a combinatorial tag to each read in the BAM file generated by the 1276 
alignment step. The combinatorial tag was in the format of “Cell_barcode+Calling_card_tag”, 1277 
where the cell barcode was obtained by looking up the bead and cell barcode translation table 1278 
and the calling card tag was saved in the calling card parsing step. Next, we applied Sinto on 1279 
the BAM file to create fragment file. The output of Sinto included coordinates of each fragment 1280 
and the most likely combinatorial tag associated with it. If a fragment had multiple 1281 
combinatorial tags, Sinto assigned the one supported by the maximal number of read pairs, 1282 
thus reducing the false positive that a fragment from the second tagmentation being identified 1283 
as a modification or binding region. Finally, we used the fragment file to further filter the BAM 1284 
file generated by the cell filter step of Bio-Rad pipeline. A read pair was kept only if the covered 1285 
region was consistent with a region in the fragment file. The associated combinatorial tag was 1286 
assigned to the read pair to indicate the cell barcode and calling card tag. We split the filtered 1287 
BAM file by the calling card tag and kept the two tracks associated with “dual” and “unbarcode” 1288 
for subsequent analyses. 1289 

 1290 
STAB-seq Annotation  1291 
We merged the “dual” and “unbarcode” BAM files of the 27 STAB-seq libraries and called peaks using 1292 
MACS2 with parameters “—nomodel --nolambda --keep-dup all”. Peaks were extended by 150 bp at 1293 
both ends and overlapped peaks were merged. Then we used ChromVAR to create count matrices 1294 
for each “dual” and “unbarcode” BAM file. We filtered out the cells whose total “unbarcode” fragment 1295 
counts were no larger than 100, and also filtered out the cells in H3K27ac, H3K4me1 and H3K27me3 1296 
libraries in which the percentage of “dual” fragments were smaller than 5% or greater than 80%. To 1297 
generate a UMAP representation of STAB-seq data, we combined all the “unbarcode” matrices and 1298 
ran Signac with Harmony batch effect correction. We did not use the first two LSIs when creating 1299 
UMAP because they had high correlation with total fragment counts (absolute values of correlations 1300 
greater than 0.5). To annotate the STAB-seq data by transferring the cell type labels from 10X 1301 
Multiome ATAC-seq data through optimal transportation. Specifically, we merged the peak lists of 1302 
STAB-seq and 10X Multiome ATAC-seq and recreated count matrices of the data from the two 1303 
modalities so that they shared the common peak list. Then we used Signac to generate LSI 1304 
representation of the recreated count matrices and Harmony was called to reduce batch effect. We 1305 
created an optimal transportation plan between the two modalities using the resulting LSIs. For each 1306 
STAB-seq cell, we found the 100 10X ATAC-seq cells whose optimal transportation values ranked at 1307 
the top. The most frequent cell type among the 100 cells was taken as the cell type inference for the 1308 
STAB-seq cell. 1309 

 1310 
Peak Calling 1311 
Fragment files (pre-filtered for cells) generated by the Bio-Rad pipeline were reprocessed using ArchR 1312 
(v1.0.3 dev branch)107. After manual inspection of quality control metrics, cells were further filtered for 1313 
TSSEnrichment ≥3 and nFrags ≥102.75 for ATAC, H3K27ac, H3K27me3, and H3K4me1 modalities. A 1314 
TileMatrix was populated with insertion counts at 500bp non-overlapping windows with 1315 
ArchR::addTileMatrix and gene activity scores (GAS) were calculated using the 1316 
ArchR::addGeneScoreMat function. Latent semantic indexing (LSI) was used to reduce dimensionality 1317 
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of the TileMatrix using ArchR::addIterativeLSI. Uniform manifold approximation and projection (UMAP) 1318 
was performed on the LSI reduced dimensions for visualization. Group-wise peak-calling was 1319 
performed with MACS (v2.2.7.1)108 according to RNA major cell-type labels and reduced into a non-1320 
overlapping set, as previously described109, using ArchR::nonOverlappingGR. 1321 
 1322 
Marker Discovery 1323 
To simplify analysis, we used group-wise, accessible peaks as the search space for marker discovery 1324 
for all modalities.  Cell-type specific marker peaks were detected using ArchR::getMarkerFeatures 1325 
using a binomial test, correcting for bias with ReadsInPeaks with 2000 maxCells, using binarized 1326 
insertion counts from the “PeakMatrix”. Significant peaks (FDR < 0.1, Log2FC > 1) were selected. 1327 
Marker peaks were evaluated for each of the relevant contrasts: 1) one vs all other cell types, 2) 1328 
Astrocytes vs. Microglia, 3) OPC vs. Oligodendrocytes, 4) OPC vs. Oligodendrocytes (branch 1) vs. 1329 
Oligodendrocytes (branch 2). Motif activities were calculated using the ArchR::addDeviations function, 1330 
which adopts previously applied methods for estimating per cell variation in accessibility at motif-1331 
containing peaks against a GC and total accessibility matched background peak sets using 1332 
chromVAR::getBackgroundPeaks110. Deviation Z-scores represent motif activities and were evaluated 1333 
for cell-specific change to identify marker transcription factors. For each motif, the mean difference in 1334 
motif activity was further scaled across cell types for visualization. 1335 
 1336 
Imputing Gene Expression in STAB-seq 1337 
Given the STAB-seq data lacks expression information, we used the optimal transport plan, aligning 1338 
cell-to-cell chromatin accessibility profiles, to assign the nearest 10X Multiome cells to each STAB-1339 
seq cell. The aggregated expression counts for each STAB-seq cell was then defined as the weighted 1340 
aggregate, by OT distance, of the 50 nearest 10X Multiome cells. In order to minimize the sparsity in 1341 
the STAB-seq signal, we also aggregated counts from the 50 nearest STAB-seq cells in the STAB-1342 
seq ATAC LSI reduced dimension space for each cell-type and modality. 1343 
 1344 
Assessing STAB-seq Intermodal Associations 1345 
To assess associations between STAB-seq modalities, pseudo-bulk insertion pileups were 1346 
aggregated (bigWig format)–100bp tiles, 1000 max cells per group, 4 max counts per cell, normalized 1347 
by “ReadsInTSS”–using the ArchR::getGroupBW function. Spearman rho was calculated for all 1348 
pairwise pileup comparisons and used as a distance (1 - rho) for clustering (WardD2) to demonstrate 1349 
expected relationships between modalities. To evaluate co-occupancy of H3K27ac, H3K27me3, and 1350 
H3K4me1 at noncoding peaks, we first annotated peaks using ChIPseeker::annotatePeak (prioritizing 1351 
exons, UTR’s, introns, downstream, promoters, then intergenic)111. Insertion signals were extracted 1352 
from pseudo-bulk bigWigs at noncoding peaks (excluding promoters, exons, and first introns). The 1353 
signal mean for each group and modality was then converted into quantiles and the density difference 1354 
between groups was visualized in a ternary plot. 1355 
 1356 
SCARlink Modeling 1357 
In order to model the cis-regulatory effects of proximal accessibility and histone occupancy at 1358 
accessibility peaks on expression, we used the SCARlink algorithm34 1359 
(https://github.com/snehamitra/SCARlink). To apply this model to our specific study context, we made 1360 
minor modifications to the code to take peak coordinates instead of tiles as input and to allow for both 1361 
positive and negative coefficients, i.e. for modalities where regulatory effects are known to be 1362 
bidirectional or unknown–H3K27me3, H3K4me1. We converted our aggregated counts matrices for 1363 
RNA (imputed from OT mapping of 10X Multiome to STAB-seq) and each STAB-seq modality into the 1364 
necessary HDF5 input format (coassay_matrix.h5) for SCARlink. Matrices associating peaks within 1365 
100kb of the top differentially expressed (resources/DE) and known marker (resources/cell type 1366 
markers.csv) genes for each contrast and modality combination were processed. To build per gene 1367 
models, SCARlink was run on NYGC’s on-premises high-performance compute cluster with the Slurm 1368 
Workload Manager for each modality and contrast, scarlink --celltype <CELL_LABEL> --outdir 1369 
<OUTDIR> --genome genes.gtf --proc <SLURM_ARRAY_TASK_ID> --nproc <NJOBS> --sparsity .9. 1370 
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Subsequently, models were assessed for gene-linked peaks, scarlink_tiles --celltype <CELL_LABEL> 1371 
--outdir <OUTDIR>. 1372 
 1373 
Modality Integration 1374 
SCARlink models were filtered to identify peaks with a significant effect and peaks with no noticeable 1375 
effect on expression. To do so, we classified peaks using the following constraints: 1376 

1. Fraction of non-zero cells was greater than 0.1 (test_acc_sparsity > 0.1) 1377 
2. Spearman correlation of predicted vs. observed expression > 0.1 1378 
3. Peak is a marker in the matched cell-type/modality (by ArchR::getMarkerFeatures) with a fold 1379 

change >1.5X 1380 
4. Non-zero regression coefficient 1381 

 1382 
Peaks satisfying these four criteria were deemed significant. Peaks for which the model fit was 1383 
acceptable (Spearman correlation > 0.1) but the magnitude of peak change was small (fold change 1384 
<1.25X) for all tested peak-gene pairs were deemed not significantly changed. All peaks modeled with 1385 
SCARlink were filtered to only those that were significant in at least one modality and cell-type or were 1386 
deemed not meaningfully changed. Descriptive classifications were given to significant peaks based 1387 
on the context and relationship with expression. Classifications were split on whether associated with 1388 
a peak with accessibility correlated with expression (Co-accessible) or no meaningful change in 1389 
accessibility (Accessible-independent). Further, integrated classifications were aligned with 1390 
expression direction for each of the contrasts: 1) one vs. other, up- or down-regulated in the cell-type 1391 
of interest; 2) Astrocyte vs. Microglia up-regulated; 3) OPC vs. Oligodendrocyte up-regulated. The 1392 
following table describes the classifications used where “+” denotes a significant positive coefficient, 1393 
“-” denotes a significant negative coefficient, blank cells are insignificant, and “*” permits any coefficient 1394 
including nonsignificant. 1395 

 1396 
scTDA Analysis 1397 
Detecting Patterns of Continuous Change 1398 
Focusing on the OPC and oligodendrocyte subpopulations, we wanted to extend our discrete 1399 
clustering results to a continuous interpolation between various cell states.  We reasoned that 1400 
probabilistic versions of usual clustering algorithms may be able to uncover these gradients of change 1401 

Expression H3K27ac 
coefficient 

H3K27me3 
coefficient 

H3K4me1 
coefficient 

Class 

Down +   Deactivated 
Down  -  Repressed 
Down   - Deprimed 
Down   + Primed 

Up + - * Activated/Derepre
ssed 

Up +  + Activated/Primed 

Up  - + Derepressed/Prim
ed 

Up +   Activated 
Up  - * Derepressed 
Up   + Primed 
Up   - Deprimed 
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as they return values that reflect the strength of association of a point with a cluster on a continuous 1402 
spectrum. An example is non-negative matrix factorization (NMF), which is a convex relaxation of the 1403 
classical 𝑘-means algorithm.  In general, matrix factorization methods have been used to great effect 1404 
in analyzing single cell omics data, for example in identifying gene activity programs or performing 1405 
batch integration. 1406 
 1407 
However, the NMF algorithm, for example as implemented in scikit-learn, depends on a random seed 1408 
that changes with each instance, which may hamper reproducibility and interpretability.  In order to 1409 
obtain robust factors from NMF, we used a bootstrap-like procedure called consensus NMF (cNMF) 1410 
which combines multiple runs of the standard NMF algorithm on random subsets of the data to 1411 
construct consensus factors.   1412 
 1413 
Next, cNMF, like NMF, also requires a user-defined value of 𝑘, the number of factors used to 1414 
decompose the matrix.   As we will be using these factors to build topological representations and 1415 
identify terminal cell states, we are somewhat limited in the number of factors we can use; we only 1416 
need to find the strongest gradients in this step, which are generally very stable.  Nonetheless, we 1417 
generalized the cluster stability evaluation method, to handle probabilistic cluster assignments by 1418 
replacing Jaccard similarity with Ruzicka similarity (), which is defined for two vectors 𝑥 = (𝑥#) and 𝑦 =1419 
(𝑦#) with non-negative real entries as 1420 

𝑅(𝑥, 𝑦) =
∑ 𝑚𝑖𝑛(𝑥# , 𝑦#)#

∑ 𝑚𝑎𝑥(𝑥# , 𝑦#)#
 1421 

 1422 
Note that if we restrict the vectors to have only binary values 0 or 1, this formula reduces to the Jaccard 1423 
similarity.  We used this metric to weigh the tradeoff between factor localization specificity and factor 1424 
stability.   1425 
 1426 
For both the postmortem tissue and fresh tissue datasets, we ran NMF with 𝑘	 ≤ 5 on the snRNA-seq 1427 
inner product data for 100 trials, and constructed consensus factors using 20 of the trials, leaving the 1428 
remaining 80 trials to assess factor stability.  In subsequent analysis, we used the three factors from 1429 
the cNMF results with 𝑘	 = 	3 for the postmortem tissue dataset, and three stable factors from the 1430 
cNMF results with 𝑘	 = 	5 for the fresh tissue dataset.   1431 
 1432 
scTDA Graph Representations 1433 
We refined the continuous patterns discovered using cNMF to create a continuous representation of 1434 
OPCs and oligodendrocytes as a network.  Many approaches for graph representations of single cell 1435 
data have been proposed, ranging from simple 𝑘-nearest neighbor graphs and ϵ-neighborhood graphs 1436 
to more complicated methods such as UMAP and PAGA.  In this work, we decided to use Mapper 1437 
graphs for their flexibility and their ability to handle arbitrary topologies in an unsupervised manner.  In 1438 
biology, Mapper graphs have previously been used to study cellular differentiation in single cell 1439 
transcriptomic data of mouse embryonic stem cells, as well as to identify significant somatic mutations 1440 
in cancer from bulk RNA-seq data.   1441 
 1442 
We briefly describe the Mapper construction, which is based on the notion of partial clustering 1443 
motivated from Reeb graphs and constructions in Morse theory.  In addition to the input data 𝑋, Mapper 1444 
uses a lens function 𝑓:	𝑋	 → 𝑆 to determine the important topological features to emphasize and an 1445 
overlapping covering 𝔘 of 𝑆 to set the resolution scale.   Given this information, we first pull back the 1446 
covering along the lens function to obtain a data-aware covering 𝑓?&𝔘 of 𝑋.  Next, for each subset 𝑉 1447 
in the pullback covering 𝑓?&𝔘, we cluster the points in 𝑉 using the metric in the original space 𝑋.  Each 1448 
cluster thus found becomes a node in the Mapper graph, and two nodes are joined by an edge if and 1449 
only if their clusters overlap.  In fact, we created a weighted version of the Mapper graph where the 1450 
edge weights are determined by the size of the overlap.   We used the software implementations 1451 
KeplerMapper and NetworkX to generate and process Mapper graphs. 1452 
 1453 
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Depending on the filter function, the clustering algorithm, and other parameters, the Mapper 1454 
construction can produce a plethora of different graph representations at different resolutions.  We 1455 
explain the inputs and parameters we used for the construction of Mapper graphs below.   1456 

• Input data: For each dataset, we used all the nonzero principal components obtained from the 1457 
inner product data after filtering for highly variable genes using Scanpy.  The Mapper 1458 
construction implicitly performs its own dimensionality reduction so there is no need to further 1459 
reduce the data beforehand up to moderately large dimensions of the ambient embedding 1460 
space.  We give the input data the structure of a metric space for clustering purposes using 1461 
correlation distance.   1462 

• Lens function: For each dataset, we used the three cNMF factors found in “Robust discovery 1463 
of patterns of continuous change in single cell sequencing data” as lens functions.   1464 

• Clusterer: We kept the default clustering algorithm in KeplerMapper, which is DBSCAN.  We 1465 
found DBSCAN to be a good choice since it is fast and also because it allows for the possibility 1466 
of creating just one cluster if the points are sufficiently similar to each other as well as leaving 1467 
outliers unclustered, which helps control the number of nodes in the resulting Mapper graph.   1468 

• Clusterer parameters: There are two main parameters for DBSCAN, the neighborhood size ϵ 1469 
and the minimum points 𝑚𝑖𝑛𝑃𝑡𝑠 in a neighborhood for a point to be considered a core point.  1470 
A useful heuristic is to set 𝑚𝑖𝑛𝑃𝑡𝑠 = 𝑘 + 1, where 𝑘 is equal to twice the intrinsic dimension of 1471 
the data minus one, and to choose ϵ by locating an elbow in the 𝑘-distance plot.  We generally 1472 
followed these recommendations, but we also adjusted these values based on a stability 1473 
analysis described below. 1474 

• Cover parameters: We covered the codomain of the lens function with overlapping axes-1475 
aligned rectangular boxes.  More precisely, we used a product of regularly spaced intervals in 1476 
each dimension as our open cover, which thus can be entirely described by two parameters: 1477 
the number of bins 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 along each dimension and the overlap fraction 𝑝𝑒𝑟𝑐𝑂𝑣𝑒𝑟𝑙𝑎𝑝 1478 
between adjacent bins.  Here, our principal desideratum was to obtain a Mapper graph that is 1479 
connected; a secondary priority was to resolve the expression space as finely as we could.  1480 
The first criterion can be achieved using a small number of bins and a large overlap fraction, 1481 
while the second leads to the opposite.   1482 

 1483 
In order to finalize our choices of parameters for the Mapper algorithm and to assess the stability of 1484 
the resulting graphs, we generated Mappers across a range of the parameters discussed above, and 1485 
evaluated them based on connectivity, granularity, and topological consistency.  To quantify the latter, 1486 
we computed the correlation between the normalized internode graph distances between landmark 1487 
nodes found using the procedure in “Data-driven identification of landmark nodes”, and picked 1488 
parameters contained in a large region of the parameter space with correlation values 𝑅	 > 	0.9.  1489 
Ultimately, we chose ϵ = 0.3, 𝑚𝑖𝑛𝑃𝑡𝑠	 = 10, 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 = 15, and 𝑝𝑒𝑟𝑐𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 0.55  for both the 1490 
postmortem tissue data and the freshly resected tissue data, but the overall topologies of the Mapper 1491 
graphs constructed with these choices are generally robust to perturbations of these parameters.   1492 
 1493 
For visualization, we used the SFDP graph layout algorithm provided by Graphviz.  1494 
 1495 
Multi-Branch Pseudotime Inference 1496 
A popular approach to inferring pseudotime from a graph representation is to use some version of a 1497 
Markov process, also referred to as diffusion or a random walk process.  The basic idea is that cells 1498 
start in some node of the graph and transit along edges around the graph according to some 1499 
probabilistic law.  The aggregate motion of many cells gives rise to trajectories in the transcriptomic 1500 
landscape that are parametrized by pseudotime.   1501 
 1502 
However, this general description belies the many possible assumptions on the process needed to 1503 
extract a pseudotemporal ordering, and different methods have been concocted to handle different 1504 
cases depending on the availability of biological priors.  One important distinction between the various 1505 
methods is the topology that the method can handle, which range from simple linear trajectories all 1506 
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the way to disconnected graphs with cycles.  For example, the Mapper algorithm makes no assumption 1507 
on the topology, and so a priori can discover any type of trajectory.  However, we make the assumption 1508 
that the graphs we work with are connected, so that random walks on them are irreducible: any node 1509 
can reach any other node via a path in the graph.  The other piece of biological information we will use 1510 
concerns the directionality of the trajectories.  There is an inherent symmetry in pseudotimes 1511 
constructed based on the similarity of transcriptomic profiles: reversing pseudotime yields another 1512 
ordering that would explain the progression of transcriptomic changes just as well.  Thus, there is a 1513 
need for a method to break this symmetry; one common way this is done is by specifying root and 1514 
terminal nodes.   We describe one procedure for making these selections below. 1515 
 1516 
To summarize, suppose we are given a connected graph representation of the expression landscape 1517 
together with a set of root nodes and a set of terminal nodes.  In fact, these nodes can be specified 1518 
probabilistically instead, but to ease the exposition we restrict to the case where these root and 1519 
terminal regions are localized at individual nodes.  Using this information, we build a Markov process 1520 
whose states are the nodes of the graph and the transition probabilities given by edge weights 1521 
normalized to sum to one.  For instance, recall that for the Mapper graphs the edge weights are given 1522 
by the sizes of overlaps between clusters, which we now interpret as empirical measure of the number 1523 
of cells that flow between the two nodes.  Edges with small weights correspond to rare transitions, 1524 
while edges with large weights correspond to frequent transitions.  A variant of this could also take 1525 
into account the size of the node as a proxy for the self-transition probability of that node, but we do 1526 
not pursue this further here.   1527 
 1528 
Now, we use the root and terminal nodes to modify the Markov process so that the root and terminal 1529 
nodes are absorbing states, and compute the absorption probabilities of this process.  These 1530 
probabilities represent the time to absorption for a cell starting at a given node and ending at one of 1531 
the absorbing nodes.   1532 
 1533 
In more detail, let 1534 

𝑃 = 5𝑄 𝑅
0 𝐼9 1535 

be the transition matrix for this absorbing Markov chain.  We have closed-form expressions for the 1536 
various properties of this process (Kemeny and Snell, 1976).  For instance, the expected time to 1537 
absorption (at any absorbing node) is 𝑁1, where 𝑁 = (𝐼 − 𝑄)?& is the fundamental matrix of the Markov 1538 
chain.  Separating this out into absorption probabilities at each absorbing node, we let 1539 
𝐵	 = 	𝑁𝑅. 1540 
Then, the columns of the matrix 𝐵 are the absorption probabilities starting at a non-absorbing node 1541 
and ending in the absorbing node corresponding to the column.   1542 
 1543 
Now, assume moreover that we have a unirooted process, i.e., there is only one root node.  In this 1544 
case, we can further simplify the topology of the system into a rooted tree with leaves corresponding 1545 
to the terminal nodes.  In this case, the relative absorption probabilities starting at a given node are an 1546 
indicator for the “branch” to which the node belongs.  Furthermore, the complement of the absorption 1547 
probability at the root, or equivalently the sum of all the non-root absorption probabilities, is a measure 1548 
of the global pseudotime distance from the root to the terminal states.   1549 
 1550 
To increase the stability of and assess the robustness of these pseudotime results, we generated an 1551 
ensemble of 1,000 Mapper graphs, each time using only 70% of the inner product gene expression 1552 
data for OPCs and oligodendrocytes, and repeated the pseudotime inference procedure described 1553 
above on the Mapper graph replicates.  The node-level absorption probabilities were then transferred 1554 
to individual cells and averaged over all the trials.  The mean absorption probabilities were then 1555 
normalized at the root, so that the average cell near the root has equal absorption probabilities at any 1556 
of the terminal states; here the raw absorption probability of the “average root cell” was set to the 1557 
median of the bottom 2% of cells with the lowest global pseudotimes.  Other prior information about 1558 
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the eventual fate probabilities at the root can also be incorporated instead.  Each cell was assigned to 1559 
the branch (OPC, oligodendrocyte branch 1, or oligodendrocyte branch 2) for which its mean 1560 
absorption probability was highest.   1561 
 1562 
Finally, we grouped the cells within each branch and converted the mean absorption probabilities into 1563 
quantiles – a monotonic transformation that preserves the ordering – which we interpret as a branch-1564 
specific pseudotime taking values between 0 and 1.  For heatmap visualizations, we used csaps 1565 
(github.com/espdev/csaps) with a smoothing parameter of 0.99 to create natural cubic smoothing 1566 
splines for the gene expressions of the pseudotime-ordered cells in each branch. 1567 
 1568 
Data-driven Identification of Landmark Nodes 1569 
We sought to automate the identification and selection of root and terminal nodes on a graph from the 1570 
data.  For terminal nodes, we observed that the values of the gradients found by cNMF are precisely 1571 
maximized at the ends of each branch in the Mapper representation, and so we simply marked those 1572 
nodes for which each of the factors from cNMF is highest as terminal.  For the root node, we first 1573 
computed the transcriptional entropy for each cell: if 𝑝 = K𝑝WM is the expression vector of highly variable 1574 
genes for a cell, then the transcription entropy of the cell is  1575 

𝐻 = −∑ 𝑝WW 𝑙𝑜𝑔 𝑝W. 1576 

The node in the graph with the highest average transcriptional entropy was set as the root node.  1577 
 1578 
STARmap Analysis 1579 
High Depth Gene Expression Inference 1580 
We started with two rounds of quality control on the STARmap data. In the first filter, only cells with 1581 
gene counts greater than 5 and smaller than 100 were kept. Then we calculated the median and 1582 
standard deviation of gene counts across all the kept cells. In the second filter, we removed cells 1583 
whose gene counts were outside the range of double standard deviation from the median. It should 1584 
be noticed that these filters also removed 39 motor neurons which we manually identified. We added 1585 
these motor neurons back and obtained 37,598 cells in total. After quality control, we applied the 1586 
STARmap data analysis pipeline to perform clustering on the data. The number of principal 1587 
components and nearest neighbors was set as 10 and 30, respectively.  On the other hand, we 1588 
performed non-negative matrix factorization on the count matrix using Liger and then took the product 1589 
of cell loading and gene loading matrices, which created a smoothed expression profile. We built an 1590 
optimal transportation between the smoothed STARmap data and 10X Multiome RNA-seq data. For 1591 
each STARmap cell, we selected the top one hundred 10X RNA-seq cells indicated by optimal 1592 
transportation. The most frequent cell type among the 100 cells was taken as the cell type inference 1593 
for the STARmap cell. We also calculated the weighted sum of the log transformed TPM across the 1594 
100 cells and took it as the inferred expression for the STARmap cell. Due to the sparsity of motor 1595 
neurons, we performed a precise optimal transportation between the 39 motor neurons in STARmap 1596 
and 35 motor neurons in 10X RNA. For each motor neuron in STARmap, we took the best matched 1597 
10X RNA motor neuron as indicated by the optimal transportation for expression inference.  It should 1598 
be noticed that the cells in one of the STARmap cluster had obviously smaller read counts. Guided by 1599 
the expression of marker genes, we did further filter on this cluster and only kept those cells that were 1600 
inferred to by microglia and OPC by the optimal transportation. The total number of STARmap cells is 1601 
36,163 after this filter. 1602 
 1603 
Community Detection 1604 
In this section, we explain how we get communities of cells in spatial data. We recall that spatial data 1605 
is given as a cell by marker matrix 𝑋 ∈ ℝ3×;, and a spatial coordinate matrix 𝐶 ∈ ℝ3×X. Even though 1606 
cell types can be inferred from marker gene expression in 𝑋	, the (relatively) small number of markers 1607 
does not allow for precise assessment of subgroups, and only for detecting major cell types. In order 1608 
to handle this issue, we leverage the post-mortem RNA subgroups by launching OT between the 1609 
marker matrix 𝑋	and our post-mortem single-cell RNA matrix 𝑌 ∈ ℝ<×;1. Note that the number 𝑝Yof 1610 
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genes in our single-cell RNA data is usually much larger than 𝑝	, so we subset the RNA matrix using 1611 
only the 𝑝	marker genes from spatial. Once an OT plan has been computed, we use it to transfer the 1612 
subtypes from post-mortem RNA to spatial data. In order to characterize subgroups that are spatially 1613 
close in the data, we then create a composition matrix 𝑍 ∈ ℝ3×Z, where 𝐺	 is the number of subgroups 1614 
identified in post-mortem RNA. For each cell 𝑥	, with associated spatial coordinates 𝑐(𝑥) ∈ ℝX, we use 1615 
the coordinate matrix 𝐶	 to identify the cells that are at (spatial) distance at most 60	pixels from 𝑥	:  1616 

𝑁(𝑥) = {𝑥′ ∈ 𝑋 :   ∥ 𝑐(𝑥) − 𝑐(𝑥′) ∥H		≤ 		60}.  1617 

Then, the composition profile of 𝑥	 is computed as the fraction of each subgroup in the neighborhood: 1618 
𝑧(𝑥) = �[FGI({>Y∈((>) : _W(>Y)4W})

[FGI=((>)@
�
&`W`Z

where 𝑠𝑔(𝑥) denote the RNA subgroup of 𝑥	(identified after OT 1619 

transfer). The composition matrix thus characterizes cells by the composition of their neighborhoods, 1620 
and can be used for clustering in order to group cells together according to subgroups that are around 1621 
them. In our analysis, we cluster composition profiles using community detection. More precisely, we 1622 
first build a 𝑘	-nearest neighbor graph using the Euclidean distances between composition profiles. 1623 
Then, we run community detection with modularity to partition the nodes into communities. The idea 1624 
behind modularity is to find a partition of the nodes such that the number of edges induced by the 1625 
subgraphs formed by the communities is as larger as possible than the expected number of edges of 1626 
a random graph. More formally, the modularity of a graph 𝐺 = {𝑉, 𝐸} = {(𝑣&, … , 𝑣3), 𝐸} with a partition 1627 
of the nodes into 𝑚	 communities 𝒞 = �5𝑣#2,& , … , 𝑣#2,(29�&`[`<

, 𝛴[𝑛[ = 𝑛, is computed as: 1628 

𝑀(𝐺, 𝒞) 	≔ 	q
<

[4&

𝑀[ =
1
𝐿q

<

[4&

K𝐼[ − 𝐼[M, 1629 

where 𝐼[ ≔ 𝑐𝑎𝑟𝑑(𝐸[), 𝐸[ is the set of edges of the subgraph induced by community 𝑐	, 𝐼[� ≔
=a2La2@

3

b
, 𝐼[ 1630 

is the set of edges between community 𝑐	 and the rest of the nodes, 𝐿		 ≔ 		𝐼[ + 2𝐼[ + 𝐼[, 	𝐼[ 		≔1631 
		𝑐𝑎𝑟𝑑K𝐸[M, and 𝐸[ is the set of edges of the subgraph induced by the nodes outside community 𝑐	. 1632 
Community detection with modularity amounts to finding a partition 𝒞	that maximizes 𝑀(𝐺, 𝒞). The 1633 
main advantage of modularity is that it is parameter-free, and thus no tuning is required. For computing 1634 
such an optimal partition, we use the Louvain algorithm of Blondel et al.112, available in the networkx 1635 
Python package. Finally, we assess the robustness of our partition with respect to the choice of 𝑘	in 1636 
the construction of the nearest neighbor graph (prior to running community detection). For this, we 1637 
pick the most stable 𝑘	 in the list {5𝑘′ :  𝑘′ ∈ 2,… ,20}, where stability is computed with two indicators:  1638 
1. the mean Jaccard similarity &

&///
∑&///#4& 𝜕K𝒞, 𝒞S�M between the current community partition 𝒞 and the 1639 

community partitions �𝒞S� � associated to 1000	random subsamples of the data sets, of size 90 %	of the 1640 
total number of cells, and where 𝜕(𝒞, 𝒞′): = ∑[∈𝒞 𝑖𝑛𝑓{𝑗𝑎𝑐𝑐(𝑐	, 𝑐′) ∶ 	𝑐′ ∈ 𝒞′} and 𝑗𝑎𝑐𝑐(𝑐, 𝑐′): = #(𝑐 ∩1641 
𝑐′)/#(𝑐 ∪ 𝑐′). 1642 
2. the p-value associated to a two-sample permutation test (computed with 1000	permutations of the 1643 
composition profile dimensions) on the test statistic measuring the difference between two sets of 1644 
communities through their Jaccard similarities: 𝜕(𝒞, 𝒞′) = &

<
∑<#4& 𝑖𝑛𝑓{𝑗𝑎𝑐𝑐(𝑐# 	, 𝑐′) ∶ 	𝑐′ ∈ 𝒞′}, where 𝒞 1645 

is a community set with 𝑚 communities.  1646 
 1647 
In order to use these indicators for getting optimal communities, we pick a first estimate of 𝑘 among 1648 
candidate values with corresponding mean Jaccard similarity above 0.6 and p-value below 0.05 (and 1649 
we resolve the tie between acceptable candidate values by choosing the value of 𝑘 with the smallest 1650 
number of communities), and we then merge the associated communities by running hierarchical 1651 
clustering with Euclidean distance between the communities, that are represented by their mean 1652 
composition profiles according to the composition matrix 𝑍. The dendrogram threshold used for 1653 
merging the communities is computed using the largest merge distance gap in the dendrogram. This 1654 
ensures that communities with similar composition profiles are eventually merged into final 1655 
communities. 1656 
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 1657 
Cellular Network Interaction Analysis 1658 
We performed cell-cell interaction analysis for each community using CellPhoneDB83. The expression 1659 
profiles of conditional cells and their neighboring cells in each community were taking as input. 1660 
CellPhoneDB was run in the statistical mode, which calculated significance of each interacting pair, 1661 
reflected by adjusted p-values of permutation tests.  1662 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

REFERENCES 1663 

1 Gromicho, M. et al. Spreading in ALS: The relative impact of upper and lower motor 1664 
neuron involvement. Ann Clin Transl Neurol 7, 1181-1192, doi:10.1002/acn3.51098 1665 
(2020). 1666 

2 Wewel, J. T. & O'Toole, J. E. Epidemiology of spinal cord and column tumors. 1667 
Neurooncol Pract 7, i5-i9, doi:10.1093/nop/npaa046 (2020). 1668 

3 Rafelski, S. M. & Theriot, J. A. Establishing a conceptual framework for holistic cell 1669 
states and state transitions. Cell 187, 2633-2651, doi:10.1016/j.cell.2024.04.035 (2024). 1670 

4 Luo, R. X. & Dean, D. C. Chromatin remodeling and transcriptional regulation. J Natl 1671 
Cancer Inst 91, 1288-1294, doi:10.1093/jnci/91.15.1288 (1999). 1672 

5 Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. 1673 
Neuropsychopharmacology 38, 23-38, doi:10.1038/npp.2012.112 (2013). 1674 

6 Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and 1675 
predicts developmental state. Proceedings of the National Academy of Sciences of the 1676 
United States of America 107, 21931-21936, doi:10.1073/pnas.1016071107 (2010). 1677 

7 Zhang, D. et al. Spatial transcriptomics and single-nucleus RNA sequencing reveal a 1678 
transcriptomic atlas of adult human spinal cord. Elife 12, doi:10.7554/eLife.92046 1679 
(2024). 1680 

8 Yadav, A. et al. A cellular taxonomy of the adult human spinal cord. Neuron 111, 328-1681 
344 e327, doi:10.1016/j.neuron.2023.01.007 (2023). 1682 

9 Danila, B., Yu, Y., Marsh, J. A. & Bassler, K. E. Optimal transport on complex networks. 1683 
Phys Rev E Stat Nonlin Soft Matter Phys 74, 046106, doi:10.1103/PhysRevE.74.046106 1684 
(2006). 1685 

10 Simons, M. & Nave, K. A. Oligodendrocytes: Myelination and Axonal Support. Cold 1686 
Spring Harb Perspect Biol 8, a020479, doi:10.1101/cshperspect.a020479 (2015). 1687 

11 Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from 1688 
primitive macrophages. Science 330, 841-845, doi:10.1126/science.1194637 (2010). 1689 

12 Podlesny-Drabiniok, A. et al. BHLHE40/41 regulate microglia and peripheral 1690 
macrophage responses associated with Alzheimer's disease and other disorders of lipid-1691 
rich tissues. Nature communications 15, 2058, doi:10.1038/s41467-024-46315-7 (2024). 1692 

13 Li, L. et al. HSF1 is involved in suppressing A1 phenotype conversion of astrocytes 1693 
following spinal cord injury in rats. Journal of neuroinflammation 18, 205, 1694 
doi:10.1186/s12974-021-02271-3 (2021). 1695 

14 Zhu, X. et al. Age-dependent fate and lineage restriction of single NG2 cells. 1696 
Development 138, 745-753, doi:10.1242/dev.047951 (2011). 1697 

15 Wang, J. et al. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS 1698 
Myelination and Remyelination. The Journal of neuroscience : the official journal of the 1699 
Society for Neuroscience 42, 8542-8555, doi:10.1523/JNEUROSCI.0237-22.2022 1700 
(2022). 1701 

16 Freudenstein, D. et al. Endogenous Sox8 is a critical factor for timely remyelination and 1702 
oligodendroglial cell repletion in the cuprizone model. Scientific reports 13, 22272, 1703 
doi:10.1038/s41598-023-49476-5 (2023). 1704 

17 Hoffmann, S. A. et al. Stem cell factor Sox2 and its close relative Sox3 have 1705 
differentiation functions in oligodendrocytes. Development 141, 39-50, 1706 
doi:10.1242/dev.098418 (2014). 1707 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 Reiprich, S. et al. Transcription factor Sox10 regulates oligodendroglial Sox9 levels via 1708 
microRNAs. Glia 65, 1089-1102, doi:10.1002/glia.23146 (2017). 1709 

19 Zhang, S. et al. Sox2 Is Essential for Oligodendroglial Proliferation and Differentiation 1710 
during Postnatal Brain Myelination and CNS Remyelination. The Journal of 1711 
neuroscience : the official journal of the Society for Neuroscience 38, 1802-1820, 1712 
doi:10.1523/JNEUROSCI.1291-17.2018 (2018). 1713 

20 Luo, S., Germain, P. L., Robinson, M. D. & von Meyenn, F. Benchmarking 1714 
computational methods for single-cell chromatin data analysis. Genome biology 25, 225, 1715 
doi:10.1186/s13059-024-03356-x (2024). 1716 

21 Wu, K. E., Yost, K. E., Chang, H. Y. & Zou, J. BABEL enables cross-modality 1717 
translation between multiomic profiles at single-cell resolution. Proceedings of the 1718 
National Academy of Sciences of the United States of America 118, 1719 
doi:10.1073/pnas.2023070118 (2021). 1720 

22 Carter, B. & Zhao, K. The epigenetic basis of cellular heterogeneity. Nature reviews. 1721 
Genetics 22, 235-250, doi:10.1038/s41576-020-00300-0 (2021). 1722 

23 Li, Y. et al. scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq 1723 
data integration. Nature communications 14, 6045, doi:10.1038/s41467-023-41795-5 1724 
(2023). 1725 

24 Charlet, J. et al. Bivalent Regions of Cytosine Methylation and H3K27 Acetylation 1726 
Suggest an Active Role for DNA Methylation at Enhancers. Molecular cell 62, 422-431, 1727 
doi:10.1016/j.molcel.2016.03.033 (2016). 1728 

25 Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in 1729 
embryonic stem cells. Cell 125, 315-326, doi:10.1016/j.cell.2006.02.041 (2006). 1730 

26 Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional 1731 
promoters and enhancers in the human genome. Nature genetics 39, 311-318, 1732 
doi:10.1038/ng1966 (2007). 1733 

27 Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-1734 
type-specific gene expression. Nature 459, 108-112, doi:10.1038/nature07829 (2009). 1735 

28 Yu, Y. et al. H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage 1736 
specification in development. Cell Biosci 13, 66, doi:10.1186/s13578-023-01017-3 1737 
(2023). 1738 

29 Hojo, H. et al. Runx2 regulates chromatin accessibility to direct the osteoblast program at 1739 
neonatal stages. Cell reports 40, 111315, doi:10.1016/j.celrep.2022.111315 (2022). 1740 

30 Holtman, I. R., Skola, D. & Glass, C. K. Transcriptional control of microglia phenotypes 1741 
in health and disease. The Journal of clinical investigation 127, 3220-3229, 1742 
doi:10.1172/JCI90604 (2017). 1743 

31 Nakazato, R. et al. Constitutive and functional expression of runt-related transcription 1744 
factor-2 by microglial cells. Neurochemistry international 74, 24-35, 1745 
doi:10.1016/j.neuint.2014.04.010 (2014). 1746 

32 Lu, L. et al. Runx2 Suppresses Astrocyte Activation and Astroglial Scar Formation After 1747 
Spinal Cord Injury in Mice. Molecular neurobiology, doi:10.1007/s12035-024-04212-6 1748 
(2024). 1749 

33 Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific 1750 
transcriptional changes in Alzheimer's disease. Neuron 110, 1788-1805 e1710, 1751 
doi:10.1016/j.neuron.2022.03.008 (2022). 1752 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 Mitra, S. et al. Single-cell multi-ome regression models identify functional and disease-1753 
associated enhancers and enable chromatin potential analysis. Nature genetics 56, 627-1754 
636, doi:10.1038/s41588-024-01689-8 (2024). 1755 

35 Wilczynska, K. M. et al. Nuclear factor I isoforms regulate gene expression during the 1756 
differentiation of human neural progenitors to astrocytes. Stem Cells 27, 1173-1181, 1757 
doi:10.1002/stem.35 (2009). 1758 

36 Komine, O. et al. Genetic background variation impacts microglial heterogeneity and 1759 
disease progression in amyotrophic lateral sclerosis model mice. iScience 27, 108872, 1760 
doi:10.1016/j.isci.2024.108872 (2024). 1761 

37 Stifani, N. Motor neurons and the generation of spinal motor neuron diversity. Frontiers 1762 
in cellular neuroscience 8, 293, doi:10.3389/fncel.2014.00293 (2014). 1763 

38 Blum, J. A. et al. Single-cell transcriptomic analysis of the adult mouse spinal cord 1764 
reveals molecular diversity of autonomic and skeletal motor neurons. Nature 1765 
neuroscience 24, 572-583, doi:10.1038/s41593-020-00795-0 (2021). 1766 

39 Liau, E. S. et al. Single-cell transcriptomic analysis reveals diversity within mammalian 1767 
spinal motor neurons. Nature communications 14, 46, doi:10.1038/s41467-022-35574-x 1768 
(2023). 1769 

40 Sanghani, N., Claytor, B. & Li, Y. Electrodiagnostic findings in amyotrophic lateral 1770 
sclerosis: Variation with region of onset and utility of thoracic paraspinal muscle 1771 
examination. Muscle & nerve 69, 172-178, doi:10.1002/mus.28012 (2024). 1772 

41 Kandler, K. et al. Phenotyping of the thoracic-onset variant of amyotrophic lateral 1773 
sclerosis. Journal of neurology, neurosurgery, and psychiatry 93, 563-565, 1774 
doi:10.1136/jnnp-2021-326712 (2022). 1775 

42 Zhang, H., Chen, L., Tian, J. & Fan, D. Differentiating Slowly Progressive Subtype of 1776 
Lower Limb Onset ALS From Typical ALS Depends on the Time of Disease Progression 1777 
and Phenotype. Front Neurol 13, 872500, doi:10.3389/fneur.2022.872500 (2022). 1778 

43 Piccione, E. A., Sletten, D. M., Staff, N. P. & Low, P. A. Autonomic system and 1779 
amyotrophic lateral sclerosis. Muscle & nerve 51, 676-679, doi:10.1002/mus.24457 1780 
(2015). 1781 

44 Gibbs, C. S. et al. Single-cell gene regulatory network inference at scale: The Inferelator 1782 
3.0. bioRxiv https://doi.org/10.1101/2021.05.03.442499, 1783 
doi:https://doi.org/10.1101/2021.05.03.442499 (2021). 1784 

45 Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor 1785 
binding profiles and its web framework. Nucleic acids research 46, D260-D266, 1786 
doi:10.1093/nar/gkx1126 (2018). 1787 

46 Benavides, A., Pastor, D., Santos, P., Tranque, P. & Calvo, S. CHOP plays a pivotal role 1788 
in the astrocyte death induced by oxygen and glucose deprivation. Glia 52, 261-275, 1789 
doi:10.1002/glia.20242 (2005). 1790 

47 Gao, Y. et al. Opposite modulation of functional recovery following contusive spinal 1791 
cord injury in mice with oligodendrocyte-selective deletions of Atf4 and Chop/Ddit3. 1792 
Scientific reports 13, 9193, doi:10.1038/s41598-023-36258-2 (2023). 1793 

48 Wheeler, M. A. et al. Environmental Control of Astrocyte Pathogenic Activities in CNS 1794 
Inflammation. Cell 176, 581-596 e518, doi:10.1016/j.cell.2018.12.012 (2019). 1795 

49 Stone, S. et al. NF-kappaB Activation Protects Oligodendrocytes against Inflammation. 1796 
The Journal of neuroscience : the official journal of the Society for Neuroscience 37, 1797 
9332-9344, doi:10.1523/JNEUROSCI.1608-17.2017 (2017). 1798 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

50 Shih, R. H., Wang, C. Y. & Yang, C. M. NF-kappaB Signaling Pathways in Neurological 1799 
Inflammation: A Mini Review. Frontiers in molecular neuroscience 8, 77, 1800 
doi:10.3389/fnmol.2015.00077 (2015). 1801 

51 Laug, D. et al. Nuclear factor I-A regulates diverse reactive astrocyte responses after 1802 
CNS injury. The Journal of clinical investigation 129, 4408-4418, 1803 
doi:10.1172/JCI127492 (2019). 1804 

52 Fancy, S. P., Glasgow, S. M., Finley, M., Rowitch, D. H. & Deneen, B. Evidence that 1805 
nuclear factor IA inhibits repair after white matter injury. Annals of neurology 72, 224-1806 
233, doi:10.1002/ana.23590 (2012). 1807 

53 Jones, K. J. et al. CPEB1 regulates beta-catenin mRNA translation and cell migration in 1808 
astrocytes. Glia 56, 1401-1413, doi:10.1002/glia.20707 (2008). 1809 

54 Biesiada, E., Razandi, M. & Levin, E. R. Egr-1 activates basic fibroblast growth factor 1810 
transcription. Mechanistic implications for astrocyte proliferation. The Journal of 1811 
biological chemistry 271, 18576-18581, doi:10.1074/jbc.271.31.18576 (1996). 1812 

55 Ciciro, Y. & Sala, A. MYB oncoproteins: emerging players and potential therapeutic 1813 
targets in human cancer. Oncogenesis 10, 19, doi:10.1038/s41389-021-00309-y (2021). 1814 

56 Musa, J., Aynaud, M. M., Mirabeau, O., Delattre, O. & Grunewald, T. G. MYBL2 (B-1815 
Myb): a central regulator of cell proliferation, cell survival and differentiation involved in 1816 
tumorigenesis. Cell Death Dis 8, e2895, doi:10.1038/cddis.2017.244 (2017). 1817 

57 Sarvagalla, S., Kolapalli, S. P. & Vallabhapurapu, S. The Two Sides of YY1 in Cancer: 1818 
A Friend and a Foe. Frontiers in oncology 9, 1230, doi:10.3389/fonc.2019.01230 (2019). 1819 

58 Cheng, Y. Y. et al. ZIC1 is silenced and has tumor suppressor function in malignant 1820 
pleural mesothelioma. J Thorac Oncol 8, 1317-1328, 1821 
doi:10.1097/JTO.0b013e3182a0840a (2013). 1822 

59 Stone, S. et al. Activating transcription factor 6alpha deficiency exacerbates 1823 
oligodendrocyte death and myelin damage in immune-mediated demyelinating diseases. 1824 
Glia 66, 1331-1345, doi:10.1002/glia.23307 (2018). 1825 

60 Steelman, A. J. et al. Activation of oligodendroglial Stat3 is required for efficient 1826 
remyelination. Neurobiology of disease 91, 336-346, doi:10.1016/j.nbd.2016.03.023 1827 
(2016). 1828 

61 Pandey, S. et al. Disease-associated oligodendrocyte responses across neurodegenerative 1829 
diseases. Cell reports 40, 111189, doi:10.1016/j.celrep.2022.111189 (2022). 1830 

62 Ballasch, I. et al. Ikzf1 as a novel regulator of microglial homeostasis in inflammation 1831 
and neurodegeneration. Brain, behavior, and immunity 109, 144-161, 1832 
doi:10.1016/j.bbi.2023.01.016 (2023). 1833 

63 Villot, R. et al. ZNF768: controlling cellular senescence and proliferation with ten 1834 
fingers. Mol Cell Oncol 8, 1985930, doi:10.1080/23723556.2021.1985930 (2021). 1835 

64 Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. 1836 
Molecular cell 50, 16-28, doi:10.1016/j.molcel.2013.01.024 (2013). 1837 

65 Wu, J. et al. Ablation of the transcription factors E2F1-2 limits neuroinflammation and 1838 
associated neurological deficits after contusive spinal cord injury. Cell Cycle 14, 3698-1839 
3712, doi:10.1080/15384101.2015.1104436 (2015). 1840 

66 Cui, P. et al. Microglia/macrophages require vitamin D signaling to restrain 1841 
neuroinflammation and brain injury in a murine ischemic stroke model. Journal of 1842 
neuroinflammation 20, 63, doi:10.1186/s12974-023-02705-0 (2023). 1843 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

67 Cao, X. Y. et al. Microglial SIX2 suppresses lipopolysaccharide (LPS)-induced 1844 
neuroinflammation by up-regulating FXYD2 expression. Brain Res Bull 212, 110970, 1845 
doi:10.1016/j.brainresbull.2024.110970 (2024). 1846 

68 Rivers, L. E. et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and 1847 
piriform projection neurons in adult mice. Nature neuroscience 11, 1392-1401, 1848 
doi:10.1038/nn.2220 (2008). 1849 

69 Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the 1850 
human brain. Cell 159, 766-774, doi:10.1016/j.cell.2014.10.011 (2014). 1851 

70 Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause 1852 
for remyelination failure in chronic multiple sclerosis. Brain : a journal of neurology 1853 
131, 1749-1758, doi:10.1093/brain/awn096 (2008). 1854 

71 Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity 1855 
to transient cell states through dynamical modeling. Nature biotechnology 38, 1408-1414, 1856 
doi:10.1038/s41587-020-0591-3 (2020). 1857 

72 Rizvi, A. H. et al. Single-cell topological RNA-seq analysis reveals insights into cellular 1858 
differentiation and development. Nature biotechnology 35, 551-560, 1859 
doi:10.1038/nbt.3854 (2017). 1860 

73 Baroti, T. et al. Transcription factors Sox5 and Sox6 exert direct and indirect influences 1861 
on oligodendroglial migration in spinal cord and forebrain. Glia 64, 122-138, 1862 
doi:10.1002/glia.22919 (2016). 1863 

74 Nakatani, H. et al. Ascl1/Mash1 promotes brain oligodendrogenesis during myelination 1864 
and remyelination. The Journal of neuroscience : the official journal of the Society for 1865 
Neuroscience 33, 9752-9768, doi:10.1523/JNEUROSCI.0805-13.2013 (2013). 1866 

75 Wang, H. et al. Akt Regulates Sox10 Expression to Control Oligodendrocyte 1867 
Differentiation via Phosphorylating FoxO1. The Journal of neuroscience : the official 1868 
journal of the Society for Neuroscience 41, 8163-8180, doi:10.1523/JNEUROSCI.2432-1869 
20.2021 (2021). 1870 

76 Awatramani, R. et al. Evidence that the homeodomain protein Gtx is involved in the 1871 
regulation of oligodendrocyte myelination. The Journal of neuroscience : the official 1872 
journal of the Society for Neuroscience 17, 6657-6668, doi:10.1523/JNEUROSCI.17-17-1873 
06657.1997 (1997). 1874 

77 Cai, J. et al. Mice lacking the Nkx6.2 (Gtx) homeodomain transcription factor develop 1875 
and reproduce normally. Mol Cell Biol 21, 4399-4403, doi:10.1128/MCB.21.13.4399-1876 
4403.2001 (2001). 1877 

78 Takebayashi, H. et al. The basic helix-loop-helix factor olig2 is essential for the 1878 
development of motoneuron and oligodendrocyte lineages. Curr Biol 12, 1157-1163, 1879 
doi:10.1016/s0960-9822(02)00926-0 (2002). 1880 

79 Ligon, K. L. et al. The oligodendroglial lineage marker OLIG2 is universally expressed 1881 
in diffuse gliomas. Journal of neuropathology and experimental neurology 63, 499-509, 1882 
doi:10.1093/jnen/63.5.499 (2004). 1883 

80 Zhang, K. et al. The Oligodendrocyte Transcription Factor 2 OLIG2 regulates 1884 
transcriptional repression during myelinogenesis in rodents. Nature communications 13, 1885 
1423, doi:10.1038/s41467-022-29068-z (2022). 1886 

81 Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional 1887 
states. Science 361, doi:10.1126/science.aat5691 (2018). 1888 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

82 Dong, X., Charikar, M. & Li, K. Efficient K-nearest neighbor graph construction for 1889 
generic similarity measures. Proceedings of the 20th International Conference on World 1890 
Wide Web, doi:10.1145/1963405.1963487 (2011). 1891 

83 Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: 1892 
inferring cell-cell communication from combined expression of multi-subunit ligand-1893 
receptor complexes. Nature protocols 15, 1484-1506, doi:10.1038/s41596-020-0292-x 1894 
(2020). 1895 

84 Bennett, M. L. & Viaene, A. N. What are activated and reactive glia and what is their role 1896 
in neurodegeneration? Neurobiology of disease 148, 105172, 1897 
doi:10.1016/j.nbd.2020.105172 (2021). 1898 

85 Rosenbohm, A. et al. Epidemiology of amyotrophic lateral sclerosis in Southern 1899 
Germany. J Neurol 264, 749-757, doi:10.1007/s00415-017-8413-3 (2017). 1900 

86 Zhang, G. Y. et al. Chemical approach to generating long-term self-renewing pMN 1901 
progenitors from human embryonic stem cells. J Mol Cell Biol 14, 1902 
doi:10.1093/jmcb/mjab076 (2022). 1903 

87 Coux, R. X., Owens, N. D. L. & Navarro, P. Chromatin accessibility and transcription 1904 
factor binding through the perspective of mitosis. Transcription 11, 236-240, 1905 
doi:10.1080/21541264.2020.1825907 (2020). 1906 

88 Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue 1907 
damage. Nature 550, 475-480, doi:10.1038/nature24271 (2017). 1908 

89 Ptashne, M. Epigenetics: core misconcept. Proceedings of the National Academy of 1909 
Sciences of the United States of America 110, 7101-7103, doi:10.1073/pnas.1305399110 1910 
(2013). 1911 

90 Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and 1912 
spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194-208 e118, 1913 
doi:10.1016/j.cell.2022.12.010 (2023). 1914 

91 Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant 1915 
motor neurons in ALS mice. Science 302, 113-117, doi:10.1126/science.1086071 (2003). 1916 

92 Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic 1917 
lateral sclerosis. Science 364, 89-93, doi:10.1126/science.aav9776 (2019). 1918 

93 Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands 1919 
defined by the territory of a single astrocyte. The Journal of neuroscience : the official 1920 
journal of the Society for Neuroscience 27, 6473-6477, doi:10.1523/JNEUROSCI.1419-1921 
07.2007 (2007). 1922 

94 Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. 1923 
Nature 541, 481-487, doi:10.1038/nature21029 (2017). 1924 

95 Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-1925 
seq. Nature communications 9, 2937, doi:10.1038/s41467-018-05347-6 (2018). 1926 

96 Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples 1927 
and single cells. Nature communications 10, 1930, doi:10.1038/s41467-019-09982-5 1928 
(2019). 1929 

97 Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with 1930 
multiplexed error-robust fluorescence in situ hybridization. Proceedings of the National 1931 
Academy of Sciences of the United States of America 113, 11046-11051, 1932 
doi:10.1073/pnas.1612826113 (2016). 1933 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

98 Hershberg, E. A. et al. PaintSHOP enables the interactive design of transcriptome- and 1934 
genome-scale oligonucleotide FISH experiments. Nature methods 18, 937-944, 1935 
doi:10.1038/s41592-021-01187-3 (2021). 1936 

99 Fornace, M. et al. NUPACK: Analysis and Design of Nucleic Acid Structures, Devices, 1937 
and Systems. . doi:10.26434/chemrxiv-2022-xv98l. (2022). 1938 

100 Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of 1939 
occurrences of k-mers. Bioinformatics 27, 764-770, doi:10.1093/bioinformatics/btr011 1940 
(2011). 1941 

101 Wang, M. & Kong, L. pblat: a multithread blat algorithm speeding up aligning sequences 1942 
to genomes. BMC Bioinformatics 20, 28, doi:10.1186/s12859-019-2597-8 (2019). 1943 

102 Kent, W. J. BLAT--the BLAST-like alignment tool. Genome research 12, 656-664, 1944 
doi:10.1101/gr.229202 (2002). 1945 

103 Rao, B. et al. Non-parametric Vignetting Correction for Sparse Spatial Transcriptomics 1946 
Images. Medical Image Computing and Computer Assisted Intervention, 466-475, 1947 
doi:10.1007/978-3-030-87237-3_45 (2021). 1948 

104 Cuturi, M. Sinkhorn Distances: Lightspeed Computation of Optimal Transportation 1949 
Distances. Advances in Neural Information Processing Systems 26, 2292-2300 (2013). 1950 

105 Skok Gibbs, C. et al. High-performance single-cell gene regulatory network inference at 1951 
scale: the Inferelator 3.0. Bioinformatics 38, 2519-2528, 1952 
doi:10.1093/bioinformatics/btac117 (2022). 1953 

106 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression 1954 
data analysis. Genome biology 19, 15, doi:10.1186/s13059-017-1382-0 (2018). 1955 

107 Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell 1956 
chromatin accessibility analysis. Nature genetics 53, 403-411, doi:10.1038/s41588-021-1957 
00790-6 (2021). 1958 

108 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome biology 9, R137, 1959 
doi:10.1186/gb-2008-9-9-r137 (2008). 1960 

109 Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. 1961 
Science 362, doi:10.1126/science.aav1898 (2018). 1962 

110 Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring 1963 
transcription-factor-associated accessibility from single-cell epigenomic data. Nature 1964 
methods 14, 975-978, doi:10.1038/nmeth.4401 (2017). 1965 

111 Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak 1966 
annotation, comparison and visualization. Bioinformatics 31, 2382-2383, 1967 
doi:10.1093/bioinformatics/btv145 (2015). 1968 

112 Blondel, V., Guillaume, J., Lambiotte, R. & Lefebvre, E. Fast Unfolding of Communities 1969 
in Large Networks. Journal of Statistical Mechanics Theory and Experiment, 1970 
doi:10.1088/1742-5468/2008/10/P10008 (2008). 1971 

 1972 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

at
io

na
l l

ic
en

se
av

ai
la

bl
e 

un
de

r 
a

(w
hi

ch
 w

as
 n

ot
 c

er
tif

ie
d 

by
 p

ee
r 

re
vi

ew
) 

is
 th

e 
au

th
or

/fu
nd

er
, w

ho
 h

as
 g

ra
nt

ed
 b

io
R

xi
v 

a 
lic

en
se

 to
 d

is
pl

ay
 th

e 
pr

ep
rin

t i
n 

pe
rp

et
ui

ty
. I

t i
s 

m
ad

e 
T

he
 c

op
yr

ig
ht

 h
ol

de
r 

fo
r 

th
is

 p
re

pr
in

t
th

is
 v

er
si

on
 p

os
te

d 
Ja

nu
ar

y 
11

, 2
02

5.
 

; 
ht

tp
s:

//d
oi

.o
rg

/1
0.

11
01

/2
02

5.
01

.1
0.

63
24

83
do

i: 
bi

oR
xi

v 
pr

ep
rin

t 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2025. ; https://doi.org/10.1101/2025.01.10.632483doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632483
http://creativecommons.org/licenses/by-nc-nd/4.0/

