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Abstract: Diabetes mellitus (DM) is a chronic metabolic disorder that threatens human health. Medic-
inal plants have been a source of wide varieties of pharmacologically active constituents and used
extensively as crude extracts or as pure compounds for treating various disease conditions. Thus, the
aim of this study is to assess the anti-hyperglycemic and anti-hyperlipidemic effects and the modes
of action of the aqueous extracts of the fruits and seeds of Balanites aegyptiaca (B. aegyptiaca) in nicoti-
namide (NA)/streptozotocin (STZ)-induced diabetic rats. Gas chromatography–mass spectrometry
analysis indicated that 3,4,6-tri-O-methyl-d-glucose and 9,12-octadecadienoic acid (Z,Z)- were the
major components of the B. aegyptiaca fruit and seed extracts, respectively. A single intraperitoneal
injection of STZ (60 mg/kg body weight (b.w.)) 15 min after intraperitoneal NA injection (60 mg/kg
b.w.) was administered to induce type 2 DM. After induction was established, the diabetic rats were
treated with the B. aegyptiaca fruit and seed aqueous extracts (200 mg/kg b.w./day) via oral gavage
for 4 weeks. As a result of the treatments with the B. aegyptiaca fruit and seed extracts, the treated
diabetic-treated rats exhibited a significant improvement in the deleterious effects on oral glucose
tolerance; serum insulin, and C-peptide levels; liver glycogen content; liver glucose-6-phosphatase
and glycogen phosphorylase activities; serum lipid profile; serum free fatty acid level; liver lipid
peroxidation; glutathione content and anti-oxidant enzyme (glutathione peroxidase, glutathione-S-
transferase, and superoxide dismutase) activities; and the mRNA expression of the adipose tissue
expression of the insulin receptor β-subunit. Moreover, the treatment with fruit and seed extracts also
produced a remarkable improvement of the pancreatic islet architecture and integrity and increased
the islet size and islet cell number. In conclusion, the B. aegyptiaca fruit and seed aqueous extracts
exhibit potential anti-hyperglycemic and anti-hyperlipidemic effects, which may be mediated by
increasing the serum insulin levels, decreasing insulin resistance, and enhancing the anti-oxidant
defense system in diabetic rats.

Keywords: NA/STZ-induced diabetes mellitus; Balanitis aegyptiaca; fruit; seed; aqueous extracts

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic syndrome with a number of different
etiologies. It severely affects the life of patients and heightens the risk of developing other
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diseases [1]. It is characterized by abnormal carbohydrate, lipid, and protein catabolism
and anabolism due to insulin resistance or hypoinsulinism [2]. The recent statistics from
the International Diabetes Federation (IDF) indicated that approximately 463 million adults
between the ages of 20 and 79 years have diabetes, most of whom live in poor and devel-
oping countries, and this is expected to increase to 700 million by 2045 [3]. Many factors
contribute to this increasing prevalence of DM, including population growth, urbanization,
nutritional transition, physical inactivity, and dietary change [4,5].

Although the existing antidiabetic synthetic drugs have several benefits, they are
accompanied by many adverse side effects [6]. Thus, alternative antidiabetic agents with
less or no hazardous side effects are needed [6–8]. Recently, new active medicines have
been extracted from plants and have antidiabetic activity with more effectiveness than oral
chemical hypoglycemic drugs used in proven therapy [9]. Medicinal plants contain various
bioactive compounds that have multiple activities in insulin production, insulin action, or
both [10].

Eskander and WonJun described several types of Egyptian plant and herb prescriptions
for the treatment of DM, and these belong to various families [11]. Balanites aegyptiaca
(L.) Delile, which belongs to the Zygophyllaceae family, is used traditionally in African
countries as an antihelmintic and in the treatment of jaundice [12,13]. In Egyptian folkloric
medicine, the fruit is used as an oral anti-hyperglycemic agent [14], and herbalists in the
Egyptian market sell the fruits as an antidiabetic agent. Nevertheless, the quality control of
such herbal products remains a great challenge. The aqueous extract of the mesocarp of the
B. aegyptiaca fruit exhibited antidiabetic activities in streptozotocin (STZ)-induced diabetic
mice and rats [14,15], and several saponins were isolated from the mesocarp [14,16,17].
Moreover, the B. aegyptiaca seed kernel contains a high amount of oil and protein, which
differs from one source to another [18].

Therefore, the aims of this study are to evaluate the effects of aqueous extracts of the
B. aegyptiaca fruit and seed on the glycemic state and lipid profile and to indicate their
probable modes of action in nicotinamide (NA)/STZ-induced diabetic rats.

2. Materials and Methods
2.1. Chemicals

NA, STZ [2-deoxy-2-(3-methyl-3nitrosoureido)-D-glycopyranoside], glucose-6-phosphate,
glucose-1-phosphate, anthrone, reduced glutathione (GSH), malondialdehyde (MDA), and
1-Chloro-2,4-dinitrobenzene were purchased from Sigma-Aldrich Chemical Co., St Louis,
MO, USA. All other chemicals were of analytical grade and were obtained from standard
commercial supplies.

2.2. Experimental Animals

Male Wistar rats weighing approximately 110–140 g were used as experimental an-
imals in the present study. The rats were housed in standard polypropylene cages and
placed under a regulated room temperature of 22 ± 2 ◦C and humidity of 55 ± 5% with
a 12:12 light–dark cycle. They were fed with a standard diet of known composition and
water ad libitum. All animal procedures were in accordance with the ethical guidelines
for the use and care of animals of the Experimental Animal Ethics Committee, Faculty of
Science, Beni-Suef University, Egypt (Ethical Approval Number: BSU/FS/2015/17). All
attempts were made to minimize the number and pain of used animals.

2.3. Induction of DM

After fasting for 16 h, DM was experimentally induced in male Wistar rats via an
intraperitoneal (IP) injection of 60 mg NA/kg body weight (b.w.) to 16-h fasted rats before
the IP injection of 60 STZ mg/kg b.w. [19]. The rats were tested for serum glucose levels
10 days after STZ was injected. The overnight-fasted (10–12 h) animals were given glucose
(3 g/kg b.w) via an intragastric tube. The blood samples were taken from the lateral tail
vein after 2 h of oral administration, left to coagulate, and centrifuged. The serum glucose
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level was then measured. The experiment included rats with a serum glucose level between
180 and 300 mg/dL, after 2 h of glucose intake, whereas the others were excluded.

2.4. Preparation of the B. aegyptiaca Fruit and Seed Aqueous Extracts

The B. aegyptiaca fruits and seeds were powdered using an electrical grinder. The fruit
or seed powders were infused in boiled distilled water (200 mg/10 mL) for 15 min. The
obtained extracts were filtered pending their use via oral gavage.

2.5. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

Both the B. aegyptiaca fruit and seed aqueous extracts were phytochemically analyzed
via GC-MS (Producer, City, Country) according to the method described in our previous
publication [20].

2.6. Experimental Design and Blood and Tissue Sampling

The rats were allocated into four groups of six rats (Scheme 1):
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Group I (Normal group): This group was assigned as the normal control group, and
rats included in this group was given distilled water daily (5 mL/kg b.w./day) via oral
gavage for 4 weeks.

Group II (Diabetic control): This group was assigned as the diabetic control group,
and the diabetic rats within this group were given distilled water daily (5 mL/kg b.w./day)
via oral gavage for 4 weeks.

Group III (Diabetic rats treated with the B. aegyptiaca fruit extract): This group consisted
of diabetic rats that were treated daily with B. aegyptiaca fruit extract at a dose level of
200 mg/kg b.w./day via oral gavage for 4 weeks.

Group IV (diabetic rats treated with the B. aegyptiaca seed extract): This group consisted
of diabetic rats that were treated daily with B. aegyptiaca seed extract at a dose level of
200 mg/kg b.w./day via oral gavage for 4 weeks.

At the day before sacrifice, oral glucose tolerance (OGT) test (OGTT) was performed
by administering glucose solution (3 g/kg b.w.) to overnight-fasted rats via oral gavage.
Successive blood samples were then obtained at 0, 30, 60, 90, and 120 min. Blood sam-
ples were left to coagulate and centrifuged. Sera were separated via centrifugation at
3000 rpm for 15 min, and the serum glucose levels were determined. One day after the
end of the experiment, blood samples were collected from the jugular vein under diethyl
ether inhalation. Moreover, the rats were euthanized and dissected for the excision of
various organs.
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2.7. Blood Sampling and Tissue Sampling

The blood obtained from the jugular vein of each rat was left to coagulate at room
temperature. Serum was separated for 15 min via centrifugation at 3000 rpm and stored
at −20 ◦C pending its use for the determination of insulin and C-peptide levels as well
as other biochemical parameters. The rats were rapidly dissected. Visceral adipose tis-
sues were excised and kept at −70 ◦C until use for ribonucleic acid (RNA) extraction
and the detection of the messenger RNA (mRNA) of adiponectin and resistin via reverse
transcription-polymerase chain reaction (RT-PCR). The liver was excised for the determi-
nation of oxidative stress parameters and glycogen content and glycogen metabolizing
enzymes. The pancreas was also excised for histological investigation.

2.8. Biochemical Analysis

The serum glucose levels were measured using the reagent kits purchased from
Spinreact Company (Spain) using the method of Trinder et al. [21]. The serum insulin level
was measured using sandwich enzyme-linked immunosorbent assay (ELISA) using kits
purchased from Linco Research, USA, in accordance with the manufacturer’s instructions.
Similarly, the serum C-peptide level was measured using the ELISA kits purchased from
Linco Research, USA, in accordance with the manufacturer’s instructions. Homeostatic
model assessment (HOMA)-insulin resistance (IR), HOMA-insulin sensitivity (IS) [22], and
HOMA-β cell function [23] were calculated using the following formulas, respectively:

HOMA-IR = (fasting insulin [µIU/mL] × fasting glucose [mg/dL])/405

HOMA-IS = 10,000/(fasting insulin [µIU/mL] × fasting glucose [mg/dL])

HOMA-β cell function = (20 × fasting insulin [µIU/mL])/(fasting glucose [mg/dL/18] − 3.5).

The liver glycogen content was measured using the method of Seifter et al. [24]. The
liver glucose-6-phosphatase and glycogen phosphorylase activities were measured using
laboratory-prepared chemicals and the methods of Begum et al. [25] and Stallman and
Hers, respectively [26]. The serum cholesterol level was assayed using the method of Allain
et al. and the reagent kits purchased from Spinreact Company (Spain) [27].

The serum triglyceride level was determined using the reagent kit purchased from
Reactivos Spinreact Company (Girona, Spain) and Fossati and Prencipe’s method [28]. The
serum high density lipoprotein (HDL)-cholesterol level was measured using the method of
Allain et al. (1974) and the reagent kit obtained from Spinreact Company, Spain [27]. The
serum low density lipoprotein (LDL) cholesterol level was calculated using the formula of
Friendewald et al. [29]:

LDL cholesterol = total cholesterol − triglycerides/5 − HDL cholesterol

Serum very low density lipoprotein (vLDL)-cholesterol was calculated using Norbert’s
formula [30]:

vLDL cholesterol conc. = triglycerides/5

The serum free fatty acid (FFA) level was determined using Duncombe’s method [31].

2.9. RNA Isolation and RT-PCR

RNA was isolated from visceral adipose tissue using the GeneJet RNA purifica-
tion kit produced by Thermo Fisher Scientific Inc., Branchburg, NJ 08876, USA, accord-
ing to the procedures of Chomzynski and Sacchi [32] and Boom et al. [33]. The iso-
lated RNA was quantified and qualified [34,35]. Thermo Scientific Verso 1-Step RT-
PCR ReddyMix was used to produce cloned DNA that was amplified in the presence
of specific forward and reverse primers using a Techne thermal cycler, Cole-Parmer, IL
60061, USA [35]. The primer pair sequences for the insulin receptor β-subunit were F:
5′CTGGAGAACTGCTCGGTCATT3′ and R: 5′GGCCA-TAGACACGGAAAAGAAG3′ [36],
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and those for β-actin re F: 5′TCACCCTGAAGTACCCCATGGAG3′ and R: 5′TTGGCCTTGG
GGTTCAGGGGG3′ [37,38].

2.10. Determination of Oxidative Stress and Anti-Oxidant Defense Parameters

The glutathione content (GSH) in the liver was determined [39]. Moreover, glutathione-
S-transferase (GST) activity in the liver was measured using Mannervik and Gutenberg’s
method [40]. The liver glutathione peroxidase (GPx) activity was determined using the
method of Matkovics et al. [41]. The superoxide dismutase (SOD) and lipid peroxidation
(LPO) were determined using the methods of Marklund and Marklund [42] and Preuss
et al. (1998), respectively [43].

2.11. Histological Investigation

The pancreas from each rat was rapidly excised after dissection and then fixed in 10%
neutral buffered formalin for 24 h. The organs were routinely processed and sectioned at a
thickness of 4 to 5 µm. The sections of the pancreas were stained with hematoxylin and
eosin [44,45].

2.12. Statistical Analysis

The results were analyzed using the PC-STAT Program [46]. One-way analysis of
variance (ANOVA) was followed by the least significant difference (LSD) test to compare
various groups. Data were described as the mean ± SE. A p value of >0.05 was considered
nonsignificantly different, whereas p values of <0.05 and <0.01 were considered significant
and highly significant, respectively.

3. Results
3.1. GC-MS Analysis

The GC-MS analysis of the B. aegyptiaca fruit and seed extracts showed the presence of
several phytocomponents. Tables 1 and 2 and Figures 1 and 2 show the identified phyto-
components with their retention time, which was expressed as the peak area %. In the fruit
extract, compounds 3,4,6-tri-O-methyl-d-glucose (52.55%) and triethylphosphine (9.31%)
were the most abundant. Conversely, in the seed extract, compounds 9,12-octadecadienoic
acid (Z,Z)- (38.27%), 8-dodecen-1-ol, (Z)- (15.09%), 2,3-dihydroxypropyl ester (11.47%), and
H-cyclopenta [b]quinoxaline-1,2,3trione (11.39%) were the most abundant.

Table 1. Chemical groups and compounds present in the B. aegyptiaca fruit aqueous extract.

Number (RT) Retention Time Compound Name Area% (Higher than 1%)

1 2.123 Hydrazine, 1,1-dimethyl- 4.31
2 3.008 Butanal, 2-methyl- 3.04
3 3.043 Butanal, 2-methyl- 1.89
4 3.363 Propanoic acid, propyl ester 3.41
5 3.907 Glyceraldehyde 5.39
6 4.250 2-Furanmethanol 2.55
7 4.645 Isopropyl isothiocyanate 2.64
8 4.889 Triethylphosphine 9.31
9 9.454 2,4(3H,5H)-Furandione 1.46
10 9.744 Pyridine, 4-chloro-2,6-dimethyl- 0.96
11 18.561 3,4,6-Tri-O-methyl-d-glucose 52.55

12 21.667 Perhydrohistrionicotoxin-2-thione,
2-depentyl- 2.07

13 23.758 Propyl 11,12-methylene-octadecanoate 3.06
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Table 2. Chemical groups and compounds present in the B. aegyptiaca seed aqueous extract.

Number Retention Time Compound Name Area% (Higher than 1%)

1 4.263 Butane, 2-methyl- 1.67
2 20.538 -3,4,6Tri-O-methyl-d-glucose 2.59

3 24.018 H-Cyclopenta
[b]quinoxaline-1,2,3trione 11.39

4 25.505 -9,12Octadecadienoic acid (Z,Z)- 2.47
5 25.568 13-Octadecenoic acid, methyl ester 1.62
6 26.152 9,12-Octadecadienoic acid (Z,Z)- 38.27
7 26.192 8-Dodecen-1-ol, (Z)- 15.09

8 26.281 9,12-Octadecadienoic acid (Z,Z)-,
2,3-dihydroxypropyl ester 11.47

9 26.339 Octadec-9-enoic acid 6.06

10 26.371
Benzoic acid,

4-(4-hydroxybenzylidenamino)-,
propyl ester

6.79
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3.2. Effects on OGT

The OGT curve of the diabetic rats exhibited a significant (p < 0.01; LSD) elevation
at all tested periods (0, 30, 60, 90, and 120 min) after oral glucose intake compared with
that of normal animals. The oral administration of B. aegyptiaca fruit and seed extracts to
diabetic rats induced a potential amelioration of elevated values at all tested points of the
OGT curve. However, the seed extract was more potent at 30 and 60 min after oral glucose
intake (Figure 3). The F-probability of OGTT data indicated that the effect between groups
was very highly significant (p < 0.01).
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zoic acid, 4-(4-hydroxybenzylidenamino)-, propyl ester.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

3.2. Effects on OGT 
The OGT curve of the diabetic rats exhibited a significant (p < 0.01; LSD) elevation 

at all tested periods (0, 30, 60, 90, and 120 min) after oral glucose intake compared with 
that of normal animals. The oral administration of B. aegyptiaca fruit and seed extracts to 
diabetic rats induced a potential amelioration of elevated values at all tested points of 
the OGT curve. However, the seed extract was more potent at 30 and 60 min after oral 
glucose intake (Figure 3). The F-probability of OGTT data indicated that the effect be-
tween groups was very highly significant (p < 0.01). 

 
Figure 3. Effects of the B. aegyptiaca fruit and seed extracts on OGTT in NA/STZ-induced diabetic 
rats. 

3.3. Effects on Serum Insulin and C-Peptide Levels 
As indicated in Table 3, the diabetic rats showed a highly significant decrease (p < 

0.01; LSD) in the insulin and C-peptide levels in serum. The treatments of the diabetic 
rats with the fruit and seed extracts caused a highly significant increase (p < 0.01; LSD) in 
these lowered levels. The diabetic rats treated with the B. aegyptiaca fruit extract exhibit-
ed no significant effects on the insulin and C-peptide levels in comparison with the dia-
betic rats treated with the B. aegyptiaca seed extract. However, the effects of the fruit ex-
tract was more potent in increasing the serum insulin levels. The F-probability indicated 
that the general effect between groups was very highly significant (p < 0.01). 

Table 3. Effects of the B. aegyptiaca fruit and seed extracts on the serum insulin and C-peptide levels 
in NA/STZ-induced diabetic rats. 

Parameter
Group Insulin (μIU/mL) C-Peptide (pg/mL) 

Normal 2.56 ± 0.51 a 4.7 ± 0.13 a 
Diabetic control 1.00 ± 0.78 c 1.19 ± 0.13 c 
Diabetic treated with fruit extract 1.71 ± 0.11 b 3.47 ± 0.44 b 
Diabetic treated with seed extract 1.56 ± 0.11 b 3.50 ± 0.22 b 

- Data were expressed as the mean ± SE. The number of animals in each group was six. -Means, 
which have different superscript symbols (a, b, and c), were significantly different at p < 0.05. 

0
50

100
150
200
250
300
350

0 30 60 90 120G
lu

co
se

 c
on

ce
nt

ra
tio

n 
(m

g∕d
l)

Times (minutes)

Normal
Diabetic control
Diabetic treated with fruit exctract
Diabetic treated with seed extract

Figure 3. Effects of the B. aegyptiaca fruit and seed extracts on OGTT in NA/STZ-induced diabetic rats.
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3.3. Effects on Serum Insulin and C-Peptide Levels

As indicated in Table 3, the diabetic rats showed a highly significant decrease (p < 0.01;
LSD) in the insulin and C-peptide levels in serum. The treatments of the diabetic rats with
the fruit and seed extracts caused a highly significant increase (p < 0.01; LSD) in these
lowered levels. The diabetic rats treated with the B. aegyptiaca fruit extract exhibited no
significant effects on the insulin and C-peptide levels in comparison with the diabetic rats
treated with the B. aegyptiaca seed extract. However, the effects of the fruit extract was more
potent in increasing the serum insulin levels. The F-probability indicated that the general
effect between groups was very highly significant (p < 0.01).

Table 3. Effects of the B. aegyptiaca fruit and seed extracts on the serum insulin and C-peptide levels
in NA/STZ-induced diabetic rats.

Group
Parameter

Insulin (µIU/mL) C-Peptide (pg/mL)

Normal 2.56 ± 0.51 a 4.7 ± 0.13 a

Diabetic control 1.00 ± 0.78 c 1.19 ± 0.13 c

Diabetic treated with fruit extract 1.71 ± 0.11 b 3.47 ± 0.44 b

Diabetic treated with seed extract 1.56 ± 0.11 b 3.50 ± 0.22 b

- Data were expressed as the mean ± SE. The number of animals in each group was six. - Means, which have
different superscript symbols (a, b, and c), were significantly different at p < 0.05.

3.4. Effect on HOMA-IR Cell Function, HOMA-IS, and HOMA-β Cell Function

In diabetic rats, the HOMA-IS and HOMA-β cell functions were highly significantly
(p < 0.01; LSD) decreased, whereas HOMA-IR was highly significantly (p < 0.01; LSD)
increased. The treatment of diabetic rats with B. aegyptiaca fruit and seed extracts induced a
highly significant increase in HOMA-β cell function and HOMA-IS. In contrast, HOMA-IR
was highly significantly decreased after the treatments with the B. aegyptiaca fruit and
seed extracts.

Although the effects of the B. aegyptiaca fruit and seed extracts on HOMA-IR and
HOMA-IS were more or less similar, the effects of the fruit extract on HOMA-β cell function
was more potent than that of the seed extract (Table 4). One-way ANOVA revealed that the
effect between groups on the HOMA-IR, HOMA-IS, and HOMA-β cell function was very
highly significant (p < 0.01; F-probability).

Table 4. Effects of the B. aegyptiaca fruit and seed extracts on HOMA-IR cell function, HOMA-IS, and
HOMA-β cell function in NA/STZ-induced diabetic rats.

Group
Parameter

HOMA-IR HOMA-IS HOMA-β
Cell Function

Normal 0.37 ± 0.03 c 55.48 ± 2.23 a 55.50 ± 1.42 a

Diabetic control 0.51 ± 0.04 a 45.50 ± 0.66 b 2.71 ± 0.17 d

Diabetic treated with fruit extract 0.40 ± 0.03 b 55.00 ± 1.23 a 11.20 ± 0.90 b

Diabetic treated with seed extract 0.45 ± 0.03 b 53.33 ± 1.03 a 7.80 ± 0.39 c

- Data were expressed as the mean ± SE. The number of animals in each group was six. - Means, which have
different superscript symbols (a, b, c, and d c), were significantly different at p < 0.05.

3.5. Effects on Liver Glycogen Content and Glucose-6-phospatase and Glycogen
Phosphorylase Activities

The diabetic rats exhibited a highly significant (p < 0.01; LSD) depletion in liver
glycogen content and a highly significant (p < 0.01; LSD) elevation in liver glucose-6-
phosphatase and glycogen phosphorylase activities. The treatments with the B. aegyptiaca
fruit and seed extracts highly significantly improved (p < 0.01; LSD) the reduced liver
glycogen content of the diabetic rats and the elevated glucose-6-phosphatase and glycogen
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phosphorylase activities (Table 5). One-way ANOVA revealed that the effect between
groups on liver glycogen content and glucose-6-phosphatase and glycogen phosphorylase
activities was very highly significant (p < 0.01; F-probability).

Table 5. Effects of the B. aegyptiaca fruit and seed extracts on liver glycogen content and glucose-6-
phosphatase and glycogen phosphorylase activities in NA/STZ-induced diabetic rats.

Group

Parameter Liver Glycogen
(mg P liberated/g

Tissue/h)

Glucose-6-
phosphatase (mg Pi
liberated/g Tissue/h)

Glycogen
Phosphorylase (mg Pi
liberated/g Tissue/h)

Normal 54.55 ± 3.60 a 25.79 ± 1.53 b 22.78 ± 3.09 b

Diabetic control 8.10 ± 1.66 b 67.42 ± 3.38 a 41.85 ± 6.08 a

Diabetic treated with fruit extract 42.75 ± 2.91 a 28.02 ± 0.41 b 25.45 ± 4.95 b

Diabetic treated with seed extract 50.51 ± 3.60 a 31.45 ± 2.28 b 15.22 ± 2.20 b

- Data were expressed as the mean ± SE. The number of animals in each group was six. - Means, which have
different superscript symbols (a, b, and c), were significantly different at p < 0.05.

3.6. Effects on Serum Lipid Profile

The total cholesterol, triglycerides, LDL-cholesterol, vLDL- cholesterol, and FFA levels
in serum exhibited a highly significant elevation (p < 0.01; LSD) in diabetic rats compared
with those in the normal group. The treatment of diabetic rats with the B. aegyptiaca fruit
and seed extracts produced a highly significant improvement in the altered lipid profile in
the serum. Moreover, the HDL- cholesterol level was affected in an inverse pattern, as it
was highly significantly decreased (p < 0.01; LSD) in diabetic rats.

Conversely, the treatment with the fruit extract induced a significant increase (p < 0.01;
LSD) compared with the diabetic control, whereas the treatment with the seed extract
had no significant effect (p > 0.05; LSD) (Table 6). The seed extract was more effective in
decreasing the elevated total cholesterol and triglyceride levels in diabetic rats than the
fruit extract, whereas the fruit extract was more potent in decreasing the elevated LDL-
cholesterol, vLDL-cholesterol, and FFA levels and increasing the lowered HDL-cholesterol
level (Table 6). The F-probability revealed that the effect on serum lipid profile between
groups was very highly significant (p < 0.01).

Table 6. Effects of the B. aegyptiaca fruit and seed extracts on serum lipid profile and FFA level in
NA/STZ-induced diabetic rats.

Group

Parameter Total
Cholesterol

(mg/dL)

Triglycerides
(mg/dL)

LDL-
Cholesterol

(mg/dL)

HDL-
Cholesterol

(mg/dL)

vLDL-
Cholesterol

(mg/dL)
FFAs (mg/dL)

Normal 42.70 ± 1.34 c 35.66 ± 2.25 c 5.10 ± 2.10 c 31.30 ± 2.30 a 7.11 ± 0.33 c 5.10 ± 0.86 b

Diabetic control 79.40 ± 9.48 a 80.25 ± 15.30 a 37.48 ± 6.03 a 24.80 ± 2.80 b 16.08 ± 3.00 a 18.70 ± 2.7 a

Diabetic treated with fruit extract 59.70 ± 9.30 b 53.70 ± 2.83 b 13.18 ± 4.76 b 31.00 ± 2.10 a 8.11 ± 1.05 c 5.10 ± 0.70 b

Diabetic treated with seed extract 51.80 ± 9.70 bc 41.25 ± 5.34 c 15.94 ± 7.90 b 27.10 ± 0.80 b 10.71 ± 0.056 b 6.75 ± 1.80 b

- Data were expressed as the mean ± SE. The number of animals in each group was six. - Means, which have
different superscript symbols (a, b, and c), were significantly different at p < 0.05.

3.7. Effect on Insulin Receptor β-Subunit

The densitometric analysis of the electrophoretogram showed a highly significant
(p < 0.01; LSD) decrease in the mRNA expression of the adipose tissue insulin receptor
β-subunit in diabetic rats compared with that in the normal group. The treatment of
diabetic rats with the B. aegyptiaca fruit extract produced a highly significant (p < 0.01; LSD)
amelioration of the insulin receptor β-subunit mRNA expression (Figure 4), whereas the
treatment with the B. aegyptiaca seed extract did not show a significant effect (p > 0.05; LSD).
One-ANOVA indicated that the effect between groups on the mRNA expression of insulin
receptor β-subunit was highly significant (p < 0.01; F-probability).
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3.8. Effect on Oxidative Stress and Anti-Oxidant Defense Parameters

The liver LPO exhibited a highly significant (p < 0.01; LSD) increase in diabetic rats
compared with that in normal rats. The treatment with the B. aegyptiaca fruit and seed
extracts in diabetic rats resulted in a highly significant (p < 0.01; LSD) amelioration in LPO;
the effects of the fruit extract were the most potent.

The GSH content as well as the GPx, GST, and SOD activities showed a highly signifi-
cant (p < 0.01; LSD) decline in diabetic control rats compared with those in the normal rats.
The treatments with the B. aegyptiaca fruit and seed extracts successfully improved the GSH
content and GPx, GST (p < 0.01; LSD), and SOD activities (p < 0.05; LSD) (Table 7). While
the effects of the fruit and seed extracts on GSH content and anti-oxidant enzyme activities
were more or less similar, the seed extract was more potent in decreasing the elevated LPO.

Table 7. Effects of the B. aegyptiaca fruit and seed extracts on liver LPO, GSH content, and GPx, GST,
and SOD activities in NASTZ-induced diabetic rats.

Group

Parameter LPO
(nmole MDA/100 mg

Tissue/h)

GSH
(nmole/100 mg

Tissue)

GPx
(mU/100 mg

Tissue)

GST
(U/100mg Tissue)

SOD
(U/g Tissue)

Normal 67.17 ± 1.25 bc 13.30 ± 1.63 a 42.60 ± 5.1 a 12.65 ± 3.6 b 16.78 ± 1.59 a

Diabetic control 111.39 ± 7.57 a 6.10 ± 1.60 c 17.20 ± 5.1 c 6.57 ± 1.65 c 10.31 ± 1.58 c

Diabetic treated with fruit extract 68.75 ± 3.80 b 12.10 ± 1.54 ab 30.80 ± 4.6 b 16.54 ± 0.86 a 13.46 ± 2.55 b

Diabetic treated with seed extract 52.95 ± 5.821 c 11.20 ± 1.5 b 31.00 ± 2.5 b 16.43 ± 0.85 a 13.26 ± 2.08 b

- Data were expressed as the mean ± SE. The number of animals in each group was six. - Means, which have
different superscript symbols (a, b, and c), were significantly different at p < 0.05.

The F-probability indicated that the effect on the liver LPO, GSH content, and GPx,
GST, and SOD activities between groups was very highly significant (p < 0.01; F-probability)

3.9. Histological Changes in the Pancreas

The histopathological examination of the control pancreas sections showed closely
packed lobules of the pancreatic acini. The islet of Langerhans is composed of numerous
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compactly arranged cells (alpha, beta, and delta cells) occurring as dense cords (Figure 5;
Photomicrographs A and B). The diabetic control revealed the histopathological changes of
endocrine portions represented by a marked decrease in the size of the islets of pancreas
(pancreatic shrinkage) and decreased number of the cells.
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Figure 5. Photomicrographs of the H&E-stained pancreas of the normal (A,B), diabetic control (C,D),
and diabetic rats treated with the B. aegyptiaca fruit (E,F) and seed extracts (G,H). Photomicrographs A
and B show normal pancreatic lobules consisting of pancreatic acini and intact islets of Langerhans (IL)
with alpha (a), beta (b), and delta cells. Photomicrographs C and D show the islets of Langerhans with
the reduced size and smaller number of the cells; the islets exhibited necrosis (nc) and vacuolations
(v) (H&E stain: Scale bar = 50 µm). Photomicrographs E–H show considerable improvements in the
islets of Langerhans with a greater increase in the islet size and the number of islet cells.

The islets also exhibited cytoplasmic vacuolations (v) and necrosis (nc) (Figure 5; Pho-
tomicrographs C and D). The islets of Langerhans exhibited nearly normal and organized
architecture, and the necrotic and degenerative changes were markedly improved in rats
treated with the B. aegyptiaca fruit (Figure 5; Photomicrographs E and F) and seed extracts
(Figure 5; Photomicrographs G and H) compared with those in the diabetic control rats; the
seed extract was found to be the most potent.
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4. Discussion

DM is a group of metabolic diseases characterized by chronic hyperglycemia due
to defects in insulin secretion, insulin action, or both [47]. STZ is known for its selective
pancreatic islet β-cell cytotoxicity and has been frequently used to induce DM in animals.
NA/STZ-induced DM is selected to be a model of type 2 DM (T2DM) to assess the effects
of the B. aegyptiaca fruit and seed aqueous extracts. In this model, when NA is injected
prior to the administration of STZ, the severity of DM will be reduced to a certain extent,
leading to a T2DM-like condition with deteriorated IS [20,35,48–50].

Several traditional medicines have been discovered for DM. Isolated substances and
extracts isolated from various natural resources particularly plants have always been a
rich arsenal for the control and treatment of DM problems and complications [9]. Plants
have rich sources of antidiabetic as well as anti-hyperlipidemic and anti-oxidant sub-
stances, such as flavonoids, amino acids, gallotannins, and many other related polyphe-
nols [51]. B. aegyptiaca is a plant widely used as a hypoglycemic agent in Egyptian folkloric
medicine [15]. However, only few studies have investigated the antidiabetic effects and the
mechanisms of action of B. aegyptiaca, especially its seeds.

In the present study, GC-MS data presented in Tables 1 and 2 revealed the presence
of several active ingredients. In the B. aegyptiaca fruit aqueous extract, 3,4,6-tri-O-methyl-
d-glucose (52.55%) and triethylphosphine (9.31%) were the most abundant, whereas in
the seed aqueous extract, 9,12-octadecadienoic acid (Z,Z)- (38.27%), 8-dodecen-1-ol, (Z)-
(15.09%), 2,3-dihydroxypropyl ester (11.47%), and H-cyclopenta [b]quinoxaline-1,2,3trione
(11.39%) were the major components.

Many of the constituting ingredients of the B. aegyptiaca fruit and seed aqueous
extracts exhibit many biological activities. Of these, 9,12-octadecadienoic acid (Z,Z)-
have anti-inflammatory, hepatoprotective, cancer preventive, and hypocholesterolemic
effects [20,52,53]. The derivative 9-octadecenoic acid was reported to have antitumor and
anti-inflammatory activities [53]. Isothiocyanates have been demonstrated to have both
anti-inflammatory and antioxidant activities [54].

OGTT is a well-known and common assay used to determine the anti-hyperglycemic
activity of antidiabetic agents [55]. OGTT is considered the gold standard test for the
diagnosis of DM by the World Health Organization [56]. The data in the present study
revealed a marked increase in the serum glucose levels of the diabetic groups compared
with those of the normal rats. These findings are consistent with those of Akhani et al. [57],
Ahmed [58], Schaalan et al. [59], Ahmed et al. [60], Ahmed et al. [61], and Ali et al. [62].

The increase in glucose level may be due to the decreased glucose consumption in
the peripheral, muscle, and adipose tissues [63] and increased glycogen breakdown [64],
gluconeogenesis, and production of hepatic glucose [65]. Furthermore, Powers confirmed
that IR in T2DM induces an increase in blood glucose because of the same causes [66]. In
the present study, the treatment of diabetic rats with the B. aegyptiaca fruit or seed extracts
caused a potential improvement in OGT. The decrease in the elevated serum glucose levels
is in accordance with the results of Zaahkouk et al. [67], Helal et al. [68], and Al-Malki
et al. [69] who verified the anti-hyperglycemic effects of the B. aegyptiaca fruit.

The ameliorative effects of the B. aegyptiaca extracts may be associated with insuli-
nomimetic activities [70], stimulation and potentiation of insulin secretion, increased affinity
of insulin receptors [71], improved concentration of hepatic glycogen, accelerated glucose
metabolism, reduced production of intestinal glucosidase, and decreased gluconeogenesis
of the liver [15]. These actions may be attributed to the active constituting ingredients
found in the B. aegyptiaca fruit and seed extracts. In this regard, a previous publication
found that B. aegyptiaca may contain interketones, organic constituents, rutin, and oils
(fatty acids and volatile oils) present in the internal kernel according to the phytochemical
investigation [72].

Furthermore, Baragob et al. attributed the hypoglycemic effects of the aqueous extract
to its constituents, such as saponins, rutin, and organic constituents [73]. In the present
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study, the GC-MS analysis indicated the presence of many organic ingredients, which have
several biological activities, including antidiabetic potencies.

In the present study, the NA/STZ-induced diabetic rats exhibited a significant decrease
in serum insulin and C-peptide levels. It is important to note the relationship between
decreased insulin and C-peptide levels in diabetic rats and decreased size and number of
the islets of Langerhans that have a decreased number of β-cells, necrosis, and vacuolations.
These decreases are also correlated with the calculated HOMA-β cell function.

The administration of the B. aegyptiaca fruit and seed aqueous extracts produced a
significant increase in serum insulin and C-peptide levels of diabetic rats, and this finding is
consistent with that of Abou Khalil et al. [74], El-Bayomy et al. [75], and Hassan [76]. In this
regard, Abdel-Moneim [70] hypothesized that the hypoglycemic action of the B. aegyptiaca
aqueous extract stimulated the β-cells of the pancreatic islets to secrete insulin, potentiate
glucose-stimulated insulin secretion, and increase the number and sensitivity of insulin
receptors and post-receptor effects in peripheral tissues.

Furthermore, the B. aegyptiaca seeds contain diosgenin [77], which may be useful in
ameliorating the glucose metabolic disorder related with DM and obesity as reported by
Ulbricht et al. [78]. C-peptide is formed during insulin biosynthesis, and the two peptides,
insulin and C-peptide, are then released to the circulation in equal amounts [79]. An
increase in C-peptide levels in diabetic rats treated with B. aegyptiaca corresponds well
with the increase in insulin secretion (endogenous secretion), which is possibly due to the
regeneration of the β-cells of the islets of Langerhans.

This association is demonstrated in the present study by the significant increase in
HOMA-β cell function and marked improvement in the histological architecture and
number of β cells of the pancreatic islets as a result of the treatment with the B. aegyptiaca
fruit and seed extracts.

The level of liver glycogen may be regarded as the best marker for evaluating the
anti-hyperglycemic activity of any drug [80]. The present study showed that the diabetic
rats exhibited a significant depletion of liver glycogen content correlated with a marked
increase of glucose-6-phosphatase and glycogen phosphorylase activities. These results
are consistent with those of Sundaram et al. [81] and Mahmoud et al. [82]. In the present
study, the treatment with the B. aegyptiaca fruit and seed extracts significantly improved
the lowered liver glycogen content and the elevated hepatic glucose-6-phosphatase and
glycogen phosphorylase activities.

These ameliorations may be secondary to the increase in the insulin levels in the blood
and the enhanced IS. These results are consistent with those of Helal et al. [68] who found
that the regeneration of β-cells led to an increase in the insulin level and improvement in
IS, both of which can lower the glucose levels in the blood. The present results support
this finding as the treatment of diabetic rats with the B. aegyptiaca fruit and seed extracts
significantly increased the HOMA-β cell function and HOMA-IS but significantly decreased
HOMA-IR (Figure 6).

Hypoinsulinemia and IR clearly shown in untreated diabetic rats are considered
the main cause of the recorded dyslipidemia represented by hypertriglyceridemia and
hypercholesterolemia associated with the increased production of vLDL cholesterol and
LDL cholesterol and decreased HDL cholesterol level. These findings are consistent with
those of Abdel-Moneim et al. [83] who reported a marked increase in the levels of serum
triglycerides, cholesterol, and LDL cholesterol of diabetic rats. This increase may be due to
a decrease in lipoprotein lipase function caused by insulin deficiency [84].

In addition, Goodman and Gilman [85] reached the same results, which were explained
by inhibition of lipoprotein lipase transcription inside the capillary endothelium as a result
of insulin deficiency. The data of the present study are consistent with those of Harvey
and Ferrier [86] who reported that the metabolic abnormalities of T2DM as a result of
IR lead to dyslipidemia in the liver where fatty acids are converted into triacylglycerol,
which, in turn, are packaged and secreted in vLDL. Both accumulations of lipids, especially
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triglycerides, and reduced anti-oxidant activity contribute to the development of oxidative
stress in diabetic rats [87].
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The results of the present study are consistent with those of previous studies [88–90],
which revealed a reduction in the HDL cholesterol level in the diabetic control group. The
present results of the serum lipid profile are consistent with the findings of Stanfield [91]
who stated that DM increases the number of LDL particles that transport lipids, includ-
ing cholesterol to peripheral tissues, and decreases the number of HDL particles, which
transport lipids and cholesterol to the liver.

Simultaneously, the elevated serum triglyceride level in the diabetic group of the
present study may be related to the decreased clearance and increased production of
endogenously synthesized main triglyceride transporters [92]. Moreover, the expansion of
the cholesterol pool in DM could be explained by the increased input into the system by
accelerating the synthesis of intestinal cholesterol or by increasing the rate of absorption of
intestinal cholesterol [93].

Indeed, the improvement in dyslipidemia through B. aegyptiaca treatment may be
related to the increased level and sensitivity of insulin. The present results are not in
concordance with those of Matter and Helal [94] who reported that the level of serum
triglycerides and cholesterol was not significantly different when compared with the
control group after treatment with the B. aegyptiaca seed extract.

In accordance with the findings of Abd El-Rahman and Al-ahmari [95], the improve-
ment of lipid profile may be due to the presence of saponins in its extract, indicating
antihypercholesterolemic and hypoglycemic activities. Moreover, diosgenin in the B. aegyp-
tiaca seed kernels plays an important role in the regulation of cholesterol metabolism [96]. In
the present study, the GC-MS analysis indicated the presence of many organic ingredients,
which have several biological activities, including antihypercholesterolemic properties.

The elevated serum FFA level recorded in diabetic rats in the present study is consis-
tent with that estimated in many preceding studies [35,62,97,98]. The elevated release of
FFAs from the adipose tissue can be attributed to the lipolysis of visceral adipose depots;
this effect can result in IR, excessive endogenous glucose formation, and progression to
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T2DM [99]. Thus, decreasing the plasma FFA level is recommended as a method for IR
prevention and treatment [100].

During the treatment of diabetic animals with B. aegyptiaca aqueous extracts, a reduc-
tion in the amount of serum FFA levels that could be associated with the insulin-sensitizing
activity of the extract was observed [101]. Furthermore, several studies have found signifi-
cantly low levels of resistin mRNA in the adipose tissue in various obese mouse models,
such as db/db or high-fat diet–induced obesity, as well as in rat models with IR [102].

The present study showed a significant reduction in the mRNA expression of insulin
receptor β-subunit in the adipose tissues of the diabetic group in comparison with that
of the normal group. This result is consistent with that of Ali et al. [62] and Abdel Aziz
et al. [51] who demonstrated that the mRNA expression of insulin receptor β-subunit was
significantly decreased in NA/STZ-induced diabetic rats. This effect provides evidence of
the presence of IR and impaired IS in such animal models, which in turn is a suitable model
of T2DM. In the present study, the treatment with the B. aegyptiaca fruit aqueous extract
produced a significant increase in the mRNA expression of insulin receptor β-subunit
reflecting the ability of this extract to reduce IR and enhance IS in the adipose tissues
(Figure 6).

Oxidative stress is an important factor in DM etiology and pathogenesis, causing
interactions with polyunsaturated fatty acids that contribute to LPO [103]. According to
Randle’s theory on glucose-fatty acids [104], the excessive release of free fatty acids from
the adipose tissue for oxidation induces the production of metabolites that prevent tissue
use of glucose. Such metabolites are reactive oxygen species and hydrogen peroxide, which
are involved with the glucose-fatty acid process [105].

Belfort et al. [106] showed that the increase in plasma FFA caused a dose-dependent
inhibition of insulin-stimulated glucose disposal and insulin signaling in the skeletal muscle
of lean healthy individuals. The present findings showed a significant increase in LPO
in the liver. Additionally, the GSH level and anti-oxidant enzyme defenses decreased
simultaneously in the liver of diabetic rats. These findings are consistent with those of
several studies [35,89,89,107,108]. GSH plays a multifaceted role in the defense against
anti-oxidants. It actively scavenges free radicals or indirectly detoxifies reactive species via
GST and GPx [109].

The treatment of diabetic rats with B. aegyptiaca extracts significantly decreased MDA,
which is attributed to the increased levels of anti-oxidants that fight free radicals [110]
and markedly increased GSH level and SOD and GPx activities. Thus, it is worth noting
that the improvement in the glycemic state, lipid profile, and insulinotropic and insulin-
sensitizing effects is associated with the suppression of oxidative stress and enhancement
of the anti-oxidant defense system.

This indicated that the decrease in oxidative stress and enhancement of the anti-
oxidant defense system may have an important role in the improvement of the architecture
and tissue IS of the pancreatic islets, which in turn result in the effective management of
diabetes. These findings are consistent with those of Hassanin et al. [111] who indicated that
B. aegyptiaca exerted hypoglycemic, hypolipidemic, and insulinotropic actions associated
with the reduction in oxidative stress, enhancement in the anti-oxidant defense system, and
reduced apoptosis in pancreatic β-cells.

In conclusion, the B. aegyptiaca fruit and seed aqueous extracts have potent antidiabetic
potencies, which may be mediated via improvements in the insulin secretory response,
β-cell function, tissue IS, and anti-oxidant defense system (Figure 6).
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