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Abstract: Esophageal adenocarcinoma (EAC), the major histologic type of esophageal cancer (EC)
in Western countries, is a disease with a poor prognosis, primarily due to usual diagnosis at an
advanced stage. The prevalence of EAC has increased in recent years, both in Western countries
and in Asia. Barrett’s esophagus (BE) is a precursor lesion of EAC. Therefore, early detection and
proper management of BE and EAC is important to improve prognosis. Here, we systematically
summarize current knowledge about the potential utility of extracellular microRNAs (miRNAs),
which are thought to be non-invasive biomarkers for many diseases, for these purposes. A search
of the PubMed and Embase databases identified 22 papers about extracellular miRNAs that have
potential utility for management of EAC. Among them, 19 were EAC-related and ten were BE-related;
some of these dealt with both conditions. The articles included studies reporting diagnosis, prognosis,
and treatment responses. Multiple papers report dysregulation of miR-194-5p in BE and miR-21-5p,
-25-3p, and -93-5p in EAC. Although it will take time to utilize these miRNAs in clinical practice, they
are likely to be useful non-invasive markers in the future.

Keywords: esophageal cancer; GERD; miRNA; biomarker

1. Introduction

Esophageal adenocarcinoma (EAC) is a major histologic type of esophageal cancer
(EC), the incidence of which varies geographically according to race and gender [1]. The
rate of EAC in Western Europe, Australia, and North America is increasing rapidly [2–4].
By 2030, 1 in 100 men in the Netherlands and United States are predicted to be diagnosed
with EAC during their lifetime [5]. In Japan, although EAC accounts for less than 10%
of EC cases, the incidence is increasing [6]. The increase can be explained by decreased
prevalence of Helicobacter pylori (H. pylori) infection, although the relationship between H.
pylori and EAC occurrence remains controversial. [7–9].

The prognosis of EAC is poor if diagnosed at the advanced stage, by which time
metastasis or invasion has occurred. The 5-year survival rate for EAC patients is 80.5%
at stage I, and 45.1%, 17.6%, and 2.1% at stages II, III, and IV, respectively [3]. However,
increased rates of early detection in European countries, the United States, and China
have improved the 5-year survival rate from less than 5% in the 1960s to about 20% in
2000 [10–12]. Thus, early identification of EAC and identification of high-risk groups are
important.

Barrett’s esophagus (BE) denotes metaplasia from squamous epithelium into columnar
epithelium; BE is classified into short-segment BE (SSBE) and long-segment BE (LSBE).
BE is considered to be a precancerous lesion of EAC. Both SSBE and LSBE carry a risk of
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carcinogenesis [13], although the risk is lower for SSBE [14]. BE and EAC are induced by
reflux of both gastric and bile acids [15], irrespective of the severity of reflux symptoms and
esophagitis [4,16]. Similar to the adenoma-carcinoma sequence of colorectal cancer, EAC
develops through metaplasia, low-grade dysplasia (LGD), high-grade dysplasia (HGD),
intraepithelial adenocarcinoma, and finally invasive adenocarcinoma. Jason et al. reported
that BE develops in 6–14% of patients with GERD, and that 0.5–1% of these will develop
adenocarcinoma [4,17]. Thus, to facilitate early detection of EAC, it is important to identify
patients with BE who are at high risk of EAC.

Esophagogastroduodenoscopy is the standard method for early detection of BE and
EAC; no non-invasive and reliable screening method has been established to date. Although
various efforts and trials, such as Seattle protocol, web-based teaching tools [18], and
computer-aided detection [19], have been made to improve detection of BE and EAC,
the examination itself is invasive and relies heavily on the skill of the operator. The
Cytosponge, a gelatin-coated sponge attached to a string that collects cytologic specimens
from the esophageal mucosa when withdrawn, may have the potential to replace traditional
endoscopic screening and be more cost-effective [20]. However, it is not used widely.

Recently, circulating cell-free DNA and RNA have attracted attention as new biomark-
ers. MiRNA is a single-stranded non-coding RNA comprising 17–25 bases, which regulates
protein translation. It is suggested that tumor tissues may secrete aberrant miRNAs to
create a microenvironment conducive to growth. Furthermore, miRNAs are actively se-
creted into blood, urine, and saliva by extracellular vesicles. Thus, miRNAs may be novel
biomarkers for various pathological conditions, including not only cancer but also inflam-
matory and infectious diseases [21]. Since the discovery of extracellular miRNAs, many
studies have actively investigated BE and EAC-specific miRNAs for diagnostic purposes.
Here, we systematically reviewed the literature regarding extracellular miRNAs related to
BE and EAC.

2. Experimental Section
Methods

The PubMed and Embase databases were searched using the terms “(esophagus OR
esophageal) AND (Barrett’s OR adenocarcinoma) AND (microRNA OR miRNA) AND (cir-
culating OR serum OR plasma OR urine)”. Of these, duplications, review articles, studies
of intracellular miRNAs only, and studies not investigating BE or EAC (i.e., investigations
of esophageal squamous cell carcinoma only) were excluded (Figure 1). The contents of
these papers were organized and are described below.
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3. Results

We identified 35 reports in PubMed and 78 reports in Embase. After applying the
exclusion criteria, we identified 22 papers (including abstracts for conference presentations).
We classified these into those related to diagnosis of BE, those related to diagnosis of EAC,
those related to therapeutic effects, and those related to prognosis of EAC (Figure 2).
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3.1. Detection of BE

Six studies reported diagnosis of GERD and BE; some of these also mentioned EAC.
Those comparing EAC and BE are described in the next section. Here, we describe studies
that investigated miRNAs that distinguish individuals with GERD or BE from normal
healthy subjects (Table 1).

In 2013, Bansal et al. [22] compared serum levels of miRNAs in 20 BE patients and
19 patients with GERD (grade B or higher). Compared with the GERD group, the BE group
had significantly higher levels of miR-15a-5p (sensitivity, 75%; specificity, 75%; area under
the receiver operating characteristic curve (AUC), 0.68 (0.60–0.86, p = 0.01)) and miR-196a-
5p (sensitivity, 70%; specificity, 74%; AUC, 0.72 (0.61–0.89, p = 0.03)). A combination of
miR-15a and miR-196a can be used to distinguish BE patients from GERD patients, with a
sensitivity of 75%, a specificity of 85%, and an AUC of 0.79 (0.64–0.95, p = 0.003).

In 2016, Bus et al. [23] identified four BE-specific miRNAs by comparing plasma
miRNAs from BE and EAC with those from healthy controls. Further validation in 115
patients and controls showed that miRNA-194-5p and miRNA-451a were up-regulated,
and miRNA-136-5p was down-regulated, in BE compared with controls. Furthermore, a
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combination of three or more miRNAs showed good diagnostic performance, with an AUC
of 0.832.

In the same year, Cabbi et al. [24] compared miRNA expression in serum and esophageal
mucosal biopsy tissues from patients with BE, columnar-lined esophagus (CLE), and
esophagitis. Similar to the results from tissues, circulating levels of miR-143-3p, -194-5p,
and -215-5p were up-regulated in the serum of patients with BE, and were higher than those
in patients with CLE or esophagitis. MiR-194-5p and miR-215-5p were also significantly
up-regulated in patients with CLE compared with those with esophagitis, suggesting that
CLE is an intermediate condition between BE and esophagitis.

In 2017, Fassan et al. [25] investigated expression of plasma miR-223-3p in BE and
EAC, and found that expression of miR-223-3p was significantly associated with the degree
of intestinal metaplasia in those with atrophic gastritis and LSBE.

Pavlov et al. [26] compared serum miRNAs from patients with normal squamous
epithelium (SE), BE, HGD, and EAC. MiR-320e was significantly down-regulated in the
BE group compared with the SE (p ≤ 0.001; AUC, 0.790) and HGD (p ≤ 0.005; AUC, 0.786)
groups, and miR-199a-3p was significantly down-regulated compared with the SE group
(p ≤ 0.001; AUC, 0.813).

In 2019, Wang et al. [27] found higher levels of serum miR130a-3p in patients with
low-grade and high-grade dysplastic BE than in serum from patients with metaplastic ep-
ithelium.

Table 1. MiRNAs used to detect BE.

Author, Year
[Reference] Sample Size Sample Up-Regulated Down-

Regulated

Bansal et al.
2013 [22]

BE (n = 20)
GERD (n = 19) Serum -15a-5p

-195a-5p

Bus et al.
2014 [28]

BE (n = 8)
Healthy (n = 6) Plasma -194-5p, -451a -136-5p

Cabbi et al.
2016 [24]

BE (n = 8)
CLE (n = 12)

Esophagitis (n =
10)

Plasma
-143-3p
-215-5p
-194-5p

Pavlov et al.
2018 [26]

BE (n = 27)
SE (n = 19)

HGD (n = 17)
Serum -320e

-199a-3p

Wang et al. 2019 [27] BE (n = 6)
Healthy (n = 6) Serum -130a-3p

BE, Barrett’s esophagus; CLE, columnar-lined esophagus; SE, squamous epithelium; HGD, high-grade dysplasia.

3.2. Detection of EAC

There were 14 publications about the utility of miRNAs for diagnosis of EAC. The
controls were mostly healthy individuals or BE patients, and one report used saliva samples
(Table 2).

In 2011, Song et al. [29] extracted total RNA from serum samples obtained from EAC
patients and healthy controls, and from cancer tissues and normal tissues of EAC patients.
Some miRNAs showed significant differences in serum levels between the EAC and healthy
groups (AUC, 0.885; sensitivity, 92%; specificity, 83%). They reported that measurement of
serum miRNAs is likely to lead to early diagnosis of EAC and to an improved prognosis
(the specific name of miRNA was not reported).

In 2013, Xie et al. [30] analyzed saliva miRNAs from EC patients and healthy sub-
jects, and verified their presence in both whole saliva and saliva supernatant samples
from 39 EC patients and 39 healthy controls. MiR-10b-3p, -144-3p, and -451a in whole
saliva, and miR-10b-3p, -144-3p, -21-5p, and -451a in saliva supernatant, were significantly
up-regulated in EC patients (sensitivity, 89.7%, 92.3%, 84.6%, 79.5%, 43.6%, 89.7%, and



J. Clin. Med. 2021, 10, 117 5 of 16

51.3%, respectively, and specificity, 57.9%, 47.4%, 57.9%, 57.9%, 89.5%, 47.4%, and 84.2%,
respectively). Although this report also included SCC, the authors reported no differences
in expression of miRNA between EAC and SCC.

In 2015, Chiam et al. [31] verified the presence of serum exosome miRNAs in 18
cases of locally advanced EAC, ten cases of BE, and 19 healthy controls, and identified a
multi-biomarker panel (RNU6-1/miR-16-5p, miR-25-3p/miR-320a, let-7e-5p/miR-15b-5p,
miR-30a-5p/miR-324-5p, and miR-17-5p/miR-194-5p) that is more specific than any single
miRNA. They reported that this panel distinguished EAC patients from healthy controls
and BE patients with high specificity and sensitivity (ROC = 0.99; 95% confidence interval
(CI), 0.96–1.0).

Warnecke-Eberz et al. [32] reported overexpression of serum exosome-derived miR-
223-5p and miR-483-5p in EAC patients. Furthermore, regarding differences in TNM
classification, miR-223-5p expression was higher in T2 (p = 0.006) than in T3. These
data suggest that miR-223 is secreted at high levels during the early stages of tumor
development.

Bus et al. [23] compared BE, EAC, and control plasma miRNAs, and reported that
miR-382-5p was significantly up-regulated, and miR-133a-3p was down-regulated, in EAC
patients, and that combinations of three or more miRNAs could distinguish EAC from
controls (AUC, 0.846) and BE from EAC (AUC, 0.797).

In 2016, Yan et al. [33] reported that exosomes extracted from EAC-conditioned
medium or serum from EAC patients contained significantly higher levels of miR-93-
5p and miR-21-5p than normal medium or normal serum. In addition, they cultivated
normal enteroids and BE organoids for 3 weeks in EAC-conditioned medium. They found
that EAC-conditioned medium induced dysplasia and proliferation of enteroids and BE
organoids. Therefore, they hypothesized that exosomes from cancer cells play a role in
induction of morphological changes in organoids and promote their growth.

Zhang et al. [34] compared circulating miRNAs in serum from EAC patients and
healthy controls, and found that miR-25-3p and miR-151a-3p were significantly up-regulated,
and that miR-100-5p and miR-375-3p were significantly down-regulated in EAC patients.

Chen et al. [35] isolated exosomes from serum samples from EAC patients and controls,
and reported that miR-21-5p, -16-5p, -25-3p, and -155-5p were significantly up-regulated,
and miR-192-5p was significantly down-regulated, in EAC patients.

We [36] also analyzed tissue and blood miRNAs from human interleukin-1β (IL-1β)
transgenic mice (L2-IL-1β mice) as a model of BE. We then compared expression of human
plasma miRNAs in eight EAC patients, eight BE patients, and six healthy individuals
using a public dataset. Compared with the BE group, levels of miR-128-3p and miR-328-3p
were higher in the EAC group, and those of miR-143-3p, -144-3p, -15a-5p, -1-3p, and -133b
were lower.

In 2018, Miyoshi et al. [37] profiled miRNAs expressed in 42 pairs of EAC and normal
tissues, and validated them in 44 EAC, 20 BE, and 30 control sera. Six miRNAs (miR-106b-
5p, -146a-5p, -15a-5p, -18a-5p, -21-5p, and -93-5p) were significantly up-regulated and
could be used to distinguish EAC patients from healthy subjects (AUC, 0.86).

In 2019, Wang et al. [27] profiled BE and healthy subjects, and compared serum miR-
NAs among EAC, BE, and healthy groups. They found that miR130a-3p was significantly
up-regulated in the EAC group, and that expression of miR130a-3p increased gradually
from early (I, II) to advanced (III, IV) stage. As we mentioned in the BE section, they also
showed that levels of miR130a-3p were significantly higher in patients with LGD and HGD
BE than in those with metaplasia (sensitivity, 70.5%; specificity, 62.5%), suggesting that
increased miR130a-3p expression in plasma may correlate with early EAC.

Craig et al. [38] compared miRNAs in serum from five controls, nine GERD, seven BE,
five BE with LGD, and five EAC patients with those in biopsy tissues. Some characteristic
miRNAs were identified in biopsy tissues, but there was no difference between expression
of serum miRNAs between EAC patients and controls.
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Fassan et al. [39] also compared serum miRNA from patients with BE, HG-IEN
(dysplastic or intraepithelial neoplasia), and EAC. Seven (miR-92a-3p, -151a-5p, -362-3p,
-345-3p, -619- 3p, -1260b, and -1276) were up-regulated in the HG-IEN/EAC samples
compared with the non-dysplastic BE samples, whereas three (miR-381-3p, -502-3p, and
-3615) were down-regulated.

Table 2. MiRNAs used to detect EAC.

Author, Year
[Reference] Sample Size Sample Up-Regulated Down-

Regulated

Xie et al.
2013 [30]

SCC (n = 32)
EAC (n = 4)

Healthy (n = 19)

Whole
saliva

-10b-3p, -144-3p,
-451a

Saliva
supernatant

-10b-3p, -144-3p,
-21-5p, -451a

Chiam et al.
2015 [31]

EAC (n = 18)
BE (n = 10)

Healthy (n = 19)
Serum

RNU6-1/-16-5p,
-25-3p/-320a

let-7e-5p/-16b-
5p,

-30a-5p/-324-5p,
-17-5p/-194-5p

Warnecke-Eberz et al.
2015 [32]

EAC (n = 59)
Healthy (n = 4 Serum -223-5p, -483-5p

Bus et al.
2016 [23]

EAC (n = 59)
BE (n = 41)

Healthy (n = 15)
Plasma -382-5p -133a-3p

Yan et al.
2016 [33]

Medium
serum -93-5p, -21-5p

Zhang et al.
2016 [34]

EAC (n = 10)
Healthy (n = 11) Serum -25-3p, 151a-3p -100-5p,

-375-3p

Chen et al.
2017 [35]

EAC (n = 9)
Healthy (n = 9) Serum -21-5p, -16-5p,

-25-3p, -155-5p -192-5p

Fassan et al.
2017 [25]

EAC (n = 30)
Dyspeptic

patients (n = 20)
Atrophic

gastritis (n = 15)
BE (n = 15)

Plasma -223-3p

Matsuzaki et al.
2017 [36]

EAC (n = 8)
BE (n = 8)

Healthy (n = 6)
Plasma -128-3p, -328-3p

-143-3p,
-144-3p,
-15a-5p,
-1-3p,
-133b

Miyoshi et al.
2018 [37]

EAC (n = 44)
BE (n = 20)

Healthy (n = 30)
Serum,

-106b-5p, -93-5p,
-146a-5p, -15a-5p,
-18a-5p, -21-5p,

Wang et al.
2019 [27]

EAC (n = 40)
BE (n = 60)

Healthy (n = 30)
Serum -130a-3p

Fassan et al.
2020 [39]

EAC (n = 8)
BE (n = 12)

HG-IEN (n = 5)
Serum

-92a-3p,
-151a-5p,

-362-3p, -345-3p,
-619-3p, 1260b,

-1276

-381-3p,
-502-3p,

-3615

EAC, esophageal adenocarcinoma; BE, Barrett’s esophagus; HGD, high-grade dysplasia.
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3.3. MiRNAs Related to Prognosis and Treatment Responses in EAC Patients

There have been some attempts to use miRNAs not only for diagnosis of EAC but
also for treatment responses and prognosis. With respect to recurrence, Gu et al. [40]
investigated the role of serum miRNAs as predictors of recurrence. They profiled serum
miRNAs from 72 EAC patients (32 with recurrence and 40 without) and validated them in
329 EAC patients (132 with recurrence and 197 without). The results showed that serum
miR-331-3p was significantly down-regulated in patients with recurrence, making it a
useful biomarker for identifying EAC patients at high risk of recurrence. The following
four studies examined treatment response and prognosis.

Odenthal et al. [41] examined serum miRNAs in 50 patients with locally advanced
EAC who underwent neoadjuvant chemotherapy and surgery, and assessed whether serum
miRNAs were useful indicators of treatment response. No serum miRNAs were associated
with a therapeutic response, but there was a significant correlation between expression of
miR-192-5p and miR-222-3p and T classification, and between expression of miR-302c-3p
and miR-222-3p and overall survival (OS). They reported that low miR-222-3p expression
and high 302c-3p expression may suggest significantly better OS.

In 2014, Pu et al. [42] attempted to identify serum miRNAs as diagnostic, prognostic,
and predictive biomarkers for EAC. When comparing miRNAs in the EAC and the control
groups, they identified four (miR-126-3p, -142-3p, -331-3p, and -18a-5p) that were specific
for EAC (p < 0.05). In addition, five miRNAs were significantly associated with survival,
two of which were associated with recurrence (p < 0.05) (the specific miRNAs were not
identified). Also, in cases with high miR-30c-5p expression, the risk of death (HR = 0.28,
95% CI = 0.12–0.65, p = 0.003) and recurrence (HR = 0.49; 95% CI = 0.24–0.99, p = 0.047)
was lower than in cases with low expression (“risk of death” was not defined). Among 118
patients who received chemo/chemoradiation therapy (93% and 84% received 5FU and
platinum, respectively), those in both treatment groups with high expression of miR-30c-5p
had a reduced risk of mortality. In the platinum group, miR-26a-5p was significantly
related to increased risk of death (HR = 5.78; 95% CI = 1.59–21.06, p = 0.008) and recurrence
(HR = 7.76; 95% CI = 2.30–26.18, p = 0.001), and miR-142-3p was associated with an
increased risk of recurrence (HR = 2.67; 95% CI = 1.09–6.56, p = 0.032). By contrast, in the
5FU group, miR-127-3p and miR-486-5p were significantly associated with both survival
and recurrence (it is unclear whether high or low expression was important).

In 2015, Zhai et al. [43] investigated whether serum miRNA profiles could predict the
prognosis of EAC together with H. pylori infection status. Serum samples from EAC patients
and healthy individuals were used to profile miRNAs, and serum from other EAC patients
were evaluated to examine the association between survival and the presence or absence of
H. pylori infection (H. pylori was detected by immunoblotting). Overall, serum miRNAs
were not significantly associated with the prognosis of EAC in the H. pylori-positive group.
However, 16 miRNAs (miR-1253, -1273d, -187-5p, -1912, -200b-5p, -2276, -3147, -324-3p,
-326, -3652, -3935, -4267, -4274, -4286, -4323, and -640) were significantly associated with OS
(all p < 0.05) in the H. pylori-negative group. This suggests that miRNAs affect the survival
rate of those with EAC and may be related to the presence or absence of H. pylori infection.

Petrick et al. [44] used US multicenter population-based serum samples from patients
enrolled between 1993 and 1995 to compare miRNAs in EAC and healthy individuals, and
to investigate survival rates. In the EAC group, 68 serum miRNAs were significantly up-
regulated and 11 serum miRNAs were down-regulated. MiR-4253 and miR-1238-5p were
associated with survival after EAC diagnosis (HR = 4.85, 95% CI, 2.30–10.23, BH-adjusted
p = 0.04; and HR = 3.81, 95% CI, 2.02–7.19, BH-adjusted p = 0.04, respectively). This study
suggests that circulating miRNAs may be associated with survival after EAC diagnosis.

4. Discussion
4.1. BE diagnosis

Seven miRNAs (miR-15a-5p, -130a-3p, -143-3p, -194-5p, 195a-5p, -215-5p, and -451a)
were up-regulated and three miRNAs (miR-136-5p, -320e, and -199a-3p) were down-
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regulated. MiR-15a-5p [37], -130-3p [27], and -451a [30] are also up-regulated in EAC,
whereas miR-143 is down-regulated.

MiR-15a-5p is involved in colon cancer, cervical cancer, and cervical cell cancer [45–48],
and the main function of miR-130a-3p is to inhibit tumor progression [49,50]. MiR-143-
3p [51–53] and miR-451a are tumor suppressors that correlate with non-small cell lung
cancer (NSCLC) and colorectal cancer [53,54]. MiR-194-5p inhibits cell migration and
invasion during gastric cancer progression by down-regulating FoxM1 [55]. MiR-136-5p
suppresses lung adenocarcinoma [56] and renal cell cancer [57]. MiR-199a-3p suppresses
EAC [58] and other cancers such as gastric cancer [59]. A report suggests that tissue miR-
215-5p is specific for BE [60]; however, others suggest that it suppresses some tumors [61,62].
Previous studies show that expression of miR-320e is higher in EAC tissues than in BE
tissues; high miR-320e tissue levels are associated with an adverse prognosis in those with
colon cancer [63], although the underlying mechanism is unclear (Table 3).

Table 3. Functional roles and validated targets of miRNAs associated with BE diagnosis.

miRNA Functional Role Target Cancer Type Sample

miR-15-a-5p
Tumor promoter

Tumor
suppressor

TP53INP1 [48]
WNT3A [47]

Cervical cancer
Endometrial

Cancer

30 tissue
8 tissue

miR-130a-3p

Inhibit cell
proliferation,

migration, and
invasion

RAB5B [50]
PTEN, p21 [64]

Breast cancer
Gastric cancer

40 tissue
30 tissue

miR-143-3p Tumor
suppressor

TAK1 [51]
MAPK7 [52]
KRAS [53]

Ovarian cancer
Breast cancer

PDAC

4 cell lines
37 tissue

miR-215-5p Tumor
suppressor

EGFR [61]
Sox9 [62]

Colorectal
cancer

Breast cancer

252 tissue
39 tissue

miR-194-5p

Inhibiting cell
migration and

invasion during
cancer

progression

FoxM1 [55] Gastric cancer 50 tissue

miR-451a
Inhibits the

migratory and
invasive abilities

ATF2 [65] NSCLC 55 tissue

miR-199a-3p

Prognostic
indicator

Tumor
suppressor

ETNK1 [59]
PAK4 [58]

Gastric cancer
Esophageal

cancer
39 tissue

BE, Barrett’s esophagus; PDAC, pancreatic ductal adenocarcinoma; NSCLC, non-small cell lung cancer.

Based on the above, levels of miRNA in blood differ between BE and healthy subjects;
two papers report upregulation of miR-194-5p in BE [23,24]. MiR-194-5p and miR-215-5p
levels are higher in those with BE, and even in those with CLE, than in controls [24]. It
is thought that specific serum miRNAs start to rise at the very early stage, when the SE
begins to show morphological changes, and that this may be useful for diagnosis of early
dysplasia and BE.

4.2. EAC Diagnosis

Many miRNAs are associated with EAC diagnosis, among which miR-21-5p, -25-3p,
and -93-5p are mentioned in more than one paper. MiR-21-5p was reported in four pa-
pers [30,33,35,37]; indeed, it is one of the most commonly observed aberrant miRNAs in
human cancer. Numerous studies show that miR-21-5p promotes carcinogenesis and tumor
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progression by targeting genes encoding PDCD4, PTEN, BTG2, FasL, IGFBP3, TGF-β1,
FBXO11, and TIMP3 [66–71]. Many studies explored the function of miR-21-5p with respect
to prognosis and diagnosis. With respect to EAC, miR-21-5p upregulation promotes metas-
tasis of EAC by regulating cancer cell apoptosis [72]; it is also an independent prognostic
biomarker for disease-specific survival [73]. More than two papers report upregulation of
miR-25-3p [31,34] and miR-93-5p [33,37]. High expression of miR-25-3p in EAC tissues is
reported in several papers; this miRNA promotes cell migration and invasion of SCC by
targeting CDH1 [74]. Mir-93-5p was identified by studies examining EAC tissue miRNA;
the combination of miR-25/miR-93 establishes an immunosuppressive microenvironment
in breast cancer by inactivating the cGAS pathway [75], and it also reported to have the pro-
motion function on cervical cancer by targeting THB2/Matrix metalloproteinases (MMPS)
pathway [76] MiR-15a-5p is both up-regulated [37] and down-regulated [36,77] in cancer
serum; some reports suggest that it acts as a tumor suppressor [47,78], whereas some
suggest that it acts as a tumor promoter [48]. Further research is necessary. MiR-223-5p is
expressed at higher levels at T2 than at T3. MiR-223-5p inhibits tumor progression [79],
whereas miR-130a-3p expression increases as the tumor stage progresses [27], suggesting
that it promotes tumor growth [64] (Table 4).

Table 4. Functional roles and validated targets of miRNAs associated with EAC diagnosis.

miRNA Functional Role Target Cancer Type Sample

miR-21-5p

Promotes
anoikis

resistance and
metastasis

TGFβ1 [68]
TIMP3 [69]
IGFBP3 [67]
FBXO11 [71]

NSCLC
RCC
GBM

104 tissue

miR-25-3p
Promote

migration
invasion

CDH1 [74] SCC

miR-93-5p Promote
progression

PTEN [75]
THBS2/MMPS [76]

Breast cancer
Cervical cancer 28 tissue

miR-15a-5p
Tumor

suppressor
Promotor

E2F1, MYCN [78]
TP53INP1 [48]

Neuroblastoma
Cervical cancer 30 tissue

NSCLC: non-small-cell lung carcinoma, RCC: renal cell carcinoma, GBM: glioblastoma multiform, SCC: squamous
cell carcinoma.

Many studies show that extracellular miRNA levels are significantly different between
EAC, BE, and controls, but there is also a report that the utility of serum miRNAs is
limited [38]. The roles of miR-21-5p, -25-3p, and -93-5p in cancer have been reported
in multiple papers [76]. In addition, serum miR-223-5p levels increase more quickly
at the early stage of EAC [32], and serum levels of miR-130a increase as tumor stage
progresses [27]. Thus, miRNAs are useful markers for early detection and staging of EAC.

4.3. EAC Recurrence

Two papers reported that serum levels of miR-331-3p, -30c-5p, 142-3p, 127-3p, 486-5p,
and -26a-5p correlate with recurrence of EAC [40,42]. There are few reports of cellular
or extracellular miRNAs in the context of EAC recurrence. Matsui et al. [80] identified
miR-652-5p, -7-2-3p, -3925-3p, and -219-3p as being prognostic for recurrence in patients
with stage II/III EAC. But in the two papers we found here, the same extracellular miRNAs
were not reported.

MiR-142-3p suppresses growth of colorectal cancer [81] and breast cancer [82] cells
by targeting CDK4, Beach-1, and CDC25C [83]. MiR-331-3p is useful for diagnosis of
EAC [42] and is known to promote tumor progression [83]. As we mentioned in the
previous paragraph about EAC recurrence, four (miR-30c-5p, -127-3p, -486-5p, and -26a-5p)
serum miRNAs are associated with OS/prognosis (Table 5).
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Table 5. Functional roles and validated targets of miRNAs associated with overall survival, prognosis,
and recurrence.

miRNA Functional Role Target Cancer Type Sample

miR-331-3p Tumor
suppressor

HER2 [84,85]
RCC2 [86]
E2F1 [87]

Pancreatic
cancer

Colorectal
cancer

Cervical cancer
Ovarian cancer
Gastric cancer

44 plasma
29 tissue
20 tissue

miR-26a-5p Tumor
suppressor TMEM184B [88] OSCC 36 tissue

miR-30c-5p Tumor
suppressor

MTA1 [89]
HSPA5 [90]

Gastric cancer
RCC, Bladder

cancer,
Prostate cancer

40 tissue
130 urine

miR-127-3p Tumor
suppressor

KIF3B [91]
ITGA6 [92]
BAG5 [93]

OSCC
Osteosarcoma
Ovarian cancer

45 tissue
20 tissue

miR-142-3p Tumor
suppressor

CDK4 [81]
CDC25C [94]
Beach-1 [82]

Colorectal
Cancer

Breast Cancer

116 tissue

42 tissue

OSCC: oral squamous cell carcinoma, RCC: renal cell carcinoma.

4.4. Survival and Prognosis

Among the miRNAs associated with OS or prognosis, miR-30c-5p, -26a-5p, -127-3p,
and -486-5p are also associated with recurrence. Serum miR-222-3p is also associated with
T classification [41,42].

MiR-30c-5p suppresses tumorigenesis in gastric cancer [89] and renal cell carcinoma
(RCC) [90]. MiR-331-3p regulates cancer growth by targeting HER2, overexpression of
which promotes cancer cell proliferation, resistance to apoptosis, angiogenesis, and metas-
tasis [95]. MiR-331-3p expression is down-regulated in various cancers (e.g., cervical
cancer [84], colorectal cancer [85], ovarian cancer [86], gastric cancer [87], prostate cancer,
and glioblastoma). MiR-26a-5p inhibits migration and invasion of cancer cells by targeting
the TMEM184B gene [88]. MiR-127-3p acts as a tumor growth suppressor by targeting KIF3,
ITGA6, and BAG5 in SCC [96], osteosarcoma [92], and ovarian cancer [93]. MiR-486-5p
stimulates cell proliferation, migration, and invasion by inhibiting PTEN expression and
by activating the oncogenic PI3K/AKT pathway [97,98], although one study concluded
that it works to suppress tumors [99]; further verification is required (Table 5).

In addition, Zhai et al. reported that miRNAs that predict prognosis differed according
to H. pylori infection status [43]. H. pylori infection induces chronic gastritis and metaplasia,
which can alter miRNA expression profiles in human gastric mucosa [100,101]. Wang et al.
reported that miRNA expression in 53 gastric cancer tissues differed between H. pylori-
positive and H. pylori-negative patients [102]. Importantly, most patients with EAC do not
have H. pylori infection because H. pylori infection reduces gastric acid secretion and acid
regurgitation into the esophagus. [103]. Differences in expression of miRNAs associated
with the prognosis of EAC might be due to different etiologies of EAC.

From the above, we can see that many miRNAs are associated with tumor progression.
Thus, increased or decreased levels of these in the blood may reflect the growth rate of the
tumor, and will therefore reflect survival or recurrence rates.

4.5. Potential of Extracellular miRNAs as BE/EAC Diagnosis/Prediction and Prognosis Markers

Detection of EAC by endoscopy requires skill and continuous training. In Western
countries, although several screening methods for EAC have been suggested, the most cost-
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effective strategies for risk stratification and surveillance intervals remain controversial [17].
In fact, the detection rate of EAC by surveillance alone is low; less than 15% of all EAC
cases are detected by endoscopic surveillance [104]. A ‘liquid biopsy’, such as circulating
tumor DNA (ctDNA) and miRNA, has the potential to detect EAC at the early stage
without interobserver variability [105]. Sampling biofluid is quicker and less invasive than
obtaining cancer tissues, and it is not affected by the anatomical location of the cancer.
However, the diagnostic accuracy, cost, and reproducibility must be improved [106,107]. In
particular, altered expression of miRNA detected by one method is sometimes not validated
by another method. Therefore, careful validation using multiple orthogonal methods is
important to check the robustness of findings.

It seems unlikely that a satisfactory detection rate will be achieved by testing for
just one miRNA, as various disease conditions can alter extracellular miRNA profiles in
the body. However, by combining multiple miRNAs, disease-specific screening may be
possible. At present, several companies worldwide are working to develop extracellular
miRNA-based diagnostics. Two case-control studies (NCT02464930 and NCT02812680) are
registered, both of which are recruiting about 200 participants. However, no population-
based study has been performed. We also reported that several cancer types, such as
breast and ovarian cancer, can be diagnosed at the early stage by analyzing serum miR-
NAs [108,109]. However, we also need to identify the underlying biological mechanisms
by which these miRNA profiles change under different disease conditions, a process that
will take several years. In terms of the cost, it should not be a prohibitive factor for clinical
implementation because, if this technology becomes popular, the cost will fall.

5. Conclusions

Many miRNAs have been identified in the context of BE/EAC diagnosis and prognosis.
In particular, several studies identified the same serum miRNAs (miR-21-5p, miR-25-3p,
and miR93-5p) as being associated with EAC. However, since these studies are small-
scale, and the sample types, method of miRNA analysis, pathological definition of disease,
study populations, and outcomes vary, it is hard to identify useful miRNAs. To bring
miRNA analysis into clinical practice, we must overcome many challenges, including
standardization of methodologies, improvement of diagnostic performance, and cost-
effectiveness [107]. Further investigations are warranted to firmly establish extracellular
miRNAs as useful clinical biomarkers.
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