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Abstract: The symbiotic Wolbachia are the most sophisticated mutualistic bacterium among
all insect-associated microbiota. Wolbachia-insect relationship fluctuates from the simple
facultative/parasitic to an obligate nutritional-mutualistic association as it was the case of the
bedbug-Wolbachia from Cimex lectularius. Understanding this association may help in the control of
associated arthropods. Genomic data have proven to be reliable tools in resolving some aspects of
these symbiotic associations. Although, Wolbachia appear to be fastidious or uncultivated bacteria
which strongly limited their study. Here we proposed Drosophila S2 cell line for the isolation and
culture model to study Wolbachia strains. We therefore isolated and characterized a novel Wolbachia
strain associated with the bedbug Cimex hemipterus, designated as wChem strain PL13, and proposed
Wolbachia massiliensis sp. nov. strain wChem-PL13 a type strain of this new species from new
supergroup T. Phylogenetically, T-supergroup was close to F and S-supergroups from insects and
D-supergroup from filarial nematodes. We determined the 1,291,339-bp genome of wChem-PL13,
which was the smallest insect-associated Wolbachia genomes. Overall, the wChem genome shared 50%
of protein coding genes with the other insect-associated facultative Wolbachia strains. These findings
highlight the diversity of Wolbachia genotypes as well as the Wolbachia-host relationship among
Cimicinae subfamily. The wChem provides folate and riboflavin vitamins on which the host depends,
while the bacteria had a limited translation mechanism suggesting its strong dependence to its hosts.
However, the clear-cut distinction between mutualism and parasitism of the wChem in C. hemipterus
cannot be yet ruled out.
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1. Introduction

Bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial
ecosystem. Gram-negative bacteria of the family Anaplasmataceae in the order Rickettsiales,
they are obligatory intracellular endosymbionts of several invertebrate taxa, Arthropoda and
Nematoda. Till now, only one species, Wolbachia pipientis, has been axenically isolated and officially
described [1]. Wolbachia are genetically diverse, as are the interactions with their hosts [2–6].
Most of Wolbachia genotypes, representing microbiologically separate species, were never isolated
in pure culture. Currently, there is a general consensus to classify all genotypes in monophyletic
lineage groups or supergroups from A to R, with a new supergroup “S” recently identified from
the pseudoscorpion Atemnus politus [7]. The supergroups C, D and J infect exclusively filarial
nematodes (Onchocercidae) [8–10]. Supergroup L exclusively contains plant parasitic nematodes
(Pratylenchidae) [11,12]. Wolbachia supergroup F is the only clade composed by strains that infecting
arthropods and some infecting filarial nematodes [13,14]. This includes especially hematophagous
arthropods, such as biting Diptera and Hemiptera, fleas, lice and parasitic mites [15–26]. Recently,
a novel strain of Wolbachia belonging to the supergroup F was isolated in Ixodes scapularis cells from a
pool of Ctenocephalides sp. cat fleas [3].

The problems in Wolbachia taxonomy are evident. Different Wolbachia genotypes correspond
clearly to different species both genetically and biologically [27]. Genetic distances among
Wolbachia supergroups are huge, moreover, the same genotype may infect different insect species.
Although attempts to classify Wolbachia in different genera were already done [28], but not widely
accepted, mostly because of the difficulties in strain isolation [29]. Until recently, only few Wolbachia
strains from clades A and B were known in axenic culture. The recent isolation of Wolbachia from
Ctenocephalides felis in tick cell line is a rare example of a successful isolation of Wolbachia strain in cell
culture [3].

Five distinct reproductive manipulations are induced in Wolbachia arthropod hosts: cytoplasmic
incompatibility (CI), parthenogenesis induction, killing of male, feminization and meiotic drive, all of
which promote its spread by reducing competition for resources from males (a dead-end host) or by
imposing an adaptation cost on uninfected females [30–33]. In some cases, Wolbachia form obligate and
apparently beneficial relationships with their hosts [34,35]. For blood-feeding Diptera, the CI is the
common phenotype [3,17,22]. In addition, Wolbachia has long been of applied interest in biological
control for vector-borne disease control, Wolbachia symbiosis can be harnessed for vector control
as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for
the enhancement of population suppression programs [36]. In filarial nematode diseases such as
onchocerciasis and lymphatic filariasis, the use of antibiotics for Wolbachia elimination can safely clear
adult worm infections [37]. Furthermore, several control programs releasing Wolbachia-infected Aedes
aegypti to reduce the transmission of dengue and other arboviruses [38], because of Wolbachia infections
can suppress the dissemination and transmission of pathogens in insects, especially when transinfected
into a novel host [39].

Bed bugs are obligatory hematophagous insects with hemimetabolous development from egg to
adult through five nymphal stages (instars), each of which requires a blood-meal to molt to the next
stage [40]. They have re-emerged over the last decades worldwide where they may cause problems in
housing facilities, public facilities, and residential complexes. In economically advanced countries,
they are a serious public health. Bed bug infestations have been reported to have physical and
psychological effects in humans. In addition, despite isolation of several pathogens, found in the bed
bug body, they have not been confirmed as a vector of pathogens to humans [41,42].

Infections with Wolbachia species of F supergroup seem to be common in the Cimicinae subfamily
(Cimex and Oeciacus genera) [40,42]. Wolbachia’s relationship with Cimex lectularius presumably evolved
from a facultative association to obligate mutualism where the bacteria garner protection and nutrients
within their host in exchange for supplementing the host’s nutritional needs [20,22,43]. It was suggested
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new hypotheses about the coordination of Wolbachia growth and regression with its host’s physiology
and endocrine events [40].

Here, on the basis of taxono-genomic approach, we present the description of Wolbachia massiliensis
strain PL13 (CSURP2929), a new species of the genus Wolbachia belonging to a new Supergroup T,
isolated from wild bed bugs Cimex hemipterus from Senegal. Its growth condition as well as complete
annotated genome are detailed.

2. Results

2.1. Isolation, Culture, and Description of the Bacterium

Four of ten inoculated shell vials produced morphologically identical bacterial strains.
Intracellular growth of bacteria were observed beginning from 14th day post inoculation. The 16S
rRNA sequencing revealed the homogeneity of all isolated strains which belonged to the genus
Wolbachia according to the blast analysis. One strain, designated Wolbachia sp. wChem PL13, was then
selected for the following investigations and characterization. wChem PL13 was best visualized by the
Diff-Quick staining while on the Gimenez and Gram staining the bacteria stained poorly, but always
appeared to be gram negative. The bacteria appeared as small cocci not connected with each other
inside intracellular vacuoles but not in the cytoplasm nor in the nucleus (Figure 1a). Therefore,
the infected cells showed several vacuoles of different size according to the bacterial load within
these latter (Figure 1a). Heavy infected cells were often disrupted during centrifugation using a
Cytospin (Thermo Shandon) centrifuge as revealed by subsequent staining suggesting the fragility
and death of S2 cells at hight infection levels (Figure 1b). Meanwhile, the infected cells continued
to be able to multiply without there being any obvious cytopathic effect. Scanning microscopic
examination showed that the bacterium present in the extracellular environment following cell lysis
during cytocentrifugation have an average dimension of 570 nm (range: 530 to 615 nm). The bacteria
present a regular form of a small cocci (Figure 1c).
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Accordingly, the qPCR results indicated the maintenance of bacterial load during all purification 
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Figure 1. wChem PL13 grown (arrowed) in S2 cell-line. (a,b): Diff-Quik staining, ×1500 showing the
intravacuolar location and bacterial load of the wChem PL13 strain, respectively. (c): scanning microscopic
examination of the wChem PL13 strain.

The strain wChem PL13 was successfully propagated throughout both S2 and C6/36 cell lines.
The bacterial growth was better within S2 cell lines at 28 ◦C according to the qPCR results (Table S1).
The difference between S2 and C6/36 cell lines in terms of bacterial load has become significant after
three weeks of co-culture, while the difference between culture conditions (temperatures) has become
significant after two weeks favorably to cultures maintained at 28 ◦C for both cell lines (Table S1).
In term of speed of growth, the load of the wChem PL13 strain has become significantly observable after
two and three weeks of co-culture with S2 cells maintained at 28 ◦C and room temperature respectively,
and after three weeks within C6/36 cells from both conditions (28 ◦C and room temperature) (Table S1).

During the whole processes of the purification, no loss of the bacterium and the sonication
step induced only the lysis of cells but not that of the bacteria (Figure S1a), while the gradient
density purification provided an integrated bacterium with high density concentration (Figure S1b).
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Accordingly, the qPCR results indicated the maintenance of bacterial load during all purification
steps. At the end of the purification, the bacteria were highly concentrated which gave the Ct value of
11.23 corresponding to 42.86 ng/µL.

2.2. Genome Sequencing, Annotation and Genomic Comparison

De novo assembly based on Illumina and MinION rids (Figure S2) gave a genome sequence from
the wChem PL13 constructed by one contig of 1,291,339 with a G + C content of 35.4% (Figure 2a).
We identified a total of 1226 predicted protein-coding genes, in addition to 3 complete rRNA operons,
32 tRNAs and 1 tmRNA. Comparison of these genomic data with those from of the other Wolbachia
supergroups showed that the genome of wChem PL13 is close to those encountered in other insects
(Table 1). The strain wChem PL13 showed the presence of two prophage regions of 14.5 Kbp and 23.4 Kbp
(Figure 2a and Figure S3). Blast analysis revealed that the wChem PL13 prophages shared up to 19% to
58% with an identity ranged from 76.76% to 87.25% with those of other insect-associated Wolbachia
such as wDmel, Wolbachia of D. melanogaster from supergroup A (AE017196) and wFcan, Wolbachia of
F. candida from supergroup E (CP015510). However, up to 50% of the predicted protein-coding genes
from the PL13 genome were shared with other Wolbachia supergroups (Figure 2b).
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Ortho-ANI values (Figure 3a) ranged from 74.63% with wPpe, Wolbachia supergroup L from
P. penetrans (MJMG01000000) to 84.82% with wClec, Wolbachia supergroup F from C. lectularius
(AP013028). The pangenome analysis of the wChem PL13 strain showed a total of 11,402 clusters
genes distributed as follows: (Core genes = 0), (Soft core genes = 0), (Shell genes = 210) and
(Cloud genes = 11,192), respectively. The Ortho-ANI and the pangenome trees were clearly congruent
(Figure 3a,b), where the wChem PL13 strain clustered with wApolK5, Wolbachia supergroup S from
A. politus (WQMQ00000000), wClec, Wolbachia supergroup F from C. lectularius (AP013028) and wCfeJ,
an undescribed Wolbachia supergroup from C. felis (CP051157).

Genomic comparison of the wChem PL13 strain with the other Wolbachia supergroups using Digital
DNA-DNA hybridization values (dDDH) are reported in Table 2. For the strain PL13, these values
ranged from 19.8% with Ctub, Wolbachia supergroup J from C. tuberocauda (CP046579) to 30% with
wApolK5, Wolbachia supergroup S from A. politus (WQMQ00000000).
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Table 1. General features of wChem PL13 and other Wolbachia genomes.

Strain Information wChem PL13 wClec wDmel wPip wFcan wApol wCfeJ wBmal wDimm wPpe

Host type Insects Nematodes
Wolbachia host C. hemipterus C. lectularius D. melanogaster C. quinquefasciatus F. candida A. politus C. felis B. malayi D. immitis P. penetrans

Supergroup New supergroup “T” F A B E S Undescribed D C L

Genome features

Accession Number CP061738 AP013028 AE017196 AM999887 CP015510 WQMQ00000000 CP051157 CP034333 CP046578 MJMG01000000
Total length (bp) 1,291,339 1,250,060 1,267,782 1,482,455 1,801,626 1,445,964 1,201,647 1,080,064 920,122 975,127

No. of contigs 1 1 1 1 1 373 1 1 1 12
GC content (%) 35.4 36.3 35.2 34.2 34.4 35.6 35.6 34.2 32.7 32.2

N50 1,291,339 1,250,060 1,267,782 1,482,455 1,801,626 5741 1,201,647 1,080,064 920,122 9,555
Gap ratio (%) 0.326793 0.0 0.0 0.006746 0.0 0.0 0.0 0.0 0.0 0.13547
No. of CDSs 1194 1226 1211 1395 1591 1546 1045 1017 709 939
No. of rRNA 3 3 3 3 3 3 3 3 3 3
No. of tRNA 32 34 34 34 35 39 34 34 34 35

No. of CRISPRS 0 0 0 0 0 0 0 0 0 0
Coding ratio (%) 78.5 77.3 81.6 84.4 86.9 66.1 82.3 70.1 70.7 84.8

Completeness (%) 98.00 98.00 98.73 99.45 97.27 95.89 98.36 99.09 98.00 93.32
Contamination (%) 0.36 0.36 0.00 0.00 1.55 19.67 0.36 0.00 0.00 2.73

No. of prophage 2 3 3 4 6 2 0 0 0 1
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Table 2. dDDH values of the wChem PL13 comparatively to the other Wolbachia supergroups.

Strain Wolbachia Host Accession
Number DDH Distance Prob. DDH ≥ 70% G + C

Difference Model C.I.

wPpe P. penetrans MJMG01000000 19.8 0.2216 0 3.21 [17.6–22.2%]
Ctub C. tuberocauda CP046579 23 0.1901 0 3.09 [20.7–25.5%]

WCfelT C. felis CP051156 23.6 0.1853 0 0.19 [21.3–26%]
wFcan F. candida CP015510 24.1 0.1809 0.01 1.02 [21.8–26.6%]

wDimm D. immitis CP046578 24.8 0.1757 0.01 2.67 [22.5–27.3%]
wCmeg C. megacephala CP021120 27 0.1599 0.03 1.42 [24.7–29.5%]
wDcit D. citri CP051608 27 0.1604 0.03 1.38 [24.6–29.4%]
wPip C. quinquefasciatus AM999887 27.1 0.1598 0.03 1.18 [24.7–29.5%]
wCfeJ C. felis CP051157 27.8 0.155 0.04 0.2 [25.4–30.3%]
wBmal B. malayi CP034333 28.4 0.1512 0.05 1.19 [26–30.9%]
wDmel D. melanogaster AE017196 29.3 0.1462 0.08 0.14 [26.9–31.8%]
wClec C. lectularius AP013028 29.3 0.1462 0.08 0.88 [26.9–31.8%]

wApolK5 A. politus WQMQ00000000 30 0.1423 0.1 0.23 [27.6–32.5%]

2.3. B-Vitamin Synthesis Patterns in the wChem PL13 and Other Wolbachia Genomes

The inspection of wChem PL13 genome revealed B-vitamins synthetic pathways commonly present
in the most Wolbachia genomes. This include the complete pathway for riboflavin (vitamin B2) and for
folate (vitamin B9) with a partial pathway for both pyridoxine (vitamin B6) and thiamine (vitamin B1).
Unlike Wolbachia of C. lectularius, the biotin (vitamin B7) biosynthesis pathway was completely absent
in the genome of the wChem PL13 strain (Figure 4a).
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Figure 4. (a). Comparative analysis of B-vitamins biosynthesis pathways of the wChem PL13 strain
and the other Wolbachia strains. a. Matrix based on the presence/absence of B-vitamins biosynthesis
genes from the wChem PL13 and the other Wolbachia strains. The matrix was organized according
to the hierarchical clustering (AHC) of B-vitamins profile among Wolbachia strains (left cladogram).
(b). Maximum likelihood phylogenies based on 3000 bps (right phylogram) and 7069 bps (left phylogram)
using respectively K81uf (+G) [44] and GTR (+G) [45] substitution models. Likelihoods values were
−16949.78 and −36573.10 respectively. Values above branches indicate the length of each branch’s,
while the axis showed the global distance observed throughout the trees. Color codes indicating the
Wolbachia supergroup (label) and the bootstraps percent’s (branches).

Both datasets based on gene involved in B-vitamins biosynthesis produced a close topology and
very similar posterior bootstrap values. Insect-associated Wolbachia from the A, B and E supergroups
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as well as the supergroup L from the non-filarial nematode had an earliest divergence compared
to the filarial and the other insect-associated Wolbachia. However, the wChem PL13 strain and the
supergroup T appeared to be a monophyletic sister with the clade regrouping the supergroup F from
C. lectelarius and C, D and J supergroups from filarial nematodes (Figure 4b), suggesting a less older
B-vitamins biosynthesis genes compared to those from the other insect-associated Wolbachia (e.g., A,
B and E supergroups).

2.4. Comparative Phylogenies and Placement of Wolbachia sp. Strain wChem PL13 in the Wolbachia
T Supergroup

Together, the SLST based on the 16S and the WSP genes, the MLST based on the ten selected genes
(16S, 23S, GroL, rpoB, gatB, coxA, dnaA, fbpA, puuA and nusA) as well as the genome-based phylogeny
allowed the comparison of the wChem PL13 strain with all known Wolbachia supergroups except for G,
Q and P supergroups, where the suitable dataset were not available. However, the blast comparison
of the 16S gene from the wChem PL13 strain with Wolbachia of Diaea sp. (AY486069) supergroup
G [46], Wolbachia of Torotrogla cardueli (KP114100) supergroup Q and Wolbachia of Torotrogla merulae
(KP114099) supergroup P [47], revealed an identity-query cover of 97.77–53%, 97.72–41% and 98.54–41%
respectively, which is lower than the 98.7% threshold used to discriminate bacterial species [48].

All cladograms constructed from the SLSTs (Figure S4a,b), MLST (Figure 5a) and genome-based
phylogeny (Figure 5b) supported the divergence of the wChem PL13 strain from known Wolbachia
supergroups. Notably, both MLST and genome-based phylogenies produced similar topologies within
the same clade and very similar bootstrap values. The only topology differences between trees based
on MLST and the Wolbachia whole genome datasets were the varying positions of wCfeJ, an undescribed
Wolbachia supergroup from C. felis (CP051157) and wApolK5, Wolbachia supergroup S from A. politus
(WQMQ00000000), but otherwise no conflicts in Wolbachia clade topologies were observed (Figure 5a,b).
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Figure 5. Comparative phylogenies showing the position of the wChem PL13 strain among the other
Wolbachia supergroups. (a). IQTREE based on ML method with 1000 bootstraps from the concatenated
ten selected genes using GTR (+F+R3) substitution model [49]. Outgroup taxons “Ehrlichia chaffeensis
(CP007480) and Anaplasma phagocytophilum (CP006617)” are drawn at root. Log-likelihood of consensus
tree is −88934.819989. (b). Genome based phylogeny generated using the FastTree Version 2.1.10,
double precision (No SSE3) [50]. The tree was rooted using Jukes-Cantor Joins model with 1000 local
boots. The nearest-neighbor interchange (NNI) and the subtree pruning and regrafting (SPR) (2 rounds
range 10) were used for the tree rearrangement. The Top Hits was 1.00 * sqrtN.

2.5. Description of Wolbachia massiliensis sp. nov.

From all descriptive results taken together, the wChem-PL13 isolated from the bedbug C. hemipterus
strain constitutes a divergent Wolbachia strain. Genotypic profile based on the 16S and the WSP
phylogenies, the MLST combining the 16S and 23S rRNA, rpoB, GroL, CoxA, DnaA, fbpA, Asn/Gln,
gatB, NusA and PuuA and the genome-based phylogeny as well as the taxo-genomic features delineated
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a distinct species, clearly different from all other recognized Wolbachia strains. We propose the name
Wolbachia masseliensis sp. nov. designated wChem-PL13 strain.

Wolbachia masseliensis (mas.si’ li.en.sis. L. gen. adj. massiliensis, from Massilia, the Latin name
of Marseille, France, where the organism was first grown, identified and characterized). Since the
current Wolbachia supergroup classification system is yet be revisited [29], we maintain the notion
of supergroup at a strain level and we propose a new supergroup T with a type strain Wolbachia
masseliensis sp. nov. strain wChem-PL13. The known host of this bacterium is Cimex hemipterus, a wild
strain from Senegal. This isolate has been deposited in the strain collection CSUR (Collection de
Souches de l’Unité des Rickettsies WDCM 875) under the accession number CSURP2929. The complete
genome sequence of W. masseliensis is available in GenBank: Bio Project PRJNA663644; Bio Sample:
SAMN16175503 and genome accession number CP061738.

The cells are best visualized by the Diff-Quick staining and appear to be gram negative,
small isolated cocci with an average dimension of 570 nm (range: 530 to 615 nm). The bacteria
are obligate intracellular and occur inside vacuoles of eukaryotic cells (A. albopictus and
D. melanogaster). The bacteria grow in S2-cell line at 28 ◦C in Schneider medium supplemented
with 10% of decomplemented Bovine Serum Albumin (BSA) and 1% of the combination
Penicillin/Streptomycin antibiotics.

3. Discussion

In the present study we demonstrate the possibility to use S2 cells for the isolation and
maintenance of Wolbachia. Our data demonstrated the susceptibility of two arthropod cells derived
from D. melanogaster and A. albopictus mosquito, arthropods naturally infected with well-known
Wolbachia supergroup A and B, respectively. However, the best bacterial growth was obtained
after two weeks on Drosophila S2 cell lines. Several cell lines were previously used in the isolation
and/or cultivation of Wolbachia bacterium including the Aa23 mosquito cell line [51,52], C6/36 cells,
another A. albopictus cell line and the human embryonic lung (HEL) fibroblast monolayers [52] for
wALB13, Wolbachia supergroup B from A. albopictus. Different cell lines derived from Ixodes scapularis
and I. Ricinus as well as well as the A. albopictus cells (AeAl-2) were used for the propagation of three
Wolbachia strains wStri, supergroup A, wAlbB supergroup B and wCfeF supergroup F from Laodelphax
striatellus, A. albopictus and C. felis, respectively [3].

Despite the successful propagation of different Wolbachia supergroups on different mammalian
and insects cell lines, there are no standardized cell line for the co-culture of Wolbachia. Our data
showed that the infection of up to 97% S2 cells with Wolbachia from C. hemipterus occurred at 11 days
which consist with the results previously obtained on Aa23 mosquito cells, naturally found infected
with Wolbachia [51]. Since the ability of the S2 cell line to provide a similar Wolbachia growth to that
obtained on naturally infected cell line, we propose S2 cell line as standard line for Wolbachia culture.

It is clear from our results that culture temperature affects the growth of Wolbachia, where the
best growth was always at 28 ◦C, the adequate temperature for S2 and C6/36 cell lines. However,
several studies shown that the in vivo growth of Wolbachia was always in line with the culture
temperature of the cell line which varied from 28 ◦C to 37 ◦C [3,51,52].

Recently, it was demonstrated that changes to host temperature preference do not alter bacterial
load of several A and B-supergroup Wolbachia strains. However, hosts infected with A-group Wolbachia
strains prefer cooler temperatures while those infected with B-group Wolbachia strains prefer a warmer
temperature, suggesting that Wolbachia strains are differently involved in the host-thermoregulation [53].

Recently, an efficient genome sequencing approach based on probe hybridization enrichment was
developed to provide Wolbachia genomes directly from their hosts [54]. However, the application of
the approach was strongly limited by the amount of bacteria from their hosts, as it was the cases of
wApolK5, Wolbachia supergroup S from A. politus (WQMQ00000000) and wLbra, Wolbachia supergroup D
from Litomosoides brasiliensis (WQMO00000000) [7,55]. In addition to the manipulation of the bacterium,
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the standardized protocol for the isolation, culture as well as the purification of Wolbachia herein we
described, leading to easily obtain enough bacterial DNA which facilitate the genome sequencing.

We obtained the complete genome of wChem PL13 strain, W. massiliensis, a type strain of
new supergroup T from C. hemipterus (1,250,060 bp long) which closely mimic the size of wCle,
Wolbachia supergroup F from C. lectelarius (1,291,339) and wDmel, Wolbachia supergroup A from
D. melanogaster (1,267,782) genomes. However, it seems to be the smaller complete genome from
insect-associated Wolbachia since the size of complete insect-associated Wolbachia genomes ranged
between 1, 133,809 bp long and 1,801,626 bp long [6,56]. While it was clearly bigger than those
associated to nematodes where the size ranged from 920,122 bp long to 1,080,064 bp long [55,57].
Furthermore, we noted the presence of two sequences coding for phage-like proteins, such as portal,
coat transposons, and integrase proteins (Figure S3). Wolbachia phage-like proteins were mostly
identified in insect-associated Wolbachia and in wPpe, Wolbachia supergroup L from plant parasitic
nematode (MJMG01000000), while they were completely absent in filarial-associated Wolbachia (Table 1)
suggesting Wolbachia bacteriophage (WO) infections from the environment of their hosts. Furthermore,
the molecular analysis of the prophage coding sequences from W. massiliensis wChem PL13, revealed a
partial similarity with those encountered in wDmel, Wolbachia of D. melanogaster from supergroup A
(AE017196) and wFcan, Wolbachia of F. candida from supergroup E (CP015510). Wolbachia-bacteriophage
WO relationship was molecularly studied in wasps community [58]. Authors were noted the absence
of congruence between WO and host Wolbachia as well as WO and insect host, suggesting that the
phage WO exchanged frequently and independently within the closed syconium [58].

The genome of W. massiliensis, wChem PL13 strain from the bedbug C. hemipterus revealed similar
metabolic capacities among the parasitic insect-associated Wolbachia from A and B-supergroups.
By contrast, the mutualistic bedbug-Wolbachia supergroup F from C. lectularius [59] closed to the
other mutualistic Wolbachia supergroups [57] (Figure 4). This emphasis the diversity of Wolbachia-host
relationship among the bedbugs. Except for the translation COG category [J] which appears to be
reduced in the genome of W. massiliensis suggesting a strong dependence to its host. Though the lack
of information about the distribution of Wolbachia as well as their relationship within C. hemipterus
hosts, which may represent a limitation of our study, the clear-cut distinction between mutualism and
parasitism cannot yet be ruled out. Although it is difficult to conclude about the provision of nutritional
elements to the host by W. massiliensis as long as the biotin pathway was completely absent. The biotin
appears to be rare among Wolbachia supergroups and was detected only in few insect-associated
Wolbachia [7]. The complete Wolbachia biosynthesis pathway for the biotin was firstly detected in the
bedbug Wolbachia of C. lectularius wClec. In addition to the biotin, wClec participates in the host fitness
by producing B-vitamins [59,60]. The biotin was latter well studied in the community of Cimex and
Paracimex arthropods using gene-specific PCRs [60]. Authors reported the functional biotin pathways
in at least 10 out of 15 studied genera but not in C. hemipterus [60]. The absence of Wolbachia-biotin
production in the bedbug C. hemipterius could be compensated by the other symbiotic bacterium.
The genetic study of the origin of biotin operons demonstrated that they were acquired via lateral gene
transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia [59]. The congruence
between the phylogenies of B-vitamins operons (i.e., riboflavin, folate and pyridoxine) consistently
exhibited similar evolutionary patterns with Wolbachia phylogeny. Consequently, it is conceivable,
although speculative, B-vitamins synthesis genes are originated from the other symbiotic bacterium
within their hosts as it was the case of biotin and thiamine from the bedbug-Wolbachia of C. lectelarius
and the obligate symbiont Wigglesworthia glossinidia of tsetse flies [59,61].

4. Materials and Methods

4.1. Source of the Bacterium, Inoculum Preparation and Isolation

The bacterial strain was isolated from wild Cimex hemipterus (Fabricius, 1803) collected in Dakar,
Senegal (2017). Ten adult bed bugs were morphologically identified on the basis of the following
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criteria: width/length ratio of the pronotum less than 2, lateral lobes of the pronotum are narrow and
hind margins of hemelytral pads are broadly rounded on the inner halves. Once identified, the adult
specimens were individually used to isolate the intracellular bacterium using cell co-culture method
using the Schneider 2 cell-line (S2) primarily derived from a culture of the late stage (20–24 h old)
Drosophila melanogaster embryos [62]. This cell line has previously proven to be receptive for several
Rickettsiales bacterium such as Rickettsia assemboensis and Rickettsia felis [63,64]. Briefly, adult bugs
Cimex hemipterus were rigorously decontaminated by immersing adult bedbug during 5 min into 1% of
Sodium Hypochlorite solution (Sigma Aldrich, Saint-Quentin-Fallavier, France) followed by rinsing
in sterile water and immersing into 70% ethanol and sterile water rinsing again. Each specimen was
manually crashed in 1 mL of Schneider medium (Sigma Aldrich, Saint-Quentin-Fallavier, France)
to generate the bacterial inoculum. Wolbachia cell co-culture was inoculated in the shell vial tubes
containing 1 mL of S2 culture as described elsewhere [65,66]. Culture media consisted of a Schneider
medium supplemented with 10% of decomplemented Bovine Serum Albumin (BSA) (Sigma Aldrich,
Saint-Quentin-Fallavier, France) and 1% of the combination Penicillin/Streptomycin (Sigma Aldrich,
Saint-Quentin-Fallavier, France) antibiotics to avoid ubiquitous bacterial contamination. The mixture
was sterilized using 0.2 µm filtration and was then kept at 4 ◦C until use. The infection was performed
using 200 µL of the bacterial inoculum derived from adult C. hemipterus. One hour of centrifugation at
4000 rpm at 28 ◦C was performed to increase Wolbachia-cell adhesion. Shell vials of infected cultures
were kept at 28 ◦C. Isolation success was assessed using Diff-Quick™ staining (Dade Behring, Marburg,
Germany) each 7 days followed by sequencing of the 16S RNA gene [67]. During the isolation period,
the maintenance of cell culture was performed by a partial renewal of culture medium each 7 days.
Shell vials were centrifuged at 3000 rpm at 28 ◦C, then a half of the supernatant (500 µL) was replaced
by a fresh medium under sterile conditions.

4.2. Morphological Characterization and Scanning Electron Microscopy

Infected cells were cytocentrifuged for staining with Gimenez and Diff-Quick (Dade Behring,
Marburg, Germany) and were then examined under light microscope Leica® DM LB2.

For the electron microscopy, 200 µL of 11 old days PL13-S2 co-culture were centrifuged for 15 min
at 3000 rpm, then the supernatant was removed, and the pellet was fixed using 2.5% glutaraldehyde
(Sigma Aldrich, Saint-Quentin-Fallavier, France) in 0.1 M sodium cacodylate buffer (Sigma Aldrich,
Saint-Quentin-Fallavier, France) for 1 h. After fixation, the pellet was rinsed three times with 0.1 M
sodium cacodylate (5 min each) to remove residual fixative. The graded ethanol concentrations (25% for
5 min; 50% for 5 min; 70% for 5 min; 85% for 5 min; 95% for 5 min (twice); 100% ethanol for 10 min
(three times) was used for sample dehydration. Finally, the pellet was incubated for 5 min in an
ethanol/Hexamethyldisilazane (Sigma Aldrich, Saint-Quentin-Fallavier, France) (1:2) mixture, then in
pure HMDS. The mixture was cytocentrifuged for 5 min at 2000 rpm and the glass slide allowed to air
dry for 30 min before observation. The examination was performed using a TM4000 PlusTM (Hitachi,
Tokyo, Japan) scanning electron microscope operated at 10 kV in BSE mode at magnifications ranging
from X200 to X3000.

4.3. Cell Co-Culture Standardization and Wolbachia Production

Once the isolation success was confirmed by optical microscopy and 16S rRNA sequencing,
the infected cells were transferred into 15 mL cap flasks for the maintenance of isolated strain.
Medium changes were performed each 15 days by centrifugation for 15 min at 3000 rpm at 28 ◦C,
then the supernatant of the old medium was removed and replaced with the same volume of
fresh medium. The mixture was subjected to serial gentle repeated pipetting until homogenization,
then transferred to sterile cap flasks and maintained at 28 ◦C.

To optimize Wolbachia cell co-culture, another arthropod cell line (C6/36) derived from Aedes
albopictus mosquitoes was investigated. C6/36 cell line (CRL-1660; American Type Culture Collection)
was maintained in 75 mL cap flasks containing the Leibowitz-15 medium with L-glutamine and
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L-amino acids (Gibco™, Thermo Fisher Scientific, Inc., Waltham, MA, USA), 5% (vol/vol) fetal bovine
serum, and 2% (vol/vol) tryptose phosphate (Gibco™, Thermo Fisher Scientific, Inc., Waltham, MA,
USA) at 28 ◦C. One mL of a C6/36 rich cell culture was transferred to shell vial tubes 24 h prior to the
infection. Wolbachia inoculum was obtained from a lysate of the Wolbachia S2 cells following a serial
aspiration-injection into 50 mL falcon using a fine needle syringe. The inoculum of 200 µL was used for
the infection of C6/36 cells previously prepared in shell vial tubes as described above. The receptivity
of C6/36 was first checked at day 15 post-infection using Diff-Quick™ staining. Once the infection was
confirmed, the infected cells were transferred into 75 mL cap flasks containing 14 mL of 1 old day of
C6/36 cell culture.

Bacterial growth was investigated from both infected cells under two different temperatures:
28 ◦C and room temperature. Three cap flasks per each cell-line for each condition were followed for
one month on the weekly schedule using the pan-Wolbachia 16S rRNA qPCR [All-Wol-16S qPCR] [68].
The repeated measures Analysis of Variance (ANOVA) was used to evaluate the effect of both
temperature and cell lines on bacterial growth, while a pairwise comparison using Tukey test was
performed to evaluate whether condition is more suitable. Statistical analysis were performed using
XLSTAT Addinsoft version 4.1 (XLSTAT 2019: Data Analysis and Statistical Solution for Microsoft
Excel, Paris, France).

4.4. Purification of the Bacterium

S2 cells infected with the bacterium were produced in a total volume of 75 mL spread over three
150 cm2 cell culture flasks. The infection rate of 97% was obtained at day 11 post-inoculation with the
bacterium. Infected cells were harvested from the three flasks, then were checked for the presence of
bacterial and fungal contaminations using both the Diff-Quick™ staining and the bacterial 16S rRNA
sequencing. The suspension was subjected to three cycles of sonication of 1 min at 20 Hz, after which
unlysed cells were removed by centrifugation at 500 rpm for 10 min. The supernatant containing the
bacterium was layered onto a density gradient solution of 15% weight/volume (wt/vol) sucrose in
phosphate-buffered saline (PBS, Sigma Aldrich, Saint-Quentin-Fallavier, France). After centrifugation
at 9000× g for 45 min at 4 ◦C, the bacterium-containing pellet was resuspended in 2 mL of PBS and
carefully layered onto a 20 to 45% (wt/vol in PBS) step density gradient. This gradient was subjected to
centrifugation at 9000 rpm for 45 min at 4 ◦C; and the bacteria were harvested and washed twice in
PBS, resuspended in sterile distilled water in the smallest possible volume, and then frozen at −80 ◦C.
At each time point, the pan-Wolbachia 16S rRNA qPCR and the Diff-Quick™ staining were performed
to assess bacterial load.

4.5. Genome Sequencing and De Novo Assembly

Genomic DNA was extracted from 200 µL of purified bacterium. The extraction was performed
using QIAGEN DNA tissues kit (QIAGEN, Hilden, Germany) following the manufacturer’s
recommendations. An additional lysis step was applied prior to the extraction procedure using
a pre-treatment by lysozyme incubation with buffer G2 and proteinase K for 2 h at 37 ◦C. The extracted
gDNA was eluted in a total volume of 50 µL. Genomic DNA (gDNA) was quantified by a Qubit assay
with the high sensitivity kit (Life technologies, Carlsbad, CA, USA); the concentration was equal to
42.86 ng/µL. The DNA was diluted at 1ng as input to prepare the paired end library. The gDNA was
barcoded in order to be mixed with other genomic projects with the Nextera Mate Pair sample prep
kit (Illumina). The purification on AMPure XP beads (Beckman Coulter Inc. Waltham, MA, USA)
was performed prior to the normalization of the libraries on specific beads according to the Nextera
Mate Pair Illumina guide. Automated cluster generation and sequencing run with dual index reads
were performed in a single 39 h run in a 2 × 251-bp format. Within this run, a total of 190,631 reads
were generated and were quality-checked using FastQC, trimmed using Trimmomatic version 0.36.624
and assembled in seventy-eight (78) scaffolds using the SPAdes version 3.5.0 sofware25. The option
“careful” was used to reduce the number of mismatches and short indels. Default Nanopore technology
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(Oxford Nanopore Technologies Ltd., Oxford, United Kingdom) was used by 1D genomic DNA
sequencing on the MinION device using the SQK-LSK108 kit. The library was constructed from 1.5 µg
of genomic DNA without fragmentation and end repair. Adapters were ligated to both ends of genomic
DNA. After purification on AMPure XP beads (Beckman Coulter Inc. Waltham, MA, USA), the library
was quantified by a Qubit assay with the high sensitivity kit (Life Technologies, Cat. no. Q32856)
and loaded on the flow cell via the SpotON port. A total of 466 active pores were detected for
the sequencing and the workflow WIMP was chosen for sequence analysis. Adapter trimming,
quality filtering and error correction of all sequencing raw data analyzed here were performed using
the Trimmomatic program (version 0.36). Finally, mean read quality was 11.2 (median = 11.9). A total
of 78,865 reads were generated with a mean length of 1,392.9 (median 762) and an N50 read length of
2493, which corresponds to 109,847,620 pair bases (pb).

4.6. Comparative Genomic Analyses and Annotation

First, the PL13 strain and eighteen other Wolbachia genomes were annotated using DFAST [69,70].
Numbers of orthologous proteins shared between genomes were visualized using Circos [71].
Nine Wolbachia genomes including Wolbachia supergroup A, B, C, D, E, F, L, S and an undescribed
supergroup from flea [72] were selected for genomic comparisons. The circular map of the complete
chromosome of PL13 strain was generated using GCviewer (http://stothard.afns.ualberta.ca/cgview_
server/). Annotation, completeness, and contamination values were estimated for the PL13 strain as
well as the nine selected Wolbachia genomes using DFAST [69,70]. The presence of prophage regions
was predicted using PHASTER [73]. Orthologous Average Nucleotide Identity (Ortho-ANI) [74] was
used to evaluate the degree of genomic similarity between the PL13 strain and the other Wolbachia
genomes. The pan genome distribution was evaluated using Raory software [75].

Additionally, the pervious dataset was enriched by adding four genomes representing the
supergroup B, J and another undescribed supergroup from flea [72]. The Genome-to-Genome
Distance Calculator Web service was used within the formula 2 to calculate the Digital DNA-DNA
hybridization (dDDH) [76,77]. The probability that an intergenomic distance yielded a dDDH larger
than 70%, representing a novel species-delimitation threshold [78]. Similarly, the prodigual was used
for prediction in the Open Reading Frame (ORF) with the default settings [79]. Deviations in the
sequencing regions predicted by ORFs have been excluded. BlastP was used to predict the bacterial
proteome (E value of 1e03, coverage of 0.7 and percent identity of 30) according to the Orthological
Group (COG) database [80]. In the absence of match within the COG database, the BlastP was
performed against the GenBank nr database [81] within an E value of 1e03, coverage of 0.7 and 30% of
identity. On the other hand, when the length of the sequence is less than 80 amino acids (aa), an E value
of 1e05 has been used. The hmmscan analysis tool [82] was used on the PFAM-A and PFAM-B domains.
The assigned COGs for each genome were ordered in 26 different categories and were then compared
using the Agglomerative Hierarchical Clustering (AHC) analysis. KEGG Orthology (KO) assignments
was performed for the 14 Wolbachia genomes using KASS (KEGG Automatic Annotation Server) [83].
The KASS analysis was performed using BBH (bi-directional best hit) method. The assigned KO
number were ordered in 177 different pathways and were then assessed using the heat map (OMICS)
method. The analysis excluded all pathways that having a variance lower than 0.25. All statistical
analysis were performed using XLSTAT Addinsoft version 4.1 (XLSTAT 2019: Data Analysis and
Statistical Solution for Microsoft Excel, Paris, France).

4.7. B-Vitamins Biosynthesis Pathway

Genes involved in the biosynthesis of B-vitamins such as the biotin (vitamin B7),
riboflavin (vitamin B2), pyridoxine (vitamin B6), folate (vitamin B9) and thiamine (vitamin B1) synthesis
genes were retrieved from the bedbug-Wolbachia (wClec) [59] and were used to search their homologous
from the other Wolbachia genomes using Blastn. B-vitamin profile of selected Wolbachia was assessed
using the AHC analysis according to the presence/absence of genes. To test whether Wolbachia
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B-vitamins synthesis genes are conserved among Wolbachia supergroups and have the same ancestors,
we phylogenetically compared all B-vitamins synthesis genes presumably common within Wolbachia
supergroups. This include two datasets based on the following genes: (i) FolC, PdxJ, PdxH and RibB
from 13 Wolbachia genomes including wPpe, Wolbachia supergroup L from the earliest Wolbachia host
P. penetrans (MJMG01000000) [11] and (ii) FolC, PdxJ, PdxH, RibA, RibB, RibC, RibD, RibE and RibF from
the same genome dataset except for wPpe which was excluded because it lacking for the complete
gene datasets. Genes from each dataset were aligned using MAFFT [84] and concatenated within
Seaview [85]. Best fit phylogenetic model was selected for each dataset and the maximum likelihood
phylogeny was performed using 1000 bootstraps replicates. Molecular phylogenetic analyses were
conducted on Topali v.2 software [86].

4.8. Comparative Phylogenies and Taxonomy

First, two single locus sequence typing (SLST) phylogenies were performed on the basis of
the 16S rRNA and Wolbachia surface protein (WSP) genes. Briefly, a full-length sequence from both
genes were retrieved from the annotated genome of the PL13 strain. The 16S sequences were aligned
against the representative members of fifteen (A, B, C, D, E, F, H, I, J, K, L, M, N, O, and S) and two
undescribed Wolbachia supergroups. While the WSP sequence of the PL13 strain was aligned against the
representative members of ten Wolbachia supergroups (A, B, C, D, E, F, J, R and S) and two undescribed
supergroups. All alignments were performed using the ClustalW application within Bioedit v.7.2.5. [87].
The Akaike Information Criterion (AIC) option in MEGA6 [88] was used to establish the best nucleotide
substitution model for the 16S sequence alignment. The Kimura 2-parameter model (+G) [89] was
selected and the maximum likelihood (ML) phylogenetic inference was used with 1000 bootstrap
replicates to generate the 16S tree in MEGA6 [88]. The 16 sequences from Ehrlichia chaffeensis (CP007480)
and Anaplasma phagocytophilum (CP006617) were used as out groups to root the tree. The WSP
phylogeny was inferred using ML method with 1000 bootstrap replicates on IQ-TREE [49]. The most
appropriate model of evolution was evaluated by Modelfinder (implemented as functionality of
IQ-TREE). The analysis was performed on Galaxy Australia server (https://usegalaxy.org.au/).

Genome-based phylogeny was performed for Wolbachia PL13 and 32 other complete/draft genomes
of Wolbachia including nine Wolbachia supergroups: A, B, D, E, F, J, L and S and two undescribed
Wolbachia to belong to any supergroup [72]. Anaplasma phagocytophilum (CP006617) and Ehrlichia
chaffeensis (CP007480) genomes were included as outgroups. All genomes were aligned using the
global alignment with conserved columns and gaps on Scapper software (https://github.com/tseemann/

scapper). The FASTTREE [50] was builded using ML method. GTR + CAT model was selected and
the pseudocounts option was activated. This latter is recommended for highly gapped/fragmentary
sequences [50]. The tree was rooted by turning on maximum-likelihood option at 1000 replicates.

Additionally, a multi loci sequence typing (MLST) phylogeny was performed on the basis of ten
selected genes including: both the 16S and 23S ribosomal RNAs, DNA-directed RNA polymerase subunit
beta (rpoB), 60 kDa chaperonin (GroL), cytochrome c oxidase subunit 1 (CoxA), chromosomal replication
initiator protein (DnaA), fructose-bisphosphate aldolase (fbpA), aspartyl/glutamyl-tRNA(Asn/Gln)
amidotransferase subunit B (gatB), transcription termination/antitermination protein (NusA) and
gamma-glutamylputrescine synthetase (PuuA). The choice of these loci was conform to the standard loci
requirements for an MLST system [90]. These genes were retrieved from the 35 genomes after annotation
on DFAST. MAFFT alignment [84] was performed and sequences were then merged using Seaview [85].
ML phylogeny was performed with IQ-TREE [49] using 1000 bootstrap replicates. All phylograms from
the SLST, MLST and FASTRTREE phylogenies were edited by iTOL v4 software [91].

5. Conclusions

Our results emphasize the usefulness of the S2 cells as a suitable line for the isolation and the
propagation of Wolbachia. Thereby, the standardized procedure herein we proposed provided sufficient
material for genome sequencing and other manipulation. This may help to resolve problems related
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to the direct sequencing of wolbachial genomes from their hosts [7,54] as well as to cultivate the
previously uncultivated Wolbachia (e.g., filaria-associated Wolbachia) since the S2 line allowed the
successful culture of the PL13 strain in record time (11 days) despite the reduction of translational
machinery of this bacteria.

Genomic and metabolic features that emphasize both nutritional-mutualistic and parasitic
relationship between wChem PL13 and its host. However, the clear-cut distinction between mutualism
and parasitism of this strain cannot be yet ruled out and further studies are needed.

These features provide the platform for the feature research to understand Wolbachia-host
interaction. By combining bacterial isolation and taxo-genomic descriptions may ultimately assist in
the quest to classify Wolbachia in multiple species as is the case of the other Rickettsiales bacterium
such as Rickettsia spp. Anaplasma spp., and Ehrlichia spp.
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