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Simple Summary: Breast cancer remains the most commonly diagnosed cancer and the leading
cause of cancer death among females worldwide. It is a highly heterogeneous disease, classified
according to hormone and growth factor receptor expression. Patients with triple negative breast can-
cer (TNBC) (estrogen receptor-negative/progesterone receptor-negative/human epidermal growth
factor receptor (HER2)-negative) and hormone-independent HER2 overexpressing subtypes still
represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Thus, new
alternative anticancer agents based on the use of natural products have been receiving enormous
attention. In this regard, curcumin is a promising lead in cancer drug discovery due its ability to
modulate a diverse range of molecular targets and signaling pathways. The current review has
emphasized the underlying mechanism of curcumin anticancer action mediated through the mod-
ulation of PI3K/Akt/mTOR, JAK/STAT, MAPK, NF-kB, p53, Wnt/β-catenin, apoptosis, and cell
cycle pathways in hormone-independent breast cancer, providing frameworks for future studies and
insights to improve its efficiency in clinical practice.

Abstract: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer
death among women worldwide. Despite the overall successes in breast cancer therapy, hormone-
independent HER2 negative breast cancer, also known as triple negative breast cancer (TNBC),
lacking estrogens and progesterone receptors and with an excessive expression of human epidermal
growth factor receptor 2 (HER2), along with the hormone-independent HER2 positive subtype,
still remain major challenges in breast cancer treatment. Due to their poor prognoses, aggressive
phenotype, and highly metastasis features, new alternative therapies have become an urgent clinical
need. One of the most noteworthy phytochemicals, curcumin, has attracted enormous attention as
a promising drug candidate in breast cancer prevention and treatment due to its multi-targeting
effect. Curcumin interrupts major stages of tumorigenesis including cell proliferation, survival,
angiogenesis, and metastasis in hormone-independent breast cancer through the modulation of
multiple signaling pathways. The current review has highlighted the anticancer activity of curcumin
in hormone-independent breast cancer via focusing on its impact on key signaling pathways including
the PI3K/Akt/mTOR pathway, JAK/STAT pathway, MAPK pathway, NF-kB pathway, p53 pathway,
and Wnt/β-catenin, as well as apoptotic and cell cycle pathways. Besides, its therapeutic implications
in clinical trials are here presented.

Keywords: triple negative; HER2; hormone-independent; breast cancer; curcumin; signaling path-
way; clinical trial; polyphenol; phytochemical; chemotherapy and chemoprevention

1. Introduction

Cancer as the complex disease is a major cause of morbidity and mortality around
the world, with 9.9 million deaths in 2020, and has been considered as the world’s biggest
killer by the age of 70 years in most countries in 2019. The world cancer burden is still
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increasing, with an estimated occurrence of 28.4 million new cancer cases in 2040, which
is an increase of about 47% compared to 2020 globally [1,2]. Among the various types
of cancer, breast cancer remained the most frequently occurring cancer among women
worldwide, with 2,261,419 newly diagnosed cases in 2020, accounting for 1 in 4 cancer
cases, and has now surpassed lung cancer in global cancer incidence. Besides, female breast
cancer ranks first in terms of mortality, with 684,996 deaths in 2020 accounting for 1 in 6
cancer deaths globally [2]. Although the incidence rates of breast cancer vary worldwide
and remain much higher in Australia and New Zealand (95.5 per 100,000), rapid rises have
been observed in Africa and Asia. There has been a historically low incidence in Asian
countries such as Japan and Korea in recent years [3–5].

Breast cancer is well known as a genetically and clinically heterogeneous disorder
encompassing numerous subtypes, with distinct histopathological patterns and molecular
characteristics resulting in various responses to therapies and clinical outcomes [6,7]. In
this respect, the differential expression of the growth factor and hormonal receptors (HR)
including the presence or absence of the progesterone receptor (PR) and estrogen receptor
(ER), or the amplification/overexpression of the human epidermal growth factor receptor-2
oncogene (HER2), have been considered as the chief determinants of these subtypes [8,9].

Approximately, two-thirds of breast cancers are ER+ and/or PR+, which are hormone-
sensitive and responsive to endocrine therapy with, aromatase inhibitors and selective
ER modulators [10,11]. However, the overexpression of HER2, a tyrosine kinase receptor
mediating cell proliferation and survival, occurs in about 15–30% of breast cancer. HER2-
positivity has been more frequently reported in HR- compared to HR+ cancers correlated
with an aggressive disorder and poor prognosis [12–14]. Although HER2-targeted therapies
have dramatically improved the overall survival among hormone-independent HER2+
patients, drugs-related side effects are yet major obstacles ahead [12,15,16]. Besides, triple
negative breast cancer (TNBC) represents a specific subtype accounting for approximately
15–20% of breast cancers, which is clinically negative for the expression of ER and PR,
and lacks HER2 overexpression (ER-, PR-, HER2-). TNBC has a highly aggressive clinical
behavior, prone to earlier relapses and often metastasis to the brain and lungs correlated with
poorer overall survival compared with other subtypes. This subgroup is also difficult to treat
and fails to respond to hormonal therapies or those targeting the HER2 receptors [17–19].

Therefore, despite the overall successes in breast cancer therapy, challenges to man-
aging and treating hormone-independent breast cancers (HER2+ or HER2-) still remain.
Hence, in addition to the conventional medicine, it is urgent to develop more effective agent
without side effects. In this regard, chemical entities present in plants are now becoming a
significant option in cancer drug discovery. One of the most noteworthy of phytochemicals,
curcumin, has attracted enormous attention as a promising drug candidate in breast cancer
prevention and treatment [20–23].

Curcumin is the major bioactive constituent of the turmeric spice derived from the
rhizome of the plant Curcuma longa L. It has been widely used in traditional Indian
medicine (Ayurveda) for the treatment of a variety of diseases for at least 4000 years [24,25].
This golden spice has also been found to exert preventive and therapeutic effects in breast
cancer. The preclinical models have demonstrated the pivotal role of curcumin in breast
cancer progression through regulating cell survival, proliferation, apoptosis, invasion,
angiogenesis, and metastasis [26–29]. Given to its significance, the current review has
highlighted diverse underlying mechanisms of anticancer activity of curcumin in hormone-
independent breast cancer mediated via its interaction with numerous signaling pathways.
The key intracellular signaling networks are the PI3K/Akt/mTOR pathway, JAK/STAT
pathway, MAPK pathway, NF-kB pathway, p53 pathway, and Wnt/β-catenin pathway,
as well as apoptotic and proliferation pathways. Besides, its therapeutic implications
in clinical trials are here presented. In the current review, MDA-MB-231, MDA-MB-435,
MDA-MB-436, MDA-MB-468, SUM159, HCC1806, HCC1937, Hs578T, EMT6 and 4T1 cell
lines are categorized as hormone-independent HER2 negative breast cancer subtypes, also
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known as TNBC (ER-, PR-, HER2-), while SKBR-3 and MDA-MB-453 are categorized as
hormone-independent HER2 positive breast cancer (ER-, PR-, HER2+) subtypes.

2. Curcumin: Impacts on Multiple Cellular Signaling Pathways in
Hormone-Independent Breast Cancer

Cell signal transductions are the central processes playing a critical role in cancer
progression and development. Existing evidence strongly implies that curcumin interrupts
major stages of tumorigenesis, including cell proliferation, survival, angiogenesis, and
metastasis in hormone-independent breast cancer through its modulatory effect on the
functions of multiple signaling pathways discussed below.

2.1. The PI3K/Akt/mTOR Pathway

The phosphatidylinositol-3-kinase (PI3K)/the protein kinase B (PKB or AKT)/the
mammalian target of the rapamycin (mTOR) pathway (PAM pathway) involves an intricate
signaling cascade linking receptor tyrosine kinase (RTK) to the regulation of cell growth
and survival, as well as angiogenesis and metabolism. It is activated by the stimulation of
RTK followed by PI3k recruitment and its phosphorylation. After being activated, PI3k
triggers the activation of a key signaling kinase AKT, which in turn regulates several
downstream effector molecules like mTOR, promoting protein and lipid synthesis and
ultimately cell growth. In addition, the activated AKT may inhibit apoptosis and promotes
cell survival via the subsequent modulation of various target molecules such as the Bcl-2
family of proteins [30–32].

The PAM pathway is the most frequently altered pathway in breast cancer, approxi-
mately 70% of cases, and is often activated in the TNBC involved in chemoresistance and
survival [32–35]. Besides, the constitutive activation of the PAM pathway is a potential
mechanism of resistance to anti-HER2 therapies [36]. Its oncogenic activation may occur
through various mechanisms. The overexpression of the upstream regulator epidermal
growth factor receptor, the loss of negative regulators such as proline-rich inositol polyphos-
phatase and phosphatase and tensin homolog (PTEN), in addition to mutations of the PI3K
gene, may result in an upregulated PAM signaling pathway in HR- breast cancer [37–39].
Activating the PIK3CA gene mutation is the most common alteration in breast cancer with
different frequency among various subtypes identified more than 70% in luminal tumors,
39% in hormone-independent HER2+, and approximately 9% in TNBC [32,40]. However,
in TNBC, the loss of PTEN or INPP4B mainly contributes to the dysfunction of the PAM
pathway correlated with increased levels of phosphorylated Akt. Additionally, AKT and
mTOR mutations occur relatively rarely in TNBC compared to the hormone-independent
HER2+ type [33,40]. Accordingly, given its critical role in tumorigenesis, the PAM pathway
represents an attractive target for novel therapies.

Curcumin has been proven to interfere with the PAM pathway through targeting
various signaling molecules, shown in Figure 1, which may facilitate the inhibition of
cellular growth, invasion, and metastasis in HR- breast cancer. It has been found that
curcumin treatment dramatically downregulated the expression of AKT in a dose- and
time-dependent manner in MDA-MB-231 cells, resulting in the suppression of the PAM
pathway and, subsequently, the inhibition of cellular proliferation and migrations in
TNBC [41]. Curcumin post-translationally regulated Akt protein levels via its degrada-
tion. This modification was mediated through the stimulatory effect of curcumin on
AMPK activity and the subsequent activation of the autophagy-dependent degradation
pathway. [41]. Curcumin has the potential to reverse the epithelial-mesenchymal transition
(EMT) mechanism by influencing the expression of EMT-related genes in the TNBC cell line.
Curcumin treatment downregulated AXL, β-catenin, slug, and vimentin in MDA-MB-231
cells. AXL triggers the PAM pathway through promoting AKT activation, which in turn
targets downstream epithelial and mesenchymal regulatory markers leading to tumor
cell invasion. Therefore, curcumin may inhibit the invasive ability of TNBC cells through
AKT-mediated EMT inhibition [42–44]. In addition, it was found that the acquisition of a
mesenchymal phenotype in TNBC occurred following doxorubicin treatment is mediated
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through the PAM pathway. Interestingly, curcumin has been demonstrated to suppress
doxorubicin-induced EMT in MDA-MB-231 cells through a reduced expression of p-AKT,
p-GSK3β, and β-catenin, and the consequent inhibition of the PAM pathway [45].
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Figure 1. The modulatory effect of curcumin on the PI3K/Akt/mTOR pathway. Curcumin inhibits
the PAM signaling pathway through the regulation of its key components. Curcumin downreg-
ulates IKKβ, AKT, GSK3β, and HER2 expression, which may facilitate the inhibition of cellular
growth, invasion, and metastasis in hormone receptor negative breast cancer. Cur: curcumin,
PI3K: phosphatidylinositol-3-kinase, AKT(PKB): protein kinase B, mTORC1: mammalian target of
rapamycin complex 1, IKKβ: IκB kinase β, PTEN: phosphatase and tensin homolog, TSC: tuber-
ous sclerosis complex, RTK: receptor tyrosine kinase, GSK3β: glycogen synthase kinase-3β, TFs:
transcription factors.

In addition, curcumin may have a modulatory effect on IκB kinase β (IKKβ). IKKβ is
an upstream kinase that plays a significant role in regulating the PAM pathway through
its association with mTORC1 in MDA-MB-453. It binds directly to TSC1, a repressor of
mTORC1, and, via its phosphorylation, disrupt the TSC1/TSC2 complex function and
subsequently enhances mTORC1 activity, contributing to tumorigenesis. Given IKKβ’s
role in hormone-independent HER2+ breast cancer and evidence showing the potential
of the curcumin as a IKKβ inhibitor, curcumin may exert its PAM-mediated effect on
MDA-MB-453, at least in part, in this way [46,47]. Another suggested mechanism is the
downregulation of oncoprotein NEDD4, as an E3-ubiquitin ligase involved in the post-
translational modification of protein like PTEN and its degradation by curcumin. It has
been found that the overexpression of NEDD4 is involved in the proliferation and migration
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of MDA-MB-231 cells. A study on breast cancer tissue has also revealed the importance
of elevated NEDD4 expression in promoting breast cancer cell growth, progression, and
poor prognosis [48,49]. NEDD4 has been demonstrated to negatively regulate the PTEN
protein levels in numerous cancers, such as prostate, bladder, lung, and colon [50–52].
However, subsequent studies have shown that there is no such correlation in breast cancer,
and NEDD4 promote cancer cell growth by facilitating the activation of Akt. Therefore, it
is suggested that curcumin may induce NEDD4-mediated PAM suppression in HR- breast
cancer in a PTEN degradation-independent manner, worthy of further investigation [48,53].
Besides, it was noted that curcumin suppressed the basal phosphorylation of Akt in MDA-
MB-468 cells and then contributed to the significant inhibition of invasion and proliferation
and enabled the occurrence of apoptosis in treated cells [54].

Previously it was also shown that treatment with curcumin reduced the cell viability
and migration of SKBR-3 and MDA-MB-231 cells. In the same study, curcumin’s effect on
tyrosine kinase was investigated, showing a decrease of HER2 combined with a reduction
of Akt phosphorylation in a time- and dose-dependent manner in the SKBR-3 cell line [55].
Similarly, another study has revealed the potential utility of curcumin in downregulating
the expression of HER2 mRNA and protein in SKBR-3, representing the inhibition of the
HER2-related PAM pathway [56]. Evidence also implies that curcumin treatment led to the
time- and dose-dependent inhibition of AKT phosphorylation and suppressed Foxo1 and
Foxo3a phosphorylation as its downstream targets in MDA-MB-231 cells [57].

2.2. The JAK/STAT3 Pathway

Janus kinase (JAK)/signal transducer and activator of the transcription 3 (STAT3)
signaling pathway is a chain of interactions among the proteins within the cell whose
role is well characterized in the immune system, cell growth, proliferation, differentiation,
cell death, and hematopoiesis. Upon stimulation with various factors, such as epidermal
growth factor, interferons and interleukin 6 (IL-6), the corresponding receptors get dimer-
ized. This receptor dimerization promotes the phosphorylation of the JAK protein, their
cytosolic domain, and eventually the STAT protein. Two such activated STAT3 proteins
become attached with one another and form a STAT3 homodimer, which ultimately translo-
cates into the nucleus and act as the transcription factor via interacting with enhancer or
promoter regions of DNA in target genes, resulting in their transcription activation [58–60].
A considerable amount of literature from clinical and preclinical studies has extensively
revealed the aberrant overactivity of the STAT3 pathway, which plays a vital role in breast
cancer progression and development. This role is mediated by its impact on huge num-
bers of downstream targets involved in proliferation (e.g., cyclin D-1, c-myc), apoptosis
(e.g., bcl-2, Bax), metastasis (e.g., MMP-2, -9, Twist), as well as chemoresistance [61–66].
Interfering with this oncogenic pathway is thus an attractive therapeutic approach.

The JAK/STAT3 signaling pathway has been demonstrated as another target of cur-
cumin, as illustrated in Figure 2. Considerable evidence demonstrates that STAT3 is
upregulated and constitutively activated in approximately 70% of breast tumors, which are
mostly TNBC. The aberrant activity of STAT3 is linked to survival, stem cells self-renewal,
immune evasion, angiogenesis and metastasis, multidrug resistance, and other functions in
TNBC cells [67–69]. Moreover, suppressing the STAT3-mediated metabolism may inhibit
the breast cancer cellular proliferation [70–72]. Furthermore, STAT3 expressions have
been indicated to be correlated with HER2 amplification. Importantly, a HER2-STAT3
signaling pathway has been determined in hormone-independent HER2+ breast cancer
stem cell as well [73–75]. Therefore, the blockade of STAT3 by inhibitors is considered to
be a promising direction for tumorigenesis and metastasis inhibition in breast cancer, and,
notably, curcumin has been reported as a potent inhibitor.
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Figure 2. The modulatory effect of curcumin on the JAK/STAT3 pathway. Curcumin inhibits the
JAK/STAT3 signaling pathway through the regulation of its key components. Curcumin downregu-
lates STAT, JAK, and IL-6 expression and inhibits STAT translocation into the nucleus, which results
in the suppression of cell proliferation, invasion, and metastasis in hormone receptor negative breast
cancer. Cur: curcumin, JAK: janus kinase, STAT: signal transducer and activator of transcription,
IL-6: interleukin-6.

Indeed, curcumin treatment exhibited potent growth suppressive activity and re-
pressed the STAT3 phosphorylation in the MDA-MB-231 and SKBR-3. This result was
further confirmed through the inhibitory effect of curcumin on the DNA binding capability
of STAT3 and its transcriptional activity [76], which were in accordance with previous
reports [67,77]. Therefore, curcumin targets STAT3 signaling by blocking STAT3 activation
in vitro. Besides, 3-dimensional culture conditions of TNBC cells revealed that curcumin
prevented the tumor-sphere formation and invasiveness of MDA-MB-231 cells [78]. The
findings suggested that curcumin induced the inhibition of STAT3 phosphorylation and
therefore inhibited its translocation into the nucleus, which resulted in a slightly reduced
NFkB-STAT3 protein interaction and downregulation of CD44 as the marker of cancer stem
cell phenotype. Hence, curcumin blocked STAT3-mediated signaling, which contributed to
the suppression of the cancer stem cell phenotype in TNBC [78].

A further study also showed that curcumin treatment potentially reduced the active
STAT3 expression, which led to a downregulation of its downstream targets and, subse-
quently, to the suppression of cellular proliferation, colony formation, and cell migration,
along with apoptosis induction in treated MDA-MB-231 breast cancer cells [79]. Like-
wise, it is obvious that breast cancer cells are co-present together with normal mammary
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cells. Interestingly, it has also been reported that curcumin has the potency to inhibit the
paracrine signaling stimulatory effects from TNBC, MDA-MB-231 cells, on non-cancerous
mammary epithelial, MCF-10A cells, mediated by blocking the Stat3 phosphorylation [80].
A recent study conducted on wide type (Wt) and forced growth hormone (GH) express-
ing MDA-MB-453 and MDA-MB-231 cells has demonstrated that curcumin exposure not
only reduced the cell viability and exerted its anti-invasive and metastatic effect, but also
caused a dose-dependent reduction in GH expression in GH-expressing breast cancer cells.
Additionally, an enhanced concentration of curcumin also overcame drug resistance in
those cell lines [81]. Interestingly, the findings revealed that curcumin exposure attenuated
protein expression and inhibited the phosphorylation of JAK2, STAT3, STAT5, and STAT1
in Wt and GH+ breast cancer cells. Concomitantly, the diminished expression of the wide
range of their downstream targets, such as Ras, c-fos, c-raf, c-jun, c-myc, vimentin, snail,
and ß-catenin, has also been reported to contribute to the potent impact of curcumin on
the respective treated cells [81]. Therefore, curcumin has been found to modulate GH-
induced aggressiveness and suppress the JAK/STAT signaling mechanism activation in
triple negative and hormone-independent HER2+ breast cancer cells.

Besides, the persistent autocrine expression of IL-6 cytokine has been considered as an
important contributor to progression, resistance, and immune suppression in TNBC. IL-6
also plays a critical role in transforming the dormant breast cancer cells into the actively
growing tumor [82,83]. On the other hand, IL-6 activation has been reported to trigger
the STAT3 phosphorylation and its activity [84–86]. It has been previously shown that
the production of IL-6 was significantly reduced in TNBC in vivo 4T1 following curcumin
treatment [83]. Hence, another mechanism of curcumin’s modulatory effect on the STAT3
pathway has been suggested to be its impact on IL-6, which is able to turn on the initiation
of the IL-6/JAK/STAT3 pathway.

2.3. ERK/MAPK Pathway

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK) pathway, also known as the Ras-Raf-MEK-ERK pathway, is a transduction cascade
transmitting an extracellular signal from mitogens like EGF into the series of signaling
events which ultimately promotes cell division, cell proliferation, survival, and cell differ-
entiation. The binding of the mitogen to the cell-surface RTK leads to its dimerization and
phosphorylation, and to the recruitment of Grb2/Sos. As a consequence, Ras is activated,
and the sequential phosphorylation and activation of Raf, MEK, ERK1 and ERK2 occur.
Ultimately, phosphorylated ERK translocate to the nucleus and regulate the transcription
of a variety of genes involved in stimulating growth and proliferation [87–89]. Besides,
c-Jun N-terminal kinas (JNK) and P38MAPK, also known as stress-responsive MAPKs,
are the other two MAP kinase pathways functioning in humans which are involved in
inflammation, cell growth, and differentiation, as well as apoptosis [87,90]. An altered
MAPK signaling pathway plays a vital role in breast cancer progression and development.
MAP kinases are significantly correlated with invasion, metastasis, chemoresistance, and
poor prognosis in triple negative and hormone-independent HER2 +breast cancer [91–94].
Thereby, the kinase components of these MAPK pathways have been investigated as
putative targets by kinase inhibitors for breast cancer therapy.

Transforming growth factor beta 1(TGF-β1) has been found to be highly associated
with cancer invasion and metastasis in late-stage breast cancer. In addition to TGF-β/Smad
signaling pathway, TGF-β1 can also trigger tumor growth and regulate cell migration
and invasion via Smad-independent mechanisms through the MAP kinase pathway
activation [95–97]. It was reported that nontoxic doses of curcumin exposure (≤10 µM)
resulted in the suppression of ERK1/2 and p38MAPK phosphorylation, stimulated by
TGF-β1 in a concentration- and time-dependent manner in MDA-MB-231 cells. Besides,
the downregulation of TGF-β2 expression was also found to follow curcumin treatment.
Therefore, curcumin exerts its anti-invasion and migratory effect through the inhibition of
TGF-β1/MAPK pathway-mediated cell migration [98].
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Furthermore, the overexpression of EGF, a potent mitogen, and its related recep-
tor, EGFR, is a common feature in breast cancer, regulating the MAPK activity path-
way. Enhanced EGFR expression is involved in the progression of tumors to hormone
independence [99]. In this regard, curcumin was found to inhibit the phosphorylation of
EGFR and ERK1/2 triggered by EGF, and to suppress the ERK activity in the MDA-MB-468
cells [54]. A significant inhibition of JNK, another MAPK, has also been reported following
curcumin treatment, correlated with the inhibition of its upstream activator, MKK4. Subse-
quently, the same study revealed the downregulation of the level of nuclear c-fos and c-jun
expressions as the downstream target of the ERK and JNK pathways, in MDA-MB-468
cells [54]. Another study also reported the lower expression levels of phosphorylated
ERK1/2 and EGFR in curcumin-treated MDA-MB-468 cells. The findings revealed that
curcumin prevented cellular proliferation and triggered apoptosis occurrence mediated
by the inhibition of the EGFR/ERK pathway in TNBC cells [29]. Moreover, the incuba-
tion of the MDA-MB-231 cells with curcumin led to the reorganization of the fatty acid
profile of the breast cancer cell membrane, accompanied by the modulation of p-P44/42
MAPK, ERK1/2, and EGFR expression. An increase in the stearic acid level along with the
reduction of arachidonic acids, omega-6 linoleic, and omega-3 have been reported as the
membrane remodeling in TNBC cells following curcumin treatment [100].

As shown in Figure 3, MAPK signaling pathways not only promote cellular pro-
liferation and survival, but can also mediate cell death depending upon the cell types
and stimuli [101,102]. In this regard, several lines of evidence illustrated that curcumin,
under certain circumstances, induces cancer cell death through MAPK activation. The
published literature has demonstrated that the upregulation of the enhancer of zeste ho-
molog 2 (EZH2), involved in cell cycle regulation, is correlated with tumor invasiveness
and aggressive clinical behavior as well as the poor prognosis of breast cancers [103]. It
was found that curcumin diminished EZH2 expression via the phosphorylation and acti-
vation of ERK, JNK, and p38 in MDA-MB-435 cells [104]. Similarly, curcumin-mediated
apoptosis and autophagy have been detected through the increased activity of ERK, JNK,
and Beclin1 in treated MDA-MB-231 [105]. The subsequent study on MDA-MB-231 and
Hs578T has demonstrated that curcumin suppresses their proliferation, migratory poten-
tial, and induced cell cycle arrest and apoptotic cell death. The immunohistochemistry
of clinical tissue specimens demonstrated the curcumin-induced attenuation of ki-67 and
proliferation-associated nuclear antigen (PCNA), in the respective tumor tissues. The
findings also represented an increase in phosphorylated JNK expression and, subsequently
JNK pathway activation, which was associated with enhanced ROS generation. In agree-
ment with analysis, curcumin was also found to prevent tumor growth and metastasis in a
MDA-MB-231 xenograft mouse model. Therefore, the anticancer activity of curcumin is
meditated via the ROS/JNK signaling pathway [106]. Although reports revealed that the
growth inhibition of SKBR-3 cells induced by curcumin treatment was not associated with
the suppression of MAPK P38 and ERK expression or phosphorylation [107,108], another
study demonstrated that curcumin treatment on SKBR-3 cells resulted in the inhibition
of ERK phosphorylation and was also able to sensitize hormone-independent HER2+
cells to TNF-related apoptosis inducing ligand (TRAIL) [109]. Furthermore, the increased
phosphorylation of JNK found in curcumin-treated SKBR-3 cells led to the induction of
JNK-dependent apoptosis [108].
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Figure 3. The modulatory effect of curcumin on the MAPK pathway. Curcumin exerts its anticancer
activity through the modulation of key components involved in the MAPK signaling pathway.
Curcumin targets TGF, EGFR, ERK1/2, MKK4/7, JNK, and P38 molecules and downregulates the
expression level of nuclear c-Myc, c-Fos, and c-Jun as the downstream targets of the MAPK pathway,
which results in the inhibition of cellular proliferation and migration as well as apoptosis induction
in hormone receptor negative breast cancer. Cur: curcumin, G-protein: guanine nucleotide-binding
protein, TGF: transforming growth factor, GFs: growth factors, EGFR: epidermal growth factor
receptor, Raf: rapidly accelerated fibrosarcoma, MAPK: mitogen-activated protein kinase, ERK:
extracellular signal-regulated kinase, MEK: MAPK/ERK kinase, Mekk: Mek kinase, MKK: MAPK
kinase, JNK: c-Jun N-terminal kinases.

2.4. NF-κB Pathway

The nuclear factor-kappa B (NF-κB) pathway plays a critical role in promoting cell
survival, inflammation, differentiation, and cell growth [110]. As shown in Figure 4, it
is stimulated upon the binding of the signaling molecules, e.g., TNF-α or cytokines, to
their corresponding receptors at the surface of the cell membrane, leading to the receptor
conformational changes and the subsequent recruitment, phosphorylation, and activation
of the inhibitor of kappa B kinase (IKK). NF-κB is a heterodimer complex protein, e.g.,
RelA (p65) and p50, rather than a single protein, presenting an inactive form associated
with a group of inhibitory proteins known as inhibitors of NF-κB (IκB) in cytosol. Other
members of the NF-κB transcriptional factor family are NF-κB1 (p50), NF-κB2 (p52), RelB,
and c-Rel. Activated IKK, in turn, leads to the phosphorylation of IκB, which results in
provoking IκB polyubiquitination and its subsequent proteasome-mediated degradation.
This causes NF-κB dissociation and its translocation to the nucleus, where it binds, as
the transcriptional factor, as dimer in enhancers and promoters of downstream targets
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such as pro-inflammatory, anti-apoptotic, and cytokine-related genes to regulate their
transcription, and hence numerous critical cellular process. Besides, other receptors of the
TNFR superfamily such as LTβR, BAFFR, TNFR2, CD40L, and receptor tyrosine kinases
such as EGFR and the AKT protein may also stimulate the activation of the NF-κB pathway
in addition to the canonical activation [110–112].
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Figure 4. The modulatory effect of curcumin on the NF-κB pathway. Curcumin inhibits the NF-κB
signaling pathway through the regulation of its key components. Curcumin upregulates IκB and
miR181b expression and downregulates NF-κB and IKK, and suppresses the NF-κB translocation
into the nucleus, which results in the inhibition of cellular proliferation, survival, metastasis, and
angiogenesis in hormone receptor negative breast cancer. Cur: curcumin, IκK: inhibitor of kappa B
kinase, IκB: inhibitor of NF-κB, Rel A: p65.

There is increasing evidence that the NF-κB pathway is constitutively activated and is
a frequent characteristic in TNBC and hormone-independent HER2+ subtypes mediated
through overexpression of EGFR, HER2, and NF-κB subunits including p50, c-Rel, and
p65. Its aberrant activation has been strongly implicated in breast cancer pathogenesis
and prognosis and facilitates the development of hormone-independent invasiveness and
metastasis, angiogenesis, as well as chemo- and radio-resistance [113–116]. This evidence
cooperatively highlights the urgency and significance of targeting the NF-κB pathway for
breast cancer prevention and therapy.

Curcumin was found to induce the inhibitory action on NF-κB activation in SUM159,
and MDA-MB-231, accompanied by a decrease in its target expression, including IAP-1
and surviving as anti-apoptotic factors. These findings show that the anti-invasion ability
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of curcumin might be mediated through MDA-9/Syntenin-mediated NF-κB regulation in
treated TNBC cells [112]. Another study demonstrated the inhibitory activity of curcumin
through the suppression of NF-κB p50 gene expression in 4T1 TNBC cells [117]. Besides, the
attenuation of nuclear and cytoplasmic NF-κB p65 protein expression and the subsequent
modulation of the NF-κB-inducing genes, including cyclin D1, CDK4 and MMP-1, P21,
were indicated as the mechanism basis for the anti-proliferative and anti-invasive properties
of curcumin against MDA-MB-231 [118].

Besides, several lines of evidence have identified curcumin as a potent chemosensitizer
through the regulation of the NF-κB pathway. It was shown that curcumin suppressed
paclitaxel-activated NF-κB in in MDA-MB-435. This effect was mediated through the
hindrance of IKK activation, its phosphorylation, and its degradation. The same study also
revealed the apoptosis induction and decline in expression of anti-apoptotic (XIAP, IAP-1,
IAP-2, Bcl-2, and Bcl-xL), proliferative (COX-2, c-Myc, and cyclin D1), and metastatic pro-
teins (VEGF, MMP-9, and ICAM-1) in response to curcumin treatment. In support of these
observations, an in vivo experiment confirmed the role of the curcumin -mediated NF-κB
inhibition in preventing breast cancer metastasis in a xenograft mice model [119]. The other
study also revealed the beneficial role of curcumin in decreasing the chemoresistance to
gemcitabine through the blockage of NF-κB activity, and therefore the enhancement of their
anticancer effect against MDA-MB-231 cells [120]. Similarly, in vitro and in vivo results
obtained from a former study indicated that the sensitization of curcumin-treated breast
cancer cells to paclitaxel and cyclophosphamide was mediated through the inhibition of
NF-κB (p50 and p65), protein kinase C (PKC), histone deacetylase (HDAC), and telomerase
activity in MDA-MB-231 cells and a breast cancer mouse model [121]. In line with these re-
sults, curcumin potentiates 5-fluorouracil-triggered toxicity in MDA-MB-231 cells through
the thymidylate synthase-dependent downregulation of NF-κB, IKK phosphorylation, and
IkBα degradation [122].

Another study provides evidence that curcumin reduces the expression of the p65
subunit of NF-κB in TNBC cells accompanied by the marked downregulation of FABP5,
PPARβ/δ, and eventually VEGF-A and PDK1 as the downstream target genes involved in
cell proliferation, survival, and angiogenesis. The findings also revealed curcumin’s capa-
bility to reverse the resistance of MDA-MB-231 and MD-MB-468 to retinoic acid and inhibit
cancer cell growth by targeting and suppressing the NF-κB-mediated FABP5/PPARβ/δ
pathway [123]. It has been reported earlier that curcumin blocked the lipopolysaccharide-
induced EMT procedures through the modulation of the expression of motility and in-
vasiveness marker, e.g., vimentin and E-cadherin, in MDA-MB-231 breast cancer cells.
These effects were triggered through the downregulation of NF-κB p65 and the consequent
repression of snail protein, a direct downstream transcription factor. Curcumin reversed
cellular EMT characteristics through the inhibition of NF-κB-Snail signaling activation [124].
Likewise, another report has also demonstrated that a mild curcumin treatment exerts a
disruptive impact on the adhesion and rolling behavior of SKBR-3, MDA-MB-231, and
MDA-MB-468 cells and decreases the metastatic potential of circulating tumor cells most
likely via acting on the NF-κB pathway [125]. An in vivo TNBC mouse model also indicated
the inhibitory role of curcumin on tumor growth and angiogenesis. In breast tumor tissues
of the curcumin-treated group, a significant suppression of NF-κB p65 and a deregulation
of NF-κB-related genes expression, cyclin D1, and PECAM-1 were detected [126].

Furthermore, the anti-metastatic effects of curcumin in MDA-MB-231 breast cancer
cells was correlated with the reduction of inflammatory cytokines CXCL1 and CXCL2
mRNAs and proteins, which are both tightly related to metastases. The underlying mecha-
nism involved the regulation of NF-κB p65 and IkBa expression in treated breast cancer
cells [127]. In line with these findings, mechanistic studies conducted on MDA-MB-231
cells and several primary human breast cancers have revealed the miR181b upregulation
involved in the curcumin-induced, downregulatory effect on CXCL1 and -2, which me-
diated its anti-metastatic potential [128]. miR181b is also a potent regulator of NF-kB
signaling by targeting importin-α3, essential for the translocation of NF-κB to the nucleus



Cancers 2021, 13, 3427 12 of 29

and NF-κB inhibition [129]. Besides, the modulation of miR181b triggered by curcumin has
a functional impact on tumor cell proliferation, invasion, and apoptosis. Additionally, the
upregulation of miR181b in metastatic breast cancer cells was found to suppress metastasis
development in an in vivo mice model [128].

2.5. P53 Pathway

P53 is a tumor suppressor and transcription regulator forming a homo-tetramer to
induce the transcription of almost 500 target genes that are responsible for various cellular
mechanisms, mainly DNA repair and cell cycle arrest, as well as apoptotic cell death. P53
is activated in response to diverse forms of stimuli such as hypoxia, DNA damage, and
oncogene activation ultraviolet light. It is known as the genome guardian due to protecting
and maintaining the genome’s integrity and stability via triggering severely DNA-damaged
cells to death. Under normal conditions, p53 is a short-lived protein where p53 expression
is precisely controlled through an autoregulatory feedback loop in which murine double
minute 2 (MDM2), as the negative regulator, destabilizes p53 [130–132].

P53 may promote apoptosis through a transcription-independent and -dependent
mechanism which is regulated by diverse environmental factors, signals, and cell types.
Within the nucleus, the transcription-dependent mechanism is mediated through the in-
teraction of p53 with basal transcriptional machinery components and the enhancement
of the expression of genes such as Bax, Noxa, and Puma. However, in the mitochondria,
its non-transcriptional modes of action are chiefly mediated through its molecular interac-
tion with anti- (Bcl-2 and Bcl-XL) and pro-apoptotic (Bak and Bax) members of the Bcl-2
family. Therefore, any loss in p53 function may contribute to tumor growth and cancer
development correlated with a deficiency in the cell cycle checkpoint, instability of genome,
cellular immortalization, and irregular cell survival and proliferation [132,133].

The TP53 gene, a tumor suppressor, is the most common mutated gene in breast can-
cer and has been reported to be more frequently altered in hormone-independent HER2+
(72%) and TNBC (80%) compared to the luminal A (12%) and B (29%) subtypes of breast
cancer. There is significant evidence implying that mutated nonfunctional p53 is involved
in tumorigenesis and progression and also associated with worse clinical outcomes, low
survival rate, prognosis, and chemoresistance in breast cancer patients [134–137]. There-
fore, anticancer agents with an ability to reactivate or boost the p53 pathway have been
considered as promising drug candidates in breast cancer therapy.

The impacts of curcumin as a p53 regulator in hormone-independent breast cancer
and the involvement of the fundamental molecular mechanism of this regulation (Figure 5)
have been widely investigated. It has been reported that curcumin upregulates p53 ex-
pression and regulates MDA-MB-231 proliferation and apoptosis [126,138]. An in vivo
study also confirmed the upregulation of p53 and the reduction of Ki67 protein levels as
the underlying mechanism of suppression of breast tumor growth in curcumin-treated
mice groups [139]. Moreover, curcumin treatment upregulated p53 expression and in-
duced caspase-dependent apoptosis in SKBR-3 and MDA-MB-231. These effects were
accompanied by the upregulation of Bax and Bid and the downregulation of Bcl-2 and
Bcl-xL in treated cells [140–142]. An additional study reported that the ROS-triggered
DNA damage in curcumin-treated MDA-MB-231 cells resulted in p38-MAPK-mediated
p53 expression. These effects were accompanied by the regulation of Bax, Bcl-2, p16, and
p21 expression, which eventually led to apoptosis induction and cell cycle arrest [143]. In
contrast, it has been reported that curcumin treatment decreases the expression level of
p53 and phosphorylated p53 (S392, S15, S392) in MDA-MB-231, SKBR3 and EMT6 cells,
representing the induction of p53- independent apoptosis in treated cells [108,144–147].
Moreover, it has been documented that Notch1 overexpression is correlated with a highly
expressed mutant p53 (R280K) in MDA-MB-231 cells, in which mutant p53 acts as its
transcriptional activator. This study on TNBC cells inferred that curcumin treatment led to
apoptosis induction accompanied by a declined expression of mutant p53, Notch1, and
Hes1 as its downstream target. The researchers concluded that the occurrence of cellular
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apoptosis was modulated by the inhibition of the mutant p53-Notch1 signaling axis fol-
lowing the exposure of the cancer cells to curcumin [148,149]. Likewise, another study
also indicated curcumin-induced apoptosis. Additionally, the significance of curcumin in
the p53 stability regulation of MDA-MB-231 cells was determined where 20 µM curcumin
treatment enhances the half-life of the P53 protein in TNBC cells. This effect was also
demonstrated, along with the increased level of NQO1, which might play an important
role in p53 stabilization [150].
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Figure 5. The modulatory effect of curcumin on p53, cell cycle, and apoptosis pathways. Curcumin inhibits cell cycle
progression and induces apoptosis by targeting various molecules. Curcumin triggers ROS generation and alters the
expression level of caspases (caspase-3/7, 8, 9), PARP, Bcl-2 family proteins (Mcl-1, Bcl-xL, Bid, Bax, Bcl-2), cytochrome-c,
and miRNAs (miR-34a, miR-15a, miR-16), which results in apoptotic cell death in hormone receptor negative breast cancer.
Curcumin also modulates P53 expression, upregulates CDKI (P21, P27, P16), and downregulates cyclins (cyclin A, B, E, D)
and CDKs (CDK-2, -4), which results in cell cycle arrest in hormone receptor negative breast cancer. Cur: curcumin, DISC:
death-inducing signaling complex, Bcl-2: B-cell lymphoma 2, Bid: BH3 interacting-domain death agonist, tBid: truncated
Bid, Bax: Bcl-2 associated X protein, Bcl-xL: B-cell lymphoma-extra large, Mcl-1: myeloid cell leukemia 1, APAF-1: apoptotic
protease activating factor-1, Cyto-c: cytochrome c, PARP: poly (ADP-ribose) polymerase, ROS: reactive oxygen species,
CDK: cyclin-dependent kinase, NQO1: NAD(P)H dehydrogenase (quinone 1).

2.6. Wnt/β-Catenin Signaling Pathway

Signaling by the secreted glycolipoprotein factors of the Wnt family via β-catenin, as
the transcription co-activator, regulates multiple developmental processes during embryo-
genesis and adult homeostasis through its critical role in cell growth, differentiation, and
cellular metabolism [151,152]. Once the Wnt signaling molecule presents itself, it binds to a
Frizzled receptor and triggers the activation of the co-receptor LRP, leading to a transfer of
the biological signal to a Disheveled (Dvl) protein within the cytoplasm. The activated Dvl
protein then prevents the hydrolysis of β-catenin by a destructive multiprotein complex
composed of several proteins, such as GSK3, APC, Axin, and CK1. As a result, β-catenin
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remains stable inside the cytosol. Accordingly, β-catenin, as the core component of this
pathway, accumulates, migrates to the nucleus, and displaces the transcriptional repressor
Groucho protein through the formation of the β-catenin/TCF/LEF transcriptional complex.
Eventually, the transcription of Wnt-responsive genes such as slug, cyclin D1, VEGF, c-myc,
and MMPs will be initiated. However, in the absence of extracellular Wnts, the β-catenin
destruction complex promotes the phosphorylation, ubiquitinylation, and degradation of
β-catenin in proteasome. Therefore, this pathway is maintained in an off state [153,154].

The aberrant Wnt/β-catenin signaling network, through altered functions or levels
of its components, is a key driver of breast cancer progression, phenotype shaping, and
recurrence [153,155]. Dysregulated Wnt/β-catenin signaling, as a characteristic of TNBC,
correlated with the tumorigenesis, TNBC stem cell pluripotency, clinicopathological pa-
rameters, poor clinical outcomes, and therapeutic resistance, as well as brain and lung
metastases [154,156–159]. Increasing evidence has also implicated the role of the overactiv-
ity of the Wnt/β-catenin pathway in the progression, promoting an EMT-like phenotype
and drug resistance in hormone-independent HER2 + breast cancer [160–162]. Given its
importance in the transcription of various target genes supporting cell proliferation and
metastasis, the therapeutic inhibition of the Wnt/β-catenin signaling cascade has a signifi-
cant role in the management of breast malignancy.

Some evidence relates to curcumin’s potential on the modulation of the Wnt/β-catenin
signaling pathway (Figure 6) in breast cancer. It has been previously reported that the
growth suppressive impact induced by curcumin in MDA-MB-231 cells is mediated via
its regulatory effect on this pathway. A Western blot analysis of treated cells with 20µM
curcumin demonstrated the multiple suppressive effects on its components, including the
marked downregulation in the expression levels of β-catenin, Dvl, cyclin D1, and slug pro-
teins. However, the lack of a significant alteration in the expression of the E-cadherin and
GSK3β protein was also reported upon exposure of TNBC cells to curcumin [163]. Besides,
an immunofluorescence analysis has also illustrated the modification of the sub-cellular
localization of Wnt/β-catenin pathway elements. Accordingly, these alterations included
a significant decline in the cytoplasmic and nuclear expression level of the Dvl protein,
along with a marked reduction in the nuclear level of β-catenin, cyclin D1, and slug in
treated TNBC cells. Additionally, the G2/M cell cycle arrest and the enhanced expression
of cytokeratin 18 (CK18), as an early event during apoptosis, showed the anti-proliferative
activity and apoptosis occurrence, respectively, following curcumin treatment. These find-
ing suggest that curcumin exert its anticancer effect on TNBC cells through the abrogation
of Wnt/β catenin signaling mediated via the modulation of its key elements [163]. Existing
evidence strongly implies that stem cell markers have been regulated as the downstream
target of β-catenin [164–166]. Curcumin’s vital role in the modulation of metastases and
cancer stem cell activity has been shown to be mediated through the Wnt/β-catenin path-
way inhibition. The study conducted on MDA-MB-231 and its derived breast cancer stem
cells (BCSC) revealed that the anti-metastatic effect of curcumin was induced through the
regulation of EMT-related markers, including β-catenin, vimentin, E-cadherin, N-cadherin,
and fibronectin. The suppression of stem cell-like characteristics via the downregulation
of Sox2, Oct4, and Nanog was also detected in treated TNBC cells [167]. Similar results
have also been obtained with curcumin against SUM159 BCSCs. The results showed that
curcumin suppressed GSK3β phosphorylation, in its inactive form, leading to the reduced
expression of β-catenin and its downstream target c-myc in treated BCSCs. In line with
these results, the downregulation of stem cell markers including CD44, Nanog, ALDH1A1,
and Oct4 was also observed. Besides, the suppression of the sonic hedgehog pathway
due to the downregulatory effect of curcumin on shh, Smo, Gli1, and Gli2 contributed to
BCSC inhibition [168]. Another report also indicated that curcumin exerts its anti-invasive
properties on MDA-MB-231 cells through the downregulation of EMT-related genes such
as β-catenin, N-cadherin, vimentin, and AXL, representing its capability to hinder the EMT
process [43].
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Figure 6. The modulatory effect of curcumin on the Wnt/β-catenin pathway. Curcumin inhibits the
Wnt/β-catenin signaling pathway through the regulation of its key elements. Curcumin downreg-
ulates β-catenin, Dvl, and the inactive form of GSK3 and inhibits β-catenin translocation into the
nucleus, which results in the suppression of cellular proliferation and metastasis in hormone receptor
negative breast cancer. Cur: curcumin, Wnt: wingless/integrated, Dvl: disheveled, LRP: lipoprotein
receptor-related protein, GSK3: glycogen synthase kinase-3, APC: adenomatous polyposis coli, CK1:
Casein kinase 1, TCF/LEF: T cell factor/lymphoid enhancer factor.

2.7. Apoptosis

Apoptosis is a highly regulated process of programmed cell death, with a critical role
in the normal tissue homeostasis and development. It also occurs as a defense mechanism
to eliminate potentially cancerous, damaged, and virus-infected cells [169,170]. Apopto-
sis machinery is conducted through two distinct signaling pathways. A mitochondria-
mediated (intrinsic) pathway triggered by hypoxia, oxidative stress, and DNA damage
involves the release of cytochrome-c from the mitochondrial intermembrane space into
cytosol, followed by apoptosome complex formation and caspase-9 activation. Anti- and
pro-apoptotic members of the Bcl-2 family also regulate the permeabilization of the mi-
tochondrial outer membrane [171,172]. However, the death receptor-mediated (extrinsic)
pathway is stimulated by the interaction of extracellular death ligands such as TNF-α, FAS,
and TRAIL, with their corresponding death receptors of the TNF receptor superfamily.
This receptor-ligand binding triggers DISC complex formation and subsequently caspase-
8/10 proteolytic activation. Both pathways eventually activate caspase-3 and 7, executing
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cell death [172,173]. In addition to these two conventional pathways, the NF-κB, MAPK,
PI3k/AKT, STAT3, and β-Catenin pathways may also induce apoptosis [174–180].

In addition to its physiological significance, the deregulation of apoptosis is critically
involved in the pathogenesis of various diseases, ranging from cancer to neurodegener-
ative disorders. It is well established that the evasion of apoptosis may promote tumor
initiation, progression, metastasis, and resistance to therapy in breast cancer [172,181,182].
Reduced apoptosis or its resistance in cancer cells can be mediated through numerous
mechanisms. For instance, the overexpression of the pro-survival Bcl-2 protein is common
in TNBC breast cancer. Besides, Bcl-2 is upregulated in approximately 50% of hormone-
independent HER2+ breast cancers, which makes it a clinical prognostic marker in breast
cancer [183–187]. There is also a close relationship between dysregulated caspase expres-
sion and the development of hormone-independent breast cancer which is also involved in
its clinicopathological features and poor overall survival [188,189]. Altered death receptor
signaling also contributes to apoptosis resistance in breast cancer [190–192]. Collectively,
given the critical role of apoptosis evasion in promoting the pathogenesis and progression
of breast cancer tumors, therapeutic targeting of the apoptotic machinery in cancer cells
holds great promise in the anticancer drug discovery and development.

Curcumin has been proven to promote cellular apoptosis by altering the expression of
various cellular molecules, as shown in Figure 5. Poly (ADP-ribose) polymerase (PARP)
is implicated in DNA repair, cell survival, transcriptional regulation, and apoptosis. The
cleavage of PRAP into its fragments causes its enzymatic role deactivation, which even-
tually leads to cell death [193,194]. It was shown that curcumin increased cleaved PARP,
cleaved caspase-3, cleaved caspase-7, cleaved caspase-9, caspase-3, caspase-8, cytochrome-c,
Bax, and Bid expression and decreased Bcl-2, Mcl-1, and Bcl-xL expression, which resulted
in apoptosis induction in MDA-MB-231 cells and tumor growth inhibition in an in vivo
xenograft model [142,195–197]. Besides, the downregulation of caspase-3 expression was
also observed in curcumin-treated MDA-MB-231 [198]. Moreover, curcumin-induced
apoptosis was accompanied by increased caspase-3 and PARP cleavage, Bax upregulation,
and surviving downregulation in SKBR-3, MDA-MB-231/HER2 cells, MDA-MB-468, and
HCC1806 [108,199,200].

Another mechanism of curcumin-induced apoptotic cell death is through altering the
expression of miRNAs. Curcumin upregulated the expression of miR-15a and miR-16 in
SKBR-3 cells, which resulted in decreased Bcl-2 expression and apoptosis occurrence [201].
In another study, curcumin suppressed the proliferation, invasion, and induced apoptosis
via the miR181b upregulation and subsequent CXCL-1 and -2 downregulation, as the
pro-metastatic and inflammatory cytokines, in MDA-MB-231 cells [128]. A further study
also revealed that curcumin-induced miR-34a expression led to the downregulation of
Bcl-2 and Bmi-1 proteins in MDA-MB-231 and MDA-MB-435 [202]. In addition, curcumin-
induced apoptosis is also linked to its ability to trigger ROS generation. It was shown that
curcumin upregulated the polyamine catabolic enzyme expressions, PAO and SSAT, which
resulted in ROS induction and the subsequent activation of intrinsic and extrinsic apoptotic
pathways in wide-type and growth-hormone-expressing MDA-MB-453 and MDA-MB-
231 cells [81]. Besides, the involvement of ROS induction by curcumin in mitochondrial
dysfunction increased cleaved PARP and caspase-3, and the Bax/Bcl-2 expression ratio has
been determined in MDA-MB-231 and SKBR-3 cells [56,203].

Furthermore, fatty acid synthase (FAS) is a key metabolic enzyme that is highly
expressed in breast cancer and is therefore a putative tumor target. It was shown that cur-
cumin treatment inhibited the cell growth and induced apoptosis dose-dependently, via the
inhibition of FAS in MDA-MB-231 cells. This inhibition was associated with the regulation
of AKT phosphorylation, Bax, and Bcl-2 protein expressions [204]. FAS inhibition–mediated
apoptosis was also reported in curcumin-treated SKBR-3 cells [205]. Moreover, Tafazzin
(TAZ) and Yes-associated protein (YAP) are the key effectors of the Hippo signaling path-
way. The upregulation of TAZ and YAP is involved in cellular proliferation, EMT, apoptosis
suppression, and therapeutic resistance in breast cancer [206,207]. In a recent study, it was
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shown that curcumin downregulated TAZ and YAP expression in MDA-MB-231 cells and
tumor xenografts in mice. These alterations inhibit the proliferation, migration, invasion,
apoptosis induction, and tumor growth suppression in TNBC models [208]. In addition,
ion channels play a significant role in tumorigenesis due to their function in proliferation,
apoptosis, and metastasis [209–212]. A recent research has shown that curcumin regulated
the expression levels of potassium and non-potassium ion channel genes, which resulted
in the upregulation of cleaved caspase-3, cytochrome c, and haem oxygenase-1, along with
the downregulation of cIAP-1, claspin, and survivin protein in MDA-MB-231 cells [147].
Curcumin-mediated apoptosis could also be linked to its potential to induce DNA dam-
age and increase the expression level of H2AFX, PARP1, BRCA1, and RAD51 in treated
MDA-MB-231, HCC1937, MDA-MB-468, and HCC1806 cells [200,213].

Epigenetically mediated apoptosis is another underlying mechanism of curcumin.
The expression level of the enhancer of zeste homolog 2 (EZH2), deleted in liver cancer
1 (DLC1), is negatively correlated in breast cancer, where the upregulation of EZH2 and
the downregulation of DLC1 have been reported in breast cancer tissue and MDA-MB-231
cells. It was found that curcumin restored DLC1 expression by inhibiting EZH2 expression,
which led to growth inhibition and apoptosis induction in MDA-MB-231 cells and in an
in vivo xenograft model [214]. Additionally, Ras-association domain family 1 isoform A
(RASSF1A) is a potential tumor suppressor correlated with the modulator of apoptosis 1
(MOAP-1), which promotes Bax conformational changes and its activation. It was found
that curcumin suppressed cell proliferation and induced apoptosis via the upregulation of
the RASSF1A, Bax, and caspase-3 protein expression in MDA-MB-231 and MDA-MB-468
cells [215–217].

2.8. Cell Cycle

Cell cycle is a highly regulated process of cell duplication which involves several
checkpoints to ensure its proper progression. Multiple cyclins and cyclin-dependent
kinases (CDK) form cyclin-CDK complexes which determine a cell progression through the
cycle. However, when the cells no longer divide, cyclins are degraded and, subsequently,
the deactivation of CDKs and cell cycle arrest occur [218–220]. Besides, CDK inhibitors
(CDKIs) comprised of Ink4 (inhibitor of CDK-4) including p15, p16, p18, and p19 and
kinase inhibitor protein (Kip) including p21, p27, and p57 as well as retinoblastoma (RB1)
protein negatively regulate the cell cycle progression. [219,221,222].

The cell cycle machinery was deregulated at multiple levels in breast cancer cells,
promoting cancer development and resistance to therapy [219,223,224]. Cyclin D1 is proba-
bly the most extensively studied cyclin in breast tumors, and its overexpression has been
reported in more than 50% of breast cancer cases, as detected in TNBC and hormone-
independent HER2+ [224,225]. Cyclin D1 also has CDK independent functions through its
binding to histone acetylases, histone deacetylases, and nuclear receptors to regulate cell
proliferation, growth, and differentiation. Moreover, it functions in the DNA repair system
by binding to RAD51 involved in the homologous recombination of DNA during double
strand break repair [225–228]. TNBC also display a frequent alteration of RB1 and the DNA
damage response gene, BRCA1. Besides, overexpression of the CDK4 is also a common
feature among breast cancer types, with the highest frequency in the hormone-independent
HER2+ subtype [224,229]. Thereby, due to their vital role in breast cancer cell proliferation,
the cell cycle regulatory proteins are the potential targets in cancer therapy.

Curcumin has been shown to inhibit the cell cycle progression in various phases and
alter the expression of different cell cycle proteins in TNBC and hormone-independent
HER2+ breast cancer (Figure 5). It has been previously reported that curcumin treatment
caused an increase in the accumulation of cells in the S and G2/M phases in MDA-MB-468
cells and exerted its dual impact on cancer cell progression [54]. It was also found that a
10 µM concentration of curcumin led to G2/M phase arrest, accompanied by the upregu-
lation of p21 expression and the downregulation of cyclin A, B1, D1, and E expression in
SKBR-3 cells [56]. In addition, the induction of G0/G1 cell cycle arrest was associated with
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p21 and p27 upregulation and cyclin D1 downregulation in SKBR-3 cells [108]. Another
report revealed that the curcumin-mediated EZH2 downregulation is correlated with the
G1 arrest in MDA-MB-435 cells [104]. Furthermore, a recent study has shown that curcumin
inhibited the expression of cyclin D and cyclin E in SKBR-3 and MDA-MB-231 cells [230].
Besides, curcumin upregulated p21, p16, and p53 and downregulated cyclin E, cyclin D1,
CDK-2, and CDK-4 in MDA-MB-231 cells. These effects were mediated via ROS induction
and p38-MAPK activity, which led to G1/S and G2/M arrest and cell death in treated
cells [143,197]. In addition, the downregulation of STAT3-mediated cyclin D1 and c-Myc
following curcumin treatment resulted in G1 arrest in MDA-MB-231 [142]. An increased
p21 and p53 expression along with a reduced Rb protein expression also caused G2/M cell
cycle arrest in MDA-MB-231 and MDA-MB-453 cells [81,106]. The reports also revealed the
upregulation of p27 and p21 expression and the downregulation of cyclin E, CDK-2, and
CDK-4 via curcumin-mediated SKP2 inhibition in MDA-MB-231 and MDA-MB-231/HER2
cells [57,199]. Additionally, the downregulation of PCNA, RAD50, RAD51, Nbs1, BRCA1,
BRCA2, and Mre11, involved in the DNA damage response and repair, was observed in
curcumin-treated MDA-MB-231 cells [143,198,231]. Curcumin also regulated the cellular lo-
calization of BRCA1 by triggering its cytoplasmic retention in MDA-MB-468 and HCC1806,
having functional BRCA1, but not in BRCA1-defective HCC1937 [200].

3. Clinical Trial

A large number of reported preclinical studies of in vitro and in vivo models support
the promising role of curcumin as a potential chemopreventative and chemotherapeutic
agent in breast cancer treatment. Accordingly, the clinical research trial of curcumin
and its synergistic effect with other chemotherapeutic drugs in enhancing breast cancer
therapy have been evidenced. In a phase I clinical trial conducted in 2010 in 14 patients with
advanced and metastatic breast cancer, the feasibility and tolerability of curcumin, docetaxel
chemotherapy, as a microtubule inhibitor, and their combination were explored. In this trial,
a daily oral dose of 0.5 g of curcumin was given and further escalated until a dose-limiting
toxicity occurred, along with intravenous docetaxel (100 mg/m2) [232]. Based on the
obtained findings, no enhanced incidence of hematological toxicity was observed. However,
the tested combination significantly decreased the VEGF levels. Although it was found that
a daily administration of 8 g curcumin is the maximum tolerable dose, the phase II dose of
6 g/day, 7 days, every 3 weeks, in combination with a standard dose of docetaxel, has been
reported to be suitable for further evaluation [232]. Moreover, due to the low bioavailability
of curcumin through oral administration, a phase II clinical trial of 150 women investigated
the effectiveness and safety of treatment with intravenous curcumin, compared to placebo,
in combination with paclitaxel chemotherapy among patients with metastatic and advanced
breast cancer [233]. In this trial, the patients received intravenously either paclitaxel
(80 mg/m2)-placebo or paclitaxel-curcumin (300 mg solution) combinations once a week
for 12 weeks. The findings demonstrated that, with respect to the objective response
rate and physical performance, curcumin in combination with paclitaxel had a superior
impact on patients compared to the placebo after 12 weeks of treatment and a short-
term follow-up. Besides, an adverse effect analysis suggested not only the lack of safety
concerns of intravenous curcumin but also its clinical efficacy on the reduction of fatigue,
an extreme feeling of tiredness, or a lack of energy as the most common side effects of
chemotherapy [233].

Besides, in a phase II study, 30 breast cancer patients undergoing radiotherapy fol-
lowing completion of their chemotherapy have been analyzed in order to investigate the
curcumin potential versus placebo to reduce the DNA binding of NF-κB and the activation
of its downstream target. In this study, curcumin as Meriva (500 mg BID), which is a
curcumin formulation improving its absorption, has been orally given to the respective
patients. The researchers propose that, by decreasing the activity of NF-κB and ultimately
plasma IL-6, fatigue may improve in breast cancer patients taking Meriva [230]. Currently,
a phase I clinical trial study is recruiting 20 participants in order to assess the effect of
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the oral administration of curcumin on apoptosis- and cell proliferation-related biological
changes in primary tumors of invasive breast cancer patients (stages I, II, or III) [234].

4. Conclusions

Overall, the molecular basis of hormone-independent breast cancer is correlated with
the dysregulation of various key signaling cascades consisting of the PI3K/Akt/mTOR
pathway, JAK/STAT pathway, MAPK pathway, NF-kB pathway, p53 pathway, Wnt/β-
catenin, and apoptosis and cell cycle pathways. The current review deepens and expands
our knowledge of anti-breast cancer activity of curcumin by interfering with these onco-
genic signaling pathways, which leads to the regulation of cell survival and prolifera-
tion, metastasis, angiogenesis, cancer stem cell, and cell death in TNBC and hormone-
independent HER2+ breast cancer. Curcumin has been shown to interact with multiple
molecular targets including various kinases, transcription and growth factors, receptors,
apoptosis, and cell cycle regulatory molecules, etc., to exert its therapeutic role in hormone-
independent breast cancer, as shown in Figure 7. Therefore, a detailed understanding of its
multifunctional anticancer action may provide a framework for future studies and insights
to improve its efficiency in clinical practice. Moreover, curcumin has enhanced the effec-
tiveness of the chemotherapeutic drugs paclitaxel, gemcitabine, doxorubicin, 5-fluorouracil,
and docetaxel and overcome drug resistance in hormone-independent breast cancer, war-
ranting the further exploration of various curcumin-therapeutic agents’ synergism in a
larger scale of pre-clinical and clinical studies. In clinical studies, its application either
alone or in combination has also revealed its significant role in improving breast cancer
therapy and reducing adverse effects such as fatigue and radiation-induced dermatitis
in patients. Additionally, the development of a novel curcumin formulation and a more
efficient delivery system continues to be a subject of great interest for overcoming its poor
bioavailability, which limits its clinical applications.
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