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Background. Zuo Gui Wan (ZGW) is a classic formula in traditional chinese medicine (TCM). Previous studies have shown that it
is beneficial for impaired glucose tolerance (IGT) of adults and the offspring as well. This study aimed to understand the molecular
mechanisms of the efficacy of ZGWon IGT.Methods.We used high-glucose loaded 2-cell stagemouse embryos as amodel and took
advantage of single-cell RNA sequencing technology to analyze the transcriptome of the model with or without ZGW. Differential
gene expression analysis was performed with DESeq2. Results. High glucose can downregulate genes in the ribosome pathway,
while ZGW can reverse this inhibition and as a result prevent embryo cell death caused by high glucose. Furthermore, high glucose
can affect sugar metabolism and influence mitochondrial function, but ZGW can promote sugar metabolism via the tricarboxylic
acid cycle mainly through upregulating the genes in the respiratory chain and oxidative phosphorylation. Conclusions. ZGW had a
protective effect on embryonic cell death caused by glucose loading.The reversion of inhibition of ribosome pathway and regulation
of mitochondrial energy metabolism are main effects of ZGWon high-glucose loaded embryos.This research not only revealed the
global gene regulation changes of high glucose affecting 2-cell stage embryos but also provided insight into the potential molecular
mechanisms of ZGW on the IGT model.

1. Background

Impaired glucose tolerance (IGT) is a sugar metabolism
disorder between normal glucose tolerance (NGT) and dia-
betes mellitus [1]. It is estimated that there are 308 million
people with IGT in the world [2], many more than those
diagnosed with diabetes. People with IGT can progress to
DM and are predisposed to cardiocerebrovascular disease
[3–8], microvascular disease [9], lipid metabolism disorders
[10], and chronic kidney disease [11, 12]. Therefore, it is
becoming more and more important to understand how to
prevent IGT. Currently, drugs such as Metformin, Acarbose,
and Rosiglitazone are used to treat IGT and can postpone
the occurrence of diabetes; however, they cannot prevent
corresponding complications [13–18]. Many reports have

shown that TCM might be one of the resources to develop
new methods for preventing IGT [19–25].

In a previous report, three different Chinese formulas,
Zuo Gui Wan (ZGW), You Gui Wan (YGW), and Ba Zhen
Tang (BZD), were separately used to treat pregnant Wistar
rats. After drugs were administered for three weeks, offspring
from different groups were then fed with a high-fat diet for
12 weeks. Many indices, such as fasting blood glucose
(FBG), 2-hour blood glucose (2hBG), blood lipid, fasting
serum insulin (FINS), and leptin and adiponectin (APN),
were measured. Results showed that rats on a high-fat diet
developed IGT with abnormal blood lipid, insulin resistance,
leptin resistance, and fatty liver. However, ZGW could
prevent IGT in these offspring. Compared to YGW and
BZD, which only reversed part of above indexes, ZGW
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was the most effective formula [26]. Another recent report
has also found that giving ZGW to Gestational Diabetes
Mellitus (GDM) rats can have a preventive effect on the
IGT of offspring induced by a high-fat and high-sugar
diet [27]. ZGW is a classic traditional Chinese medicine
(TCM) formula with extract from 8 traditional Chinese
medicines, which are Rehmannia glutinosa (Shu Di Huang),
Cuscuta chinensis (Tu Si Zi), Cornus officinalis (Shan Zhu
Yu), Lycium barbarum (Gou Qi Zi),Dioscorea opposita (Shan
Yao), Cyathula officinalis (Chuan Niu Xi), Cervi cornus
Colla (Lu Jiao Jiao), and Chinemys reevesii (Gui Ban Jiao).
12 main metabolites were detected in ZGW rat serum with
UPLC/MS: 𝛽-D-ribofuranuronic acid methyl ester triacetate,
5-hydroxymethyl-2-furfural glucuronide, dihydro-5-hydrox-
ymethyl-2-furfural glucuronide, 8-epiloganic acid, loganic
acid, morroniside, coumaric acid, loganin, sweroside, 3-
hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxylic acid,
kaempferol-3-glucuronide, and cuscutamine. Of these,
morroniside and loganin could regulate rat mesangial cell
growth by reducing oxidative stress and could be used at the
early stages of diabetic nephropathy [28]. Studies have shown
that dietary kaempferol may reduce the risk of chronic
diseases, especially cancers, by augmenting antioxidants to
combat free radicals [29].

Previous studies have shown that ZGW is an effective
treatment in the IGT rat model, and it is beneficial not only
to the mother but also to the offspring [26, 27, 30]. But
the molecular mechanisms of ZGW on IGT, particularly at
the transcriptome level, are still unclear. Therefore, in this
study, we used mouse embryos loaded with high glucose
as an IGT model to study the effect of ZGW. By analyzing
the transcriptome of our IGT model treated with ZGW, we
identified ribosome pathway and oxidative phosphorylation
as the potential target molecular pathways of ZGW on IGT.
A list of potential response genes to ZGW on IGT was
also identified, and these genes provide a good resource for
further functional studies.

2. Methods

All chemicals used in this study were purchased from Sigma-
Aldrich Corporation (St. Louis, MO, USA) unless otherwise
indicated. The Institutional Animal Care and Use Commit-
tee at the China Agricultural University (Beijing, China)
approved the protocols used in this study.

2.1. Preparation of ZGW. ZGW is a classic formula in
TCM and includes the extract from 8 traditional Chinese
medicines. First, these 8 medicines were immersed in 800ml
water at 50∘C and then decocted for 1.5 hours and filtered.The
decoction and filtration were repeated two times.The filtrates
were combined and concentrated to 1 g/ml crude drug.

2.2. ZGW Serum Preparation. Rats from National Institutes
for Food and Drug Control, China (license number: SCXK-
(JING) 2009- 0017), were fed with 20 g/kg/d ZGW for 7 days.
Blood was collected directly from their hearts and incubated
at 4∘C for 30min, followed by centrifugation at 4000 rpm
for 15min at 4∘C. The serum, denoted as ZGW-containing

rat serum, was collected immediately and stored at −75∘C
before use. The concentration of ZGW rat serum used in this
research was 0.01% v/v ZGW.

2.3. Super Ovulation. For timed pregnancy, pregnant mare’s
serum gonadotropin (PMSG) (5 IU) was intraperitoneally
injected into ICR femalemice aged 6 to 8weeks. Next, human
chorionic gonadotropin (hCG) (5 IU) was intraperitoneally
injected after 48 h; on the evening of hCG injection, male
mice and the female mice (2 : 1) were housed together in a
cage for one night. The next morning, females were checked
for a vaginal plug to determine if they were pregnant.

2.4. Drug Administration and Grouping. Pregnant mice were
cervically dislocated and zygotes were washed out from
the vagina. All zygotes were randomly assigned to three
groups: control group, model group, and drug group. Each
group contained 9 zygotes. Zygotes in different groups were
cultured with media as follows: control group with cell-
culture medium, model group with cell culture medium
supplemented with high glucose 15.6mmol/L, and drug
group similar to the model group but with the addition of rat
serum containing 0.01% v/v ZGW.

2.5. Determination of Blastocyst Embryo Cell Number.
Zygotes in the three groups were cultured in vitro for five
days (blastocyst stage) and then incubated separately in M2
medium [NaCl (5.533 g/L), KCl (0.356 g/L), CaCl2⋅2H2O
(0.252 g/L), KH2PO4 (0.162 g/L), MgSO4⋅7H2O (0.293 g/L),
NaHCO3 (0.349 g/L), Hepes (4.969 g/L), sodium lactate
(2.610 g/L), sodium pyruvate (0.036 g/L), glucose (1.000 g/L),
BSA (4.000 g/L), penicillin (0.060 g/L), and streptomycin
(0.050 g/L)] containing Hoechst 33342 (10 𝜇g/mL) for 15
minutes at 37∘C. After washing three times withM2medium,
blastocysts from the three groups were separately mounted
on microscope slides and examined on an epifluorescence
microscope to count the number of embryo cell nuclei.

2.6. Sample Preparation for Single-Cell RNA Sequencing.
Zygotes from the three groups were cultured in vitro to 2-
cell stage, and three zygotes were randomly selected as a
sample from each group and stored in liquid nitrogen. Each
group was replicated three times for biological replication.
Zygotes were resuspended in freshly prepared lysis buffer
[total volume 100 𝜇l, containing 93 𝜇l nuclease-free water, 2𝜇l
TritonX-100, and 5𝜇l RNaseOUT (20U/𝜇l)]; each zygotewas
lysed with a micropipette to yield more than 7𝜇l of lysate and
the lysate stored at −80∘C.

2.7. Single-Cell RNA Sequencing and Bioinformatic Analysis.
RNA amplification was performed according to SMARTer
Ultra Low Input RNA for Illumina Kit (Clontech Labo-
ratories). Quantity and quality of amplified cDNAs were
measured with Qubit and Agilent Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, USA). RNA sequencing was
performed using Illumina HiSeq 2500 (Shanghai Biotech-
nology Corporation, Shanghai, China). Adaptors and low-
quality sequences from raw reads were filtered using Trim
Galore! with the following parameter: stringency 6. Trimmed
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Figure 1: Fluorescence photomicrographs of blastocyst cells stained with Hoechst 33342. (a) Stained blastocyst cells in control group. (b)
Stained blastocyst cells in model group. (c) Stained blastocyst cells in drug group.

Table 1: Effects of ZGW rat serum on blastocyst cell number.

Group Blastocyst cell number (𝑛)
Control 68.4a ± 2.4

Model 57.2a,b ± 1.6

Drug 63.2b ± 2.2

Values are mean ± SEM. Means in column with different superscripts
indicate significant differences (𝑃 < 0.05).

reads were mapped to the mouse reference genome (mm10)
using STAR v2.5 with the following parameters: out Filter
Mismatch Nover 𝐿 max 0.05 and seed Search Start 𝐿 max
30 [31]. Raw counts of mouse RefSeq genes were acquired
with R package “Genomic Alignments” [32]. Differential
gene expression analysis was performed with DESeq2 [33].
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were performed
using Clue GO based on significantly differentially expressed
genes (false discovery rate < 0.05) fromDESeq2 [1]. Enriched
GO terms or KEGGpathways were visualizedwith Cytoscape
V3 [34].

3. Results

3.1. Blastocyst Cell Number. In the control group (Figure 1(a)),
the cells in blastocyst showed bright nuclear fluorescence.
But in the model group (Figure 1(b)), blastocysts showed
decreases in both nuclear fluorescence and the number of
nuclei. In contrast to this, in the drug group (Figure 1(b)),
both nuclear fluorescence and the number of nuclei in
blastocysts increased compared to the model group. There
were significant differences in the blastocyst cell number
between the control group and the model group (𝑃 < 0.05)
and between the model group and the drug group (𝑃 < 0.05)
(Table 1).

3.2. Summary of Transcriptome Analysis. Principal compo-
nent analysis (PCA) was able to resolve and separate the
three groups (Figure 2), indicating overall differences in the
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Figure 2: PCA of gene expression patterns for 2-cell stage embryos.
Different colors identify different groups as indicated in the legend.

patterns of gene expression in these treatments. The 𝑀𝐴-
plot (“𝑀” is for log ratios and “𝐴” is for mean average)
(Figure 3) demonstrates thatmost of the pointswere clustered
tightly around the horizontal line, indicating that RNA-Seq
data were of good quality. There were differently expressed
genes between these three groups (red dots), indicating that
expression of some genes was changed after the control
group was loaded with high glucose (Figure 3(a)) and
after the model group was treated with ZGW rat serum
(Figure 3(b)). Furthermore, by comparing the global gene
expression changes between model group and control group,
we identified 71 upregulated and 100 downregulated genes,
respectively. We then also compared the drug group to the
model group, and 115 upregulated and 174 downregulated
genes were detected (Table 2).
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Figure 3:𝑀𝐴-plot of the log 2 fold changes over the mean of RNA-Seq read counts. The log 2 fold change for a particular comparison is
plotted on 𝑦-axis and the average of the counts normalized by size factor is shown on 𝑥-axis. Each gene is represented with a dot, and genes
with FDR < 0.05 are shown in red. (a) Comparison of model group with control group. (b) Comparison of drug group with model group.

Table 2: Summary of differentially regulated gene numbers among
the three groups (FDR < 0.05).

Control Model Drug
Control N/A 100 N/A
Model 71 N/A 174
Drug N/A 115 N/A
Numbers in italic are upregulated genes, while those in bold are downregu-
lated (DOCX).

3.3. Pathway Analysis of Embryos Treated with High Glucose.
To identify the gene regulatory pathways potentially affected
when embryos were treated with high glucose, two gene
enrichment analyses were carried out for the differentially
expressed genes between the model and control groups. For
the Gene Ontology (GO) enrichment analysis (Table 3), we
found 6 enriched biological process GO terms, including
“gluconeogenesis” (GO: 0006094). For cellular components,
we found ribosome (GO: 0022625, GO: 0015934, and GO:
0022626) andmitochondrial respiratory chain (GO: 0005746)
as overrepresented terms. The insulin-like growth factor
binding (GO: 0005520) was identified as the most signif-
icant overrepresented GO term in the molecular function
category. Based on KEGG enrichment analysis, ribosome
was identified as the only significantly overrepresented
pathway with differentially expressed genes enriched in
2-cell stage of mouse embryo treated with high glucose
(Figure 4).

3.4. Gene Expression Changes in High-Glucose Loaded Embryos
Treated with ZGW Rat Serum. We used the same
enrichment analysis to analyze the potential molecular
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Rpl30

Rpl32

Ribosomes

Figure 4: KEGG pathway (FDR < 0.05) enriched by the 171
differentially expressed genes in model group compared to control
group. Green colored dots are downregulated. The big dot is a sign
of the enriched pathway and the big green word is the name of the
pathway. Small green dots show the genes that are downregulated,
and the red words are the names of downregulated genes.

pathways affected by ZGW in high-glucose loaded embryos.
Based on differentially expressed genes in the drug group
compared to the model group, 22 overrepresented GO
terms were observed and 13 of them were in the molecular
function category (Table 4). These terms included hydrogen
ion transmembrane transporter activity (GO: 0015078),
cytochrome-c oxidase activity (GO: 0004129), heme-copper
terminal oxidase activity (GO: 0015002), and oxidoreductase
activity (GO: 0016676, GO: 0016675). For cellular component
terms, we found two main locations, the ribosome and
mitochondria, with terms such as ribosomal subunit (GO:
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Table 3: Summary of GO terms for differentially expressed genes between model and control groups.

Ontology source GO ID GO term Term 𝑃 value

Biological process

GO: 0034616 Response to laminar fluid shear stress 1.07𝐸 − 04

GO: 0006525 Arginine metabolic process 4.12𝐸 − 04

GO: 0034405 Response to fluid shear stress 2.18𝐸 − 03

GO: 0021885 Forebrain cell migration 1.63𝐸 − 02

GO: 0035914 Skeletal muscle cell differentiation 1.75𝐸 − 02

GO: 0006094 Gluconeogenesis 1.81𝐸 − 02

Cellular component

GO: 0022625 Cytosolic large ribosomal subunit 1.19𝐸 − 05

GO: 0015934 Large ribosomal subunit 1.53𝐸 − 04

GO: 0022626 Sytosolic ribosome 2.36𝐸 − 04

GO: 0031941 Filamentous actin 1.19𝐸 − 03

GO: 0005881 Cytoplasmic microtubule 8.66𝐸 − 03

GO: 0005746 Mitochondrial respiratory chain 1.18𝐸 − 02

Molecular function
GO: 0005520 Insulin-like growth factor binding 6.88𝐸 − 04

GO: 0016879 Ligase activity, forming carbon-nitrogen bonds 7.94𝐸 − 03

GO: 0033613 Activating transcription factor binding 9.60𝐸 − 03

15 GO terms are significantly enriched by the 171 changed genes after control group loaded by high glucose.

Table 4: Summary of GO terms for differentially expressed genes between drug and model groups.

Ontology source GO ID GO term Term 𝑃 value

Biological process GO: 1902600 Hydrogen ion transmembrane transport 2.60𝐸 − 04

GO: 0070646 Protein modification by small protein removal 6.99𝐸 − 04

Cellular component

GO: 0005732 Small nucleolar ribonucleoprotein complex 3.34𝐸 − 06

GO: 0005685 U1 snRNP 1.47𝐸 − 03

GO: 0044391 Ribosomal subunit 1.52𝐸 − 03

GO: 0005753 Mitochondrial proton-transporting ATP synthase complex 1.70𝐸 − 03

GO: 0045259 Proton-transporting ATP synthase complex 2.52𝐸 − 03

GO: 0016469 Proton-transporting two-sector ATPase complex 2.57𝐸 − 03

GO: 0044455 Mitochondrial membrane part 3.11𝐸 − 03

Molecular function

GO: 0015078 Hydrogen ion transmembrane transporter activity 1.90𝐸 − 04

GO: 0004129 Cytochrome-c oxidase activity 4.00𝐸 − 04

GO: 0015002 Heme-copper terminal oxidase activity 4.00𝐸 − 04

GO: 0016676 Oxidoreductase activity, acting on a heme group of donors,
oxygen as acceptor 4.00𝐸 − 04

GO: 0008553 Hydrogen-exporting ATPase activity, phosphorylative
mechanism 4.19𝐸 − 04

GO: 0016675 Oxidoreductase activity, acting on a heme group of donors 4.55𝐸 − 04

GO: 0030515 snoRNA binding 3.03𝐸 − 03

GO: 0036442 Hydrogen-exporting ATPase activity 3.79𝐸 − 03

GO: 0016830 Carbon-carbon lyase activity 3.95𝐸 − 03

GO: 0016814 Hydrolase activity, acting on carbon-nitrogen (but not
peptide) bonds, in cyclic amidines 4.66𝐸 − 03

GO: 0000062 Fatty-acyl-CoA binding 6.17𝐸 − 03

GO: 0019783 Ubiquitin-like protein-specific protease activity 6.26𝐸 − 03

GO: 0019843 rRNA binding 3.21𝐸 − 02

22 GO terms are significantly enriched by the 289 changed genes after model group treated with ZGW rat serum.



6 Evidence-Based Complementary and Alternative Medicine

Atp5e

Atp6v1c1

Rpl37

Rpl34

Mrpl27

Cox7b

Cacng7

Cox6b2
Cardiac muscleear usc CC

contractiononcox6b26

Cox7a2

actintra

Oxidativexi ti
phosphorylationosp y on

Mrps21

Ndufa4

Rps27l

Rpl32

Atp5l

Rpl34-ps1

Mrpl2

Rps15a

Ribosomeo

Figure 5: KEGG pathway (FDR < 0.05) enriched by the 289
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Big dots represent the enriched pathways and big red words are the
names of these pathways. Small red dots show the upregulated genes
and the related red words are downregulated gene names. Small
green dots show the downregulated genes and the related green
words are downregulated gene names.

0044391), small nucleolar ribonucleoprotein complex (GO:
0005732), mitochondrial proton-transporting ATP synthase
complex (GO: 0005753), and mitochondrial membrane
part (GO: 0044455). Results of KEGG enrichment analysis
showed that genes in the ribosomepathwaywere upregulated,
and some genes in the oxidative phosphorylation pathway
were also upregulated by ZGW (Figure 5).

3.5. Identification of Potential Response Genes for ZGW.
Among the 71 upregulated genes in the model group com-
pared to the control group, 14 genes were downregulated in
embryos treated with ZGW (Figure 6). These genes were
Irf6, H2afy, Smarca1, Fmr1os, Ifi27, Fam46c, Cym, Caps2,
Rassf8, Xkr4, Plac1, Xrra1, 3110001I22Rik, andA230056J06Rik
(Figure 7). No GO terms could be enriched based on these 14
genes. In the 100 downregulated genes from the model group
compared to the control group, 14 genes were upregulated in
embryos treatedwithZGW(Figure 6).TheywereKrt27,Deb1,
Myg1, Pmvk, Rpl37, Snord72, Gpalpp1, Zscan26, Rpl32, Adh1,

Slc17a1, Aurkaip1, Nop10, andCox7b (Figure 8).These 14 genes
were enriched for GO terms highly related to mitochondrial
energy metabolism (Table 5).

4. Discussion

4.1. Effects of High Glucose on Mice Embryo Development.
Ample studies have shown that high glucose can affect
embryos and block embryo development [35–37]. Research
on the mechanism of this embryo development block has
shown that high glucose can induce reactive oxygen species
and cause damage to the embryo through oxidative stress [37,
38]. In this study, we found that high glucose downregulated
several genes in the ribosome pathway (Figure 4), and
three GO terms of ribosome have been enriched based on
the differentially expressed genes between the model and
control groups. Ribosomemediates protein synthesis and the
downregulation of genes involved in the ribosome pathway in
high-glucose loaded embryos indicated that protein synthesis
might be affected. Furthermore, 2-cell stage is a key stage
betweenmaternal regulation and zygotic regulation inmouse
[39]. Downregulation of ribosomal genes at this stage could
affect the regulation of this transition.

We also found that genes involved in gluconeogenesis,
including crtc2, Ppara, and Sds, were all downregulated
in the model group. Molecular function of “insulin-like
growth factor binding (GO:0005520)” was also affected by
high glucose (Table 3). Insulin growth factors (IGFs) are
important proteins in the regulation of embryo development,
and a study showed that IGFs were main endocrine factors
in the regulation of embryo development [40]; IGF-I has
effects on metabolic regulation in embryos [41, 42]. The
gluconeogenesis process is one of the pathways regulated by
sugar in the uterus [40].

All these indicated that downregulating genes in ribo-
some pathway and affecting the sugar metabolism of mice
embryo at 2-cell stage are two of the main causes of embryo
developmental block induced by high glucose.

4.2. Efficacy of ZGW on High-Glucose Loaded Mice Embryo.
Previous studies showed that ZGW rat serum could induce
cell proliferation and differentiation [43, 44], inhibit cell
apoptosis [45], and promote germ cell and embryo devel-
opment [30, 46]. Furthermore, it has also been shown that
the administration of ZGW to GDM rats has a preventive
effect on the offspring’s IGT caused by a high-fat and high-
sugar diet [27]. In our study, we found that ZGW could
upregulate several genes in the ribosome pathway, which
were downregulated in embryos loaded with high glucose
(Figure 5).The ribosomal subunit (GO: 0044391)was also one
of the terms that been affected by ZGW (Table 4). In addition,
among the 14 downregulated genes in the model group but
upregulated in the drug group (Figure 8), Rpl32 and Rpl37
are both involved in the ribosome pathway.

Furthermore, we found that some pathways associated
with energy metabolism were altered in high-glucose loaded
embryos after treatment with ZGW. ZGW upregulated genes
in the oxidative phosphorylation pathway (Figure 5), consis-
tent with activate energy metabolism and sugar metabolism
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Figure 7: 14 genes upregulated in model group and downregulated in drug group. Read counts normalized by library size according to
DESeq2 are shown on 𝑦-axis.
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Table 5: Summary of GO terms of 14 genes downregulated in model group and upregulated in drug group.

GO ID Description 𝑞-value
GO: 0005743 Mitochondrial inner membrane 1.92𝐸 − 06

GO: 0019866 Organelle inner membrane 2.07𝐸 − 06

GO: 0005746 Mitochondrial respiratory chain 2.19𝐸 − 05

GO: 0070469 Respiratory chain 2.19𝐸 − 05

GO: 0044455 Mitochondrial membrane part 6.72𝐸 − 05

GO: 1990204 Oxidoreductase complex 1.54𝐸 − 04

GO: 0030964 NADH dehydrogenase complex 4.25𝐸 − 04

GO: 0005747 Mitochondrial respiratory chain complex I 4.25𝐸 − 04

GO: 0045271 Respiratory chain complex I 4.25𝐸 − 04

9 GO terms are significantly enriched by the 14 reversed genes in drug group.
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Figure 8: 14 genes downregulated in model group and upregulated in drug group. Read counts normalized by library size according to
DESeq2 are shown on 𝑦-axis.

in embryos. Oxidoreductase activity (GO: 0016676 and GO:
0016675), mitochondrial proton-transporting ATP synthase
complex (GO: 0005753), and mitochondrial membrane part
(GO: 0044455) were also enriched based on the differen-
tially expressed genes between the drug and model groups
(Table 4).TheGO annotation and coexpression network of 14
genes downregulated in the model group but upregulated by

ZGW in the drug group (Table 5) showed that some of them
were associated with the mitochondrial energy metabolism.

By these results, taken together with the result showing
that ZGW prevented the embryo cell death caused by high
glucose and promotes the blastocyst formation rate and total
cell numbers in blastocysts, we conclude that ZGW may
reverse the inhibition of the ribosome pathway and increase



Evidence-Based Complementary and Alternative Medicine 9

mitochondrial energy metabolism, which were inhibited by
high glucose, and prevent the mouse embryo cell death
caused by high glucose.

5. Conclusions

IGT can be effectively modeled using mouse embryos loaded
with high glucose, providing an effective means to explore its
pathogenesis and molecular mechanisms. By analyzing the
transcriptome of this IGTmodel treated with ZGW,we found
that high glucose might affect sugar metabolism and influ-
ence the mitochondrial function of mouse embryos at the 2-
cell stage and that ZGW can counteract this by upregulating
genes in the respiratory chain and oxidative phosphorylation.
Furthermore, ZGWcan prevent the embryo cell death caused
by high glucose through upregulating genes inhibited by high
glucose in ribosome pathway.

Abbreviations
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TCM: Traditional Chinese medicine
IGT: Impaired glucose tolerance
NGT: Normal glucose tolerance
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YGW: You Gui Wan
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