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Introduction: Di-isocyanates TDI (toluene di-isocyanate), MDI (diphenylmethane

di-isocyanate), and HDI (hexamethylene di-isocyanate) are the most common chemicals

causing occupational asthma. Di-isocyanate inhalation has been reported to induce

oxidative stress via reactive oxygen and nitrogen species leading to tissue injury.

Glutathione transferases (GSTs) and N-acetyltransferases (NATs) are detoxifying enzymes

whose general function is to inactivate electrophilic substances. The most important

genes regulating these enzymes, i.e., GSTM1, GSTP1, GSTT1, NAT1, and NAT2

have polymorphic variants resulting in enhanced or lowered enzyme activities. Since

inability to detoxify harmful oxidants can lead to inflammatory processes involving

activation of bronchoconstrictive mechanisms, we studied whether the altered GST

and NAT genotypes were associated with bronchial hyperreactivity (BHR) in patients

with di-isocyanate exposure related occupational asthma, irrespective of cessation of

di-isocyanate exposure, and adequacy of asthma treatment.

Methods: Polymerase chain reaction (PCR) based methods were used to analyze nine

common polymorphisms inGSTM1, GSTM3, GSTP1, GSTT1, NAT1, andNAT2 genes in

108 patients with diagnosed occupational di-isocyanate-induced asthma. The genotype

data were compared with spirometric lung function and BHR status at diagnosis and

in the follow-up examination on average 11 years (range 1–22 years) after the asthma

diagnosis. Serum IgE and IL13 levels were also assessed in the follow-up phase.

Results: An association between BHR and GSTP1 slow activity (Val105/Val105)

genotype was demonstrated in the subjects at the follow-up phase but not at the

diagnosis phase. Moreover, the patients with theGSTP1 slow activity genotype exhibited

characteristics of Th-2 type immune response more often compared to those with

the unaltered GSTP1 gene. Interestingly, all 10 patients with the GSTP1 slow activity

genotype had both the GSTM3 slow activity genotype and the unaltered GSTT1 gene.
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Discussion: The results suggest associations of the low activity variants of the

GSTP1 gene with BHR. The fact that these associations came up only at the follow-up

phase when the subjects were not any more exposed to di-isocyanates, and used

asthma medication, suggest that medication and environmental factors influence the

presentation of these associations. However, due to the exploratory character of the

study and relatively small study size, the findings remain to be confirmed in future studies

with larger sample sizes.

Keywords: N-acetyl transpherases, oxidative stress, enzyme activity, GSTP1 Val105/Val105, genetic

polymorphism, GSTM1, GSTT1, occupational asthma

INTRODUCTION

Di-isocyanates TDI (toluene di-isocyanate), MDI
(diphenylmethane di-isocyanate), and HDI (hexamethylene di-
isocyanate), generally used in the manufacture of plastics, paints,
and foam products, have long been the most common chemicals
causing occupational asthma. Bronchial inflammation, including
lymphocytic infiltration and eosinophilia (1–3), resembling
that present in allergic asthma, has been demonstrated to be
associated with di-isocyanate-induced asthma (DIA). After
cessation of exposure, suggestion of a reversal of remodeling of
the airway wall has been found (4, 5) but respiratory symptoms
(6, 7) and nonspecific bronchial hyperreactivity (BHR) have
been reported to persist for years in the majority of patients
with DIA despite cessation of exposure and asthma treatment
(8–11). Treatment with inhaled steroids causes a decrease in
BHR (9, 12, 13).

Inhalation of di-isocyanates have in several studies been found
to induce oxidative stress via reactive oxygen and nitrogen species
causing tissue injury (14–19). Glutathione S-transferases (GSTs)
form a family of detoxifying enzymes whose general function is to
inactivate electrophilicmolecules. GSTs detoxify those substances
by glutathione conjugation, and therefore a variety of harmful
agents, e.g., products of reactive oxygen species or exogenous
electrophilic substances may act as substrates for GSTs and
become detoxified (20). Inability to detoxify products of oxidative
stress could eventually lead to inflammatory process and
activation of bronchoconstrictive mechanisms, and ultimately to
the development of asthma.

The most important GST genes, i.e., GSTM1, GSTM3, GSTP1,
and GSTT1 are polymorphic exhibiting variants associated
with an altered enzyme activity. Other polymorphic enzymes
involved in the defense against reactive metabolites include
N-acetyltransferases (NAT) being involved in the deactivation
of aromatic amines in degradation of aromatic di-isocyanates.
Their genes, NAT1 and NAT2, have also been shown to exhibit
polymorphic variants resulting in altered enzyme activities (21).

In occupational asthma, polymorphic GSTP1 enzyme,
especially its slow activity genotype, has been widely studied as
a potential candidate to lowered protection against oxidative
burden. The GSTP1 slow activity genotype has been found
mainly to be protective for the development of asthma (22, 23).
However, for example in a study on association of traffic-related
air pollution with asthma, the GSTP1 slow activity genotype, as
well as the GSTT1 null genotype, were found to be associated

with increased risk for asthma, wheeze, and lowered lung
function (24). Numerous studies have also been seeking the
associations between the polymorphic antioxidant enzymes and
occupational asthma or BHR. Some studies (22, 23, 25) have
found GSTP1 slow activity variant and GSTM1 null genotype to
decrease the risk for DIA (25), while others have found GSTP1
low activity genotypes to increase IgE-mediated reactions in
DIA (26, 27).

We have earlier observed in a study population of 182
workers exposed to di-isocyanates, 109 of whom had earlier
been diagnosed with asthma, that genetic factors, especially the
GSTM3 and NAT2 genotypes, modified risk for occupational
asthma and allergic responses to di-isocyanate exposure (26,
28). These studies were performed when the examined patients
were called for clinical control on average 11 years (range 1–
22 years) after diagnosis. However, the risk for occupational
asthma (26, 28) was analyzed with data from the diagnosis phase,
concentrating with, e.g., the specific challenge test results, the
presence of non-specific bronchial challenge or specific IgE in the
diagnostic baseline examinations. The lung function data from
the follow-up visit was published separately (11) and was not
analyzed in relation to the GST or NAT genotype data.

The aim of the present study was to examine the possible
effects of altered activity associated GST and NAT genotypes on
the risk of BHR several years after cessation of di-isocyanate
exposure when most of the study subjects were not any more
occupationally exposed to di-isocyanates and were on asthma
medication if their condition required it.

Two earlier enrolled study populations with follow-up
examinations (11, 13, 26, 28) were available for the present
study. In addition, analysis of cytokines and chemokines
was performed from the blood specimen available. The
working hypothesis was that the reduced activity variants
of the polymorphic enzyme genes or their combinations
would cause a poor outcome measured as presence of
non-specific BHR.

MATERIALS AND METHODS

Study Subjects
The study subjects (N = 108) were pooled from two earlier
studies; most of the subjects (n = 93) were from the study
described in Piirilä et al. (26) and Wikman et al. (28), the
remainder (n = 15) were included in another study carried
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TABLE 1 | Anthropometric data, smoking, exposure, hyperreactivity, and

diagnostic criteria of occupational asthma of the patients.

Occupational

diagnosis

phase

Follow-up

phase

Gender Male 84 (78%) 84 (78 %)

Female 24 (22%) 24 (22%)

Age (years) 39 (21–60) 50 (48–52)

(26–78)

Length of follow-up (years) 11.3 (1–22.0)

Weight (kg) 79.4 (51–132)

Height (cm) 173 (153–191)

BMI 26.6 (18.7–41.2)

Smoking No 56 (52%)

Yes 33 (31%)

Former 19 (18%)

Smoking

pack—years

Current 15.8 (0.3–51.3)

Former 9.5 (0.1–28)

DIA exposure TDI 25 (23%)

MDI 45 (42%)

HDI 42 (39%)

Basis of diagnosis of

occupational asthma

Specific bronchial

challenge testing

94 (87%)

PEF work place

follow-up

14 (13%)

Reaction in the

specific challenge

test at the diagnosis

Immediate 53 (49%)

Late 41 (38%)

Not tested 14 (13%)

Continuing DIA exposure after

occupational asthma diagnosis

6 (6%)

BHR Negative 51 (47%) 45 (42%)

Positive 51 (47%) 60 (56%)

Not tested 6 (6%) 3 (2%)

FEV1 (% of pred.) 99 (96–101) 91 (88–94)

VC (% of pred.) 99 (96–101) 97 (94–100)

out by Piirilä et al. (13). All subjects were studied at the
Finnish Institute of Occupational Health (FIOH) and diagnosed
to have di-isocyanate-induced occupational asthma on average
11 years before follow-up examinations (Table 1). For most of
the patients, the di-isocyanate exposure had ceased after the
diagnosis of occupational asthma. For six patients, minimal
exposure to di-isocyanates was still possible in the factories,
although it was not anymore possible in their own working
points. The occupational asthma diagnoses were made in
1976–1999 and the follow-up examinations were performed
in 1995–2001.

Methods
The methods for the occupational studies have been presented
in Piirilä et al. (11) and Piirilä et al. (13), and the GST and NAT
genotype analyses were conducted as described in Piirilä et al.
(26) and Wikman et al. (28).

The flow-volume spirometry was performed with a rolling-
seal spirometer (Mijnhardt BV, Bunnik, the Netherlands)
connected to a microcomputer (Medikro MR-3; Medikro,
Kuopio, Finland) and the results were compared with the
reference values of Viljanen et al. (29).

The non-specific bronchial challenge tests were performed
with the Sovijärvi method (30). FEV1 was measured with
a Vitalograph S bellow spirometer (Vitalograph). 1.6%
histamine diphosphate was used and a 15% reduction of
FEV1 was the limit of significant reaction (Provocative
dose, PD15). The hyperresponsiveness was graded as
strong with PD15 < 0.1mg, moderate with 0.11–0.4mg,
and mild with 0.41–1.6mg provocative doses of histamine.
The histamine challenge test was not performed if
FEV1 was <70% of predicted value (30). In the present
analyses, any degree of BHR was regarded as positive
for BHR.

The cytokines and chemokine levels were analyzed
with Luminex technology (Bio-Plex 200 System, Bio-Rad
Laboratories, Hercules, CA, USA) by labeled cytokine capture
antibody pairs from venous serum samples stored deep frozen in
−70◦C. In addition, the total IgE was determined with the earlier
indicated methods (11).

Covariation between BHR at the time of diagnosis and the
follow-up examination and different GSTM1, GSTM3, GSTP1,
GSTT1, NAT1, and NAT2 genotypes were first explored with
cross-tabulations and Pearson chi-squared tests. Next, the
effect of other putative predictive and modifying factors, age,
gender, smoking, inhaled corticosteroid, or per oral cortisone
treatment during the year preceding the follow-up examinations,
regular NSAID usage (for other medical purposes), and hyper-
reactivity at the time of diagnosis (in case of follow-up
BHR), were taken into account in a multivariate logistic
regression model.

The effect of GST and NAT genotypes on the follow-up
FEV1% (age, sex and body composition adjusted) were analyzed
by a generalized linear model (GLM) adjusted by putative other
modifying factors; follow-up hyperreactivity, inhaled, or peroral
corticosteroid treatment during the year preceding the follow-up
examination, regular NSAID usage (for other medical purposes)
and smoking.

The GSTP1 genotype could not be included in the regression
model due to the low number of the homozygous slow activity
genotypes in the study population overall, and especially because
there were no carriers of the slow activity genotype among
the non-BHR patients. Post-hoc analysis of interactions between
GSTP1 and other GST and NAT genotypes and different
medications were explored by cross-tabulation and Pearson
chi-squared tests. In addition, IL-13 and total IgE levels were
compared between GSTP1 groups with the non-parametric
Kruskal-Wallis method.

Mean and 95% confidence intervals were used with
continuous variables in purpose to describe patient
characteristics. In the statistical evaluations the limit of
statistical significance was set to p < 0.05.

All statistical analyses were performed using the SPSS (version
24) statistical software.
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TABLE 2 | Distribution of the NAT and GST genotypes among the study subjects.

Enzyme Genotype N (%)

NAT1 Slow activity 8 (8%)

Intermediate activity 68 (65%)

Fast activity 29 (28%)

NAT2 Low activity 53 (50%)

High activity 52 (50%)

GSTM1 Null 44 (42%)

Positive 58 (55%)

GSTM3 Low activity 83 (79%)

High activity 22 (21%)

GSTP1 Homozygous fast activity 47 (45%)

Heterozygous fast activity 48 (46%)

Slow activity 10 (9.5%)

GSTT1 Null 12 (11%)

Positive 93 (89%)

RESULTS

Association Between Bronchial
Hyperreactivity and the GST and NAT
Genotypes
Distribution of different GST and NAT genotypes in the study
population is described in Table 2. Associations between GST
and NAT genotypes and BHR at the diagnostic examinations of
occupational asthma and at the follow-up examinations, explored
in a cross-tabulation without the adjustments of other covariates
are presented in Table 3. Statistically significant associations (p<

0.05) were observed between GSTM1 and GSTP1 genotypes and
the BHR at the follow-up examination. Interestingly, all patients
with homozygous GSTP1 slow activity genotype (N = 10) had
developed BHR.

No significant associations were detected between the GST
and NAT genotypes and BHR at the time of diagnosis. Moreover,
there was no significant association between GSTM1 genotype
and presence of any level of BHR in a multivariate logistic
regression model when the model was adjusted by the putative
other risk factors.

In the logistic regression model, the presence of persistent
BHR of patients was significantly (p < 0.05) associated with
female gender, smoking at the occupational diagnosis phase, and
previous BHR at the time of occupational diagnosis (Table 4).
None of the studied covariates/cofactors (age, gender, smoking,
and GST and NAT genotypes) were associated with the BHR at
the time of occupational diagnosis. The GSTP1 genotype could
not be included in the regression model due to the low number of
the homozygous slow activity genotypes in the study population
overall, and especially because there were no carriers of the slow
activity genotype among the non-BHR patients.

Characteristics of Patients With the
Homozygous GSTP1 Slow Activity
Genotype
Of the patients with the GSTP1 slow activity genotypes, three
had been exposed to TDI, four to MDI, and one to HDI. All

patients with GSTP1 slow genotype were still working but were
not anymore exposed to di-isocyanates at their work places. The
mean follow-up duration after diagnosis phase was 11 (SD 5.1,
range 5–19) years for the carriers of the GSTP1 slow activity
genotype, which was exactly the same as for the fast, homozygote
or heterozygote genotype subjects (mean 11 years, SD 5.5 years,
range 1–22 years).

Four of the patients with GSTP1 slow genotype were
nonsmokers, three former smokers (mean pack-years 4.2, range
0.5–10.5), and three current smokers (mean pack years 13, range
10–20) based on the occupational diagnosis phase. The patients
with GSTP1 slow activity genotype had smoked considerably
less (mean pack-years 5.25, SD 7.0, range 0–20) than those
with the fast activity genotype (mean pack-years 8.37, SD 11.9,
range 0–51.3).

Gender was found to be associated with the BHR in the
present study population; half of the patients with the GSTP1
slow activity genotype were women, which exceeds the observed
relative frequency of this genotype in men.

All the patients with GSTP1 slow activity genotype were
already using or were prescribed to start inhaled corticosteroid
medication at the follow-up examinations. These patients also
needed peroral corticosteroid medication more often during
the year preceding the follow-up examinations (Table 5).
However, no straightforward dose-response relationship was
observed between the need for medication and different GSTP1
genotypes (Table 5).

The carriers of the GSTP1 slow activity genotype more often
exhibited characteristics of Th2 type cytokine profile compared
with the GSTP1 fast activity genotypes. For example, serum IL-
13 levels were significantly (p < 0.05) increased within these
patients compared to the patients with the GSTP1 fast activity
genotypes (Figure 1), and there was a statistically non-significant
(p = 0.08) trend for increased total serum IgE levels in these
patients (Figure 2).

Association Between FEV1% and GST and
NAT Genotypes at the Follow-Up
When the association between FEV1 percent of predicted value
(FEV1%) and theGST andNAT genotypes together with putative
modifying factors were studied with the generalized linear model
(Table 6), none of the studied genotypes were associated with
FEV1% when studied separately. However, the homozygous
GSTP1 slow activity genotype seemed tomodify the effect of BHR
and inhaled corticosteroid medication on follow-up FEV1%.
Paradoxically, the FEV1% values were better among GSTP1 slow
activity genotype carriers compared to patients with GSTP1
fast activity genotype, when BHR and regular corticosteroid
medication were taken into account in the analysis. At the time
of diagnosis, there were no significant association between the
studied genotypes and FEV1%.

DISCUSSION

We demonstrated an association between non-specific BHR and
the GSTP1 slow activity genotype (Val105/Val105) in patients
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TABLE 3 | Cross-tabulation of GST and NAT enzymes with bronchial hyperreactivity.

Outcome of BHR Occupational diagnosis phase Follow-up phase

No (n = 38) Yes (n = 53) Not tested p-value* No (n = 51) Yes (n = 49) Not tested p-value**

GSTM1 Null (n = 58) 27 26 5 Ns 27 29 2 <0.05

Positive (n = 47) 23 23 1 – 16 31 0

GSTM3 Low activity (n = 83) 41 38 4 Ns 34 48 1 Ns

High activity 9 11 2 – 9 12 1

GSTP1 Slow activity 5 4 1 Ns 0 10 0 <0.05

Fast activity# 45 45 5 – 43 50 2

GSTT1 Null 5 7 0 Ns 4 8 0 Ns

Positive# 45 42 6 – 39 52 2

NAT1 Slow activity 4 4 0 Ns 4 3 1 Ns

Intermediate activity 30 32 6 – 26 41 1

Fast activity 16 13 0 – 13 16 0

NAT2 Slow activity 26 25 2 Ns 23 30 0 Ns

Fast activity (wild type genotype) 24 24 4 – 20 30 2

The p-values (Pearson chi-square test) indicate significant association of the genotypes with presence of bronchial hyperreactivity at the occupational diagnosis phase (*) and follow-up

phase (**), #, positive homo- or heterozygote.

TABLE 4 | The association between BHR and putative modifying factors in a

logistic regression model (non-significant factors removed).

OUTCOME: FOLLOW-UP

BHR (n = 99)

OR (95%CI) Significance of

hypothesis test

Previous BHR at

the occupational

diagnosis phase

Positive (n = 47) 4.6

(1.6; 13.3)

<0.05

Not tested (n = 6) 10.4

(0.9; 115.9)

Ns

Negative (n = 46) 1

Gender Female (n = 21) 8.1

(1.9; 34.5)

<0.05

Male (n = 78) 1 –

Smoking at

occupational

diagnosis phase

Yes (n = 31) 4.8

(1.5; 15.8)

<0.05

Former (n = 19) 2.5

(0.7; 8.7)

Ns

No (n = 49) 1

GSTM1 Positive (n = 45) 1.7

(0.6–4.5)

Ns

Not known (n = 2) 1

(0–1)

Ns

Null (n = 52) 1

Age 1.06

(1.01–1.12)

<0.05

with DIA in the follow-up examinations on average 11 years
after the diagnosis phase. In contrast, no associations could
be observed between BHR and GST or NAT genotypes at the
diagnosis phase.

At the follow-up phase, BHR also associated with the
conventional risk-factors, smoking, gender, and previous BHR
measured at the diagnosis phase. Moreover, at this phase

the patients with the GSTP1 slow activity genotype exhibited
characteristics of Th-2 type immune response, and higher IL-13
and IgE levels compared to those with the GSTP1 fast activity
genotype. All 10 patients with the GSTP1 slow activity genotype
had BHR in follow-up examinations, which is unlike to occur
by chance. All these patients also carried GSTM3 low activity
genotype and unaltered GSTT1 gene. Furthermore, most (7 out
of 10) of them had GSTM1 null genotype (Table 5). This suggests
an interaction between GSTP1 and the other studied GST genes,
affecting on the observed statistical association between the
GSTP1 genotype and BHR.

Kamada et al. (31) demonstrated an association of GSTP1
slow activity genotype with childhood asthma. They also found
GSTM1 positive genotype with normal activity to modify this
association. Interestingly, the present results also suggest an
association of GSTP1 and GSTM1 genotypes with BHR. Differing
from their results of the earlier study (31), most patients in the
present study withGSTP1 slow genotype concurrently carried the
GSTM1 null genotype. Moreover, in the present study all patients
with GSTP1 slow genotype showed normal GSTT1 genotype. It is
therefore tempting to speculate that the normally acting variant
would participate in the development or pertinence of BHR. As
the positiveGSTT1 genotype is rather common, however, reliable
conclusions cannot be drawn from this association.

In contrast to the follow-up phase, we observed no significant
association between the reduced activity associated genotypes
and BHR at the diagnostic phase. Interestingly, in the follow-
up phase, BHR and signs of inflammation in carriers of GSTP1
slow activity genotype were present despite ongoing treatment
with asthma medication, suggesting that chronic inflammation
had developed in their bronchi more often than in subjects with
unaltered activity associatedGSTP1 genotypes. This also suggests
that the associations of the low activity GST variants with BHR
or asthma cannot always be documented, but it can be seen when
the conditions are proper to call these latent properties forth.
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TABLE 5 | Potential interacting factors, smoking, and medications of patients with different GSTP1 genotypes during the follow-up and interaction between GSTP1 and

other GST genes and NAT genes.

GSTP1

“slow”

GSTP1

“heterozygous

fast”

GSTP1

“homozygous

fast”

Total Statistical

significance

USE OF MEDICATION DURING FOLLOW UP AND SMOKING HABITS

Short-acting beta agonists Yes 7 21 26 54 Ns

No 3 27 21 51

Inhaled steroids Yes 7 12 20 39 <0.05

No 3 36 27 66

Long-acting beta agonists Yes 1 5 5 11 Ns

No 9 43 42 94

Anti-inflammatory (NSAID)

medication

Yes 2 9 12 23 Ns

No 8 38 34 80

Corticosteroid medication

during the year preceding the

follow-up

Yes 3 2 4 9 <0.05

No 7 45 42 94

Smoking at occupational

diagnosis phase

Yes 3 14 15 32 Ns

No 4 28 22 54

Former 3 6 10 19

INTERACTION OF GENOTYPES

GSTM1 genotypes Null 7 28 23 58 Ns

Positive (hetero- or

homozygous)

3 20 24 47

GSTM3 genotypes Low activity 10 34 39 83 Ns

High activity 0 14 8 22

GSTT1 genotypes Null 0 10 2 12 <0.05

Positive (hetero- or

homozygous)

10 38 45 93

NAT1 genotypes Low activity 0 4 4 8 Ns

Intermediate activity 8 31 29 68

High activity 2 13 14 29

NAT2 genotypes Low 3 23 27 53 Ns

High 7 25 20 52

The p-values (Pearson chi-square test) indicate differences in use of asthma medication and smoking (above) and interaction of the genotypes (lower).

To date, a large number of studies have been conducted on
non-occupational or occupational asthma, with varying results
on the association of GST genotypes with risk of developing
asthma or BHR (32–35). Increased risk between GST genotypes
and development of asthma, BHR, wheezing or IgE mediated
inflammation (24, 26, 27, 35) and even an additive effect of
GSTT1 and GSTP1 low activity genotypes in the development of
asthma have also been suggested (32). However, there are also
numerous studies suggesting that GSTP1 slow activity variant
protects from developing asthma or BHR (22, 23, 25, 36–40),
and several studies have found no association between the GST
genotypes and BHR or asthma (33, 34, 41–43). The present
results might offer an explanation at least to some of these
variable results.

The prevalence of the low activity associated gene variants
or distribution of the GST’s in the lungs may also depend on

ethnicity. In a meta-analysis, increased risk for asthma was found
in the presence of the GSTM1 and GSTT1 low activity genotypes,
the risk varying depending on ethnicity (35). One explanation for
the possible ethnic differences could be dissimilar prevalence of
detoxifying enzymes with low activity in different ethnic groups.
For example, the prevalence of GSTM1 null genotype has been
found to vary between 26 and 48%, GSTT1 null from 20 to 46%,
the homozygous fast activity variant GSTPI Ile/Ile between 29
and 49%, and the slow activity Val105/Val105 genotype between
7 and 22% (44) in different ethnicities. Among the present study
subjects, all of whom were of Finnish descent, the prevalence of
the GSTP1 fast activity and slow activity genotypes were about 45
and 10%, respectively, which are in line with previous findings in
Finnish population (45).

Our patients with GSTP1 slow activity genotype showed
increased IL-13 levels, which is related to TH2-type cytokine
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FIGURE 1 | The Serum IL-13 levels of the patients with GSTP1 slow activity genotype compared with those with homozygous fast activity and heterozygous fast

activity genotypes. Boxplots with median (line) and respective 25 and 75 percentiles as well as outliers with circles are given. P-value have been received with the

Kruskal–Wallis test.

FIGURE 2 | The total IgE levels of the patients with GSTP1 slow activity genotype compared with those with homozygous fast activity and heterozygous fast activity

genotypes. Boxplots with median (line) and respective 25 and 75 percentiles are given, outliers indicated with circles and asterisks. P-value has been received with the

Kruskal–Wallis test.

profile suggesting permanent asthmatic inflammation in those
with GSTP1 slow genotype. In an earlier study, the GSTP1
slow activity genotype was found to be associated with increase
of several acute phase cytokines (TNF-a, IL-6, CXCL8, IL-
12, CCL11, thromboxane B2) and immunoglobulin E when
studied after specific allergen challenge, but no association
between BHR and GSTP1 genotype was observed (36).
Also, association of GSTP1 slow genotype with allergic
asthma or IgE- mediated reactions have earlier been
suggested (26, 34).

Environmental exposure, e.g., traffic-related air pollution, has
been suggested to be involved in the development of bronchial
inflammation leading to BHR or asthma in the presence of low
activity enzyme variants of the detoxifying enzymes (24, 34).
Also smoking of cigarettes causes increased exposure to, e.g.,
superoxide, hydrogen peroxide, nitric oxide or nitrites (46),
which precipitates the development of bronchial inflammation
leading to asthma or BHR in subjects with low activity variants of
polymorphic detoxifying enzymes. In this study, a slight majority
(60%) of the patients with GSTP1 slow activity genotype were
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TABLE 6 | The effect of significant predictive factors on follow-up FEV1% in the regression model.

OUTCOME: FEV1% AT FOLLOW-UP (n = 99) Estimated effect size

(95%CI)

Estimated marginal

mean (95%CI)

Significance of

hypothesis test*

BHR Yes (n = 58) −13

(−19; −8)

89

(85; 93)

<0.001

Not tested (n = 2) −2 (−21;16) 100 (82; 118) NS

No (n = 39) 0 102

(96; 108)

–

Inhaled glucocorticoid

medication

Yes (n = 33) −13

(−19; −8)

90

(83; 98)

<0.001

No (n = 66) 0 104

(96; 112)

–

GSTP1 Fast activity

(hetero-/homozygote)

(n = 89)

−14 (−23; −5) 90

(84; 96)

<0.05

Slow activity (n = 10) 0 104

(93; 114)

–

*Bonferroni correction in multiple hypothesis testing.

current or ex-smokers compared to the whole study population
(33%) or to the fast genotype (normal and intermediate) patients
(47%). However, those with normal enzyme activity had smoked
more than those with the slow enzyme activity, although the
difference did not reach statistical significance. The highest pack-
years (up to 50) were found in the patients with the fast activity
genotype. This suggests that the study subjects were similarly
exposed to smoking, and therefore it is not probable that smoking
would be a crucial reason for the slow activity genotype subjects
to develop BHR.

One limitation of the study is that from the follow-up
examinations no exact data on smoking habits were available for
the whole study population. From the present patient material,
there was smoking data available only from the follow-up
visits of 15 patients from Piirilä et al. (13), three of whom
were nonsmokers, five current smokers, and five had stopped
smoking before the present studies, basically because of asthma
symptoms. The smoking status of them remained similar during
the follow-up.

In Finland, patients with suspected asthma are first studied in
communal health care centers or hospitals, and they also often
have been diagnosed to have asthma by these authorities. If their
asthma is suspected to be work-related, it may take even several
years before the patient gets to FIOH to be studied if their asthma
is work-related. Diagnostics of occupational chemical induced
asthma are concentrated to FIOH Helsinki, where the diagnosis
is based on specific challenge testing of the chemicals, to which
the workers have been exposed to. Because of asthma symptoms
or earlier diagnosis of asthma, the patients often have stopped
smoking already before they have been examined at FIOH. The
patients in the present study had suffered from asthma in mean
2.5 years (SD 3.3 years, range 1–20 years) before the diagnosis
of occupational asthma. Therefore, since the patients in this
study had long been suffering from respiratory symptoms or
had received asthma diagnosis before the occupational studies,
it is not very likely that they changed their smoking habits after

the diagnosis of occupational asthma, although the possibility
remains that some of them may have quitted smoking also after
the occupational diagnosis. Even more unlikely is that any of
the non-smoking subjects had begun smoking after receiving the
occupational diagnosis. Thus, the missing smoking information
at the follow-up period is affecting the relative frequencies of
smokers and former smokers but not that of non-smokers.
From this perspective, it was reasonable to use the smoking
status of diagnosis period also in the analysis of follow-up of
BHR or FEV%, and we consider that the smoking habits at the
occupational diagnosis phase could be a good approximation of
the smoking habits also at the control phase.

The relatively small study size also is a limitation of the
study, e.g., by restricting us from developing regression
models in data calculation because all patients with slow
activity genotype were hyperreactive. However, results
from the cytokine and IgE analysis as well as use of
asthma medication support the observed associations
between low activity genotypes and BHR. In addition,
there was a slight dominance of females among the
study subjects, but as far as we know there has not been
suggestion on gender dependence of these associations in
the literature.

To summarize, in this study an association between the
GSTP1 slow activity genotype and BHR in DIA patients was
found, with suggestion of a simultaneous action of other
reduced or normal activity GST-genotypes. Also, the Th2 type
inflammation was found to be associated with GSTP1 slow
activity genotype. The associations, however, could be recorded
only at the follow-up phase when the subjects were not any
more exposed to di-isocyanates, and used asthma medication.
The results suggest that the presentation of the associations
of the low activity enzyme GST variants with BHR or asthma
may be a dynamic process changing according to treatment,
smoking or environmental factors, or may be associated with
chronic inflammation. To the best of our knowledge, this is a
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novel finding, which could offer one explanation for the vast
variability of the reported associations in the results found
between the lowered activity associated GST genotypes and
BHR or asthma. We therefore consider that the present results
would give important new aspects to address significance of the
polymorphic detoxifying enzymes related to BHR or asthma.
However, studies with sufficiently large sample sizes are needed to
confirm the present findings and to promote our understanding
about the complicated interactions between the different
enzymes involved in the defense against oxygen radicals in
the lungs.
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