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Background: Studies investigating the population-mixing hypoth-
esis in childhood leukemia principally use two analytical approaches: 
(1) nonrandom selection of areas according to specific characteristics, 
followed by comparisons of their incidence of childhood leukemia 
with that expected based on the national average; and (2) regression 
analyses of region-wide data to identify characteristics associated 
with the incidence of childhood leukemia. These approaches have 
generated contradictory results. We compare these approaches using 
observed and simulated data.
Methods: We generated 10,000 simulated regions using the corre-
lation structure and distributions from a United Kingdom dataset. 
We simulated cases using a Poisson distribution with the incidence 
rate set to the national average assuming the null hypothesis that 

only population size drives the number of cases. Selection of areas 
within each simulated region was based on characteristics consid-
ered responsible for elevated infection rates (population density and 
inward migration) and/or elevated leukemia rates. We calculated 
effect estimates for 10,000 simulations and compared results to cor-
responding observed data analyses.
Results: When the selection of areas for analysis is based on appar-
ent clusters of childhood leukemia, biased assessments occur; the 
estimated 5-year incidence of childhood leukemia ranged between 
zero and eight per 10,000 children in contrast to the simulated two 
cases per 10,000 children, similar to the observed data. Performing 
analyses on region-wide data avoids these biases.
Conclusions: Studies using nonrandom selection to investigate the 
association between childhood leukemia and population mixing are 
likely to have generated biased findings. Future studies can avoid 
such bias using a region-wide analytical strategy. See video abstract 
at, http://links.lww.com/EDE/B431.
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When comparing disease incidence between areas, those 
areas with small populations are more likely to appear 

as spatial clusters of high incidence by chance alone. Focusing 
on these supposed clusters is therefore a poor basis on which 
to generate or test causal hypotheses.1 Nonetheless, such clus-
ters are hard to ignore2 and can generate substantial pressure 
for plausible explanations. This may explain the considerable 
public and political interest given to the high incidence of 
childhood leukemia in Seascale (Cumbria, UK) during 1963–
1983 and the relative lack of attention to the absence of such 
cases during 1991–2006.3,4

The challenges of examining clusters between areas 
with different population sizes are likely to have influenced the 
development and testing of the “population mixing hypothesis”. 
The idea emerged from analyses purporting to show an asso-
ciation between “population mixing” and childhood leukemia, 
interpreted as evidence for the involvement of infectious agents. 
The hypothesis proposes that the immune systems of children 
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resident in more isolated and/or less densely populated com-
munities are more likely to have been exposed to a less diverse 
range of infectious agents than residents in less isolated and/
or more densely populated communities. These children are 
therefore believed to be more likely to develop leukemia once 
exposed to novel infections from inward migrants.5

This hypothesis is both persuasive6 and enduring7 but 
relies on several untested assumptions and involves a lack 
of clarity around how many of its key concepts should be 
defined, measured, and analyzed.8 One assumption is that iso-
lated communities, and those with lower population densities, 
are less likely to experience the frequency/intensity of con-
tact required to sustain infections. Another is that communi-
ties with lower rates of inward migration are less frequently 
exposed to exogenous infections. While these assumptions 
reflect established tenets of infectious disease epidemiology, 
they require levels of isolation, population dispersion, and 
(im)mobility that remain unspecified and may be neither plau-
sible nor applicable where the hypothesis has been examined. 
There also remains extensive disagreement regarding the roles 
that the immune system and early exposures to infection play 
in the etiology of childhood leukemia.9–11

These mechanistic uncertainties are compounded by a 
lack of consensus concerning: what constitutes an isolated 
or less dense population; criteria used to distinguish between 
migrants and residents; and how these concepts are operation-
alized as measures of population mixing. Researchers explor-
ing the association between population mixing and childhood 
leukemia have therefore used a range of different measures 
as proxies for population mixing including differences and/
or changes in population size/density; the proportion and/or 
diversity of inward-migrants; and versions of the Shannon 
Diversity index.8

The variety of measures confirms a lack of concep-
tual precision/consensus and reflects the practical con-
straints imposed by the distribution and migration patterns 
of populations within regions where suitable data exist; the 
collation/organization of data on these parameters; and chal-
lenges differentiating leukemia cases among residents and 
inward-migrants. Good quality, area-level data on popula-
tion size/density, migration, and childhood leukemia inci-
dence are only available for high-/middle-income countries 
where large regions are usually subdivided into small areas 
along political/administrative rather than demographic lines. 
These small areas display substantial variation in geospatial 
features (size, shape, and distance apart) and in the size/
distribution of their constituent populations. Consequently, 
along with the sociodemographic detail of data available 
from sources such as a decennial census, the geographical 
specification of these areas constrains what measures of 
isolation, density, migration, and mixing can be generated. 
Such subdivision also creates larger-than-expected chance 
variations in incidence among smaller populations simply 
due to chance.12

Different researchers have used different analytic strate-
gies, generating contradictory results.5,13 Some of the earliest 
studies followed the identification of an apparent cluster of 
leukemia cases in a single area and sought to verify whether 
this constituted a bona fide cluster (i.e., a higher number of 
cases than expected given the national/regional incidence 
proportion—the number of new cases per population at risk 
during a particular period of time).14 Unfortunately, such stud-
ies provide little evidence of whether the elevated incidence is 
associated with any characteristics of the area concerned. In 
these studies, it is often unclear how/when the specific mea-
sures for population mixing were selected (i.e., before or after 
the areas of study were selected for their apparent excess of 
cases). Substantial methodologic variations make it challeng-
ing to identify commonalities in analytical approach for closer 
examination. However, many such studies focused specifi-
cally on areas displaying childhood leukemia clusters/higher 
incidence of childhood leukemia. Indeed, where other studies 
adopted a nonselective region-wide analytic strategy—exam-
ining associations between area-based measures of population 
mixing and leukemia incidence across the whole region or in a 
random sample of areas—these tend to generate contradictory 
findings to those adopting nonrandom, selective, or focused 
analytic strategies.5,14–20

Much work is needed to strengthen the concepts, mea-
sures, and datasets used to test the population mixing hypothe-
sis. There is a pressing need to establish why different analytic 
strategies generate such contradictory findings. This study 
uses simulation and analysis of observed data to examine the 
two principal analytic strategies used by previous ecological 
studies and explores the relationship between commonly used 
measures of population mixing and childhood leukemia. Such 
measures typically draw on the concept of population mixing 
as proposed by the first study to use this term,5 which was 
subsequently defined as an “increase in population density 
produced by a marked influx into a rural area” (where “rural” 
was considered a less densely populated area).21 On this basis, 
we chose the two most common measures of population mix-
ing used by previous studies: population density and inward 
migration. Population density provides a measure of the num-
ber of individuals capable of spreading a putative leukemia-
promoting infectious agent,8,22 expressed as the population 
per unit area. Inward migration provides a measure of the rela-
tive number of new arrivals capable of bringing such agents 
with them, expressed as the proportion of migrants within the 
population. We calculated both measures using existing data 
disaggregated by administrative areas and used them to under-
take each of the analytic strategies as follows:

1.	 Selective subregion analysis. We selected areas with con-
trasting values of population density, inward migration, 
and/or childhood leukemia incidence (i.e., representing 
areas of specific interest as potentially highly exposed ver-
sus reference areas) nonrandomly for direct comparison.
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2.	 Region-wide analysis. The relationship between population 
density, inward migration, and childhood leukemia inci-
dence is examined using standard regression techniques 
across all small areas within a larger region or a random 
sample of areas.

METHODS
We applied selective subregion analysis and region-

wide analysis to observed data from the Yorkshire and Hum-
ber region of the United Kingdom using data from a previous 
study of the population mixing hypothesis.13 We also simu-
lated data in which the number of childhood leukemia cases 
was determined solely by population size and not by popula-
tion density or inward migration (i.e., the null hypothesis). We 
used the statistical software package R throughout.23

Observed Data
We calculated population density and inward migration 

for each of the 532 census wards in the Yorkshire and Hum-
ber region using 1991 census data on total population; ward 
area (km2); number of inward migrants (those with a different 
address one year prior to the census); and number of 0–14 
year olds (the population we considered at risk). We calculated 
population density prior to inward migration. We calculated 
inward migration in relation to each ward’s premigration pop-
ulation, such that the proportion of inward migration could 
exceed one (i.e., for wards where inward migration resulted in 
a doubling, or more, of the population).

We identified leukemia cases (for 0–14 year olds) from 
the Yorkshire Specialist Register of Cancer in Children and 
Young People, diagnosed within the Yorkshire Regional Health 
Authority between 1988 and 1993 (the closest date to the 1991 
census for which data were available).13 These were mapped 
to census wards to permit estimation of childhood leukemia 
incidence rates (Figure 1). Situating these analyses around the 
1991 census facilitated comparison with previously published 
studies, most using data before subsequent declines in inci-
dence reported elsewhere.3,4

Simulated Data
We simulated multivariate ward-level data on popula-

tion density and inward migration such that their distributions 
and correlation structure approximated those in the observed 
data.24 We based simulated cases on the national childhood 
leukemia incidence proportion over a comparable 5-year 
period25; a time interval chosen to emulate previous studies 
and overcome key challenges with modeling rare events. Sim-
ulations used the Poisson distribution (i.e., as evident in cases 
of childhood leukemia in the observed data) under the null 
hypothesis that the number of cases of childhood leukemia in 
each area is determined only by the number of 0- to 14-year-
olds (see eAppendix 1; http://links.lww.com/EDE/B411 for a 
step-by-step guide to the simulation). By approximating the 
observed population structure under the null assumption that 

the only driver of the number of cases of childhood leukemia 
is population size, deviations from a null result in the analyses 
of simulated data must be due to selection or analytic errors. 
To ensure sufficient data were available to reduce the standard 
error of the simulation process26 and to more precisely learn 
the operating characteristics of the different estimation proce-
dures, we generated 10,000 simulated datasets.

Selective Subregion Analytic Strategy
To emulate the selective subregion strategy, we selected 

16 wards, the mean number of areas in those studies that used 
this approach,5,14–20,27 based on extreme values of low popula-
tion density, high inward migration, high childhood leukemia 
incidence, or combinations of all three. We examined 15 selec-
tion scenarios (based on all combinations of these three selec-
tion variables) to account for the disparate methods found in 
the literature.

Scenarios 1–3 involved ranking wards according to low 
population density, high inward migration, or high incidence 
alone, then randomly selecting 16 of the highest ranked 50% 
of wards for analysis. Scenarios 4–9 involved ranking wards 
according to each possible pair of variables: ranking first on 
the initial variable and selecting the highest 50%, next rank-
ing these on the second variable and selecting the highest 
50%, then randomly selecting 16 wards for analysis. Finally, 
Scenarios 10–15 involved (1) ranking the wards according 
to every possible ordering of all three variables—ranking on 
the initial variable and selecting the highest 50%; (2) on the 
second variable, selecting the highest 50%; (3) on the third 
variable, again selecting the highest 50%, before (4) randomly 
selecting 16 wards for analysis. To match the number of ran-
dom selections available from the 10,000 simulated datasets, 
we also took the random selection of the 16 wards 10,000 
times on the observed data.

For each of these 15 scenarios, we reported median val-
ues of the estimated childhood leukemia incidence with their 
empirically derived 95% ranges (95% range: 2.5% and 97.5% 
estimates from the 10,000 datasets). We aggregated figures 
from the 16 selected wards and compared the total number of 
cases observed with the number expected from the national 
incidence in people aged 0 to 14 years using the binomial 
exact test.28 The proportion of significant P values (5% level) 
for each test, together with the direction of the correspond-
ing estimates (above/below the national incidence rate), was 
recorded. For simulated data, the proportion of significant P 
values (5% level) is equivalent to the estimated type I error 
rate. P values have been included along with confidence inter-
vals as the original studies reported these.

Region-wide Analytical Strategy
To replicate the region-wide strategy of previous 

studies,13,29–36 we used Poisson regression models to match 
the distribution evident in the observed data and that used 
in the generation of the simulated datasets. Three separate 
regression models were conducted on a random selection of  

http://links.lww.com/EDE/B411
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50% of wards using population density or inward migration, 
or both as covariates (corresponding to Scenarios 1, 2, 4, and 
5 of the selective subregion analytical strategy, above). The 
arbitrary choice of selecting a random sample of 50% of the 
data for analysis was to ensure that the impact of random 
sampling variation across the simulations was present in both 
region-wide and selective subregion approaches. Each model 
was generated 10,000 times for the observed data to facilitate 
comparisons with analysis of the 10,000 simulated datasets. 
Median risk ratios and their empirically derived 95% ranges 
(95% range: 2.5 and 97.5 centile estimates from the 10,000 
datasets) are described for a 25% increase in population due 
to inward migration and for a population density increase of 
500 persons per square kilometer. Since population density 
is a continuous variable, a contrast between two states cannot 
be easily described; instead, the effect of an absolute increase 
in population density is reported. The P values correspond-
ing to each risk ratio were recorded, combined with whether 
the risk ratio was above (harmful effect) or below (protective 
effect) one.

A Note on P Values
We believe that null hypothesis significance tests are 

inappropriate for observational data analyses, and we would 
not typically use them. Unfortunately, they remain extremely 
common in the wider literature, and all the historical studies 
that we are emulating used null hypothesis significance tests 
based on P value thresholds. For comparison to these previ-
ous studies, we explore the results in terms of the likelihood 
of obtaining P < 0.05, in addition to (our preferred) absolute 
effect size.

RESULTS

Selective Subregion Analytic Strategy
Analyses of 10,000 random samples drawn from the 

observed dataset using each selective subregion scenario 
(Table  1) indicate that where selection was based on low 

population density or high inward migration alone or both 
(Scenarios 1, 2, 4, and 5), the proportions of significant P 
values were low (ranging from 1.3% to 3.6%). Where selec-
tion was based on either a high incidence of leukemia, either 
alone or together with one or both exposures (Scenarios 3 and 
6–15), the proportions of significant P values were substan-
tially greater than the 5% that would be expected if the null 
were true (ranging from 18.4% to 97.2%).

For analyses of data simulated under the null hypothesis, 
type I error rates of 2.8% to 3.7% were observed under Sce-
narios 1, 2, 4, and 5 (Table 1), consistent with random subregion 
selection (i.e., 3.5% type I error rate). Where selections were 
based on a high incidence of leukemia either alone or together 
with one or both exposures (Scenarios 3 and 6–15), type I error 
rates were far higher (ranging from 18.4% to 99.3%; Figure 2).

The estimated 5-year incidence of childhood leukemia 
ranged between zero per 10,000 and eight per 10,000 children 
across the 10,000 simulated datasets, indicating that up to 
eight cases per 10,000 children might occur by chance in any 
5-year period. This is in contrast to what was simulated, that 
is, two cases per 10,000 population. The range of estimates 
were similar in the observed datasets (Figure 3).

Region-wide Analytic Strategy
The proportions of significant P values in region-wide anal-

yses of observed data all exceeded 5% (7.9%–13.0%; Table 2), 
suggesting that high inward migration was associated with lower 
childhood leukemia incidence and low population density was 
associated with a higher childhood leukemia incidence.

Region-wide analyses of simulated data returned type I 
error rates between 4.2% and 5.2% for all model coefficients 
(Table 2). The distribution of the coefficient values is not cen-
tered on zero (i.e. −-2.5% to 2.5%) due to small, but non-zero, 
correlations between cases of childhood leukemia, population 
density, and inward migration, which arise from a mathematical 
dependency between these variables (see Supplemental Digital 
Content, eFigure S1; http://links.lww.com/EDE/B411).

Figure 1.  Ratio of observed to expected (based 
on average national incidence) cases of childhood 
leukemia in Yorkshire and Humber (United King-
dom), 1988–1993, by ward.

http://links.lww.com/EDE/B411
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TABLE 1.  Type I Error Rates of the Selective Subregion Analytical Strategy Under Each of the Scenarios Examined

Scenario

Observed Data;  
Percentage  
Statistically  

Significant (5%)

Simulated Data;  
Type I Error  

Rate (5%)

1. Low population density 2.93 2.91

2. High inward migration 1.96 3.66

3. High incidence 34.40 67.03

4. Low population density – high inward migration 1.32 3.17

5. High inward migration – low population density 3.60 2.80

6. Low population density – high incidence 45.56 43.96

7. High incidence – low population density 44.88 18.36

8. High inward migration – high incidence 27.01 41.64

9. High incidence – high inward migration 97.22 67.30

10. Low population density – high inward migration – high incidence 18.39 33.03

11. Low population density – high incidence – high inward migration 22.77 45.15

12. High inward migration – low population density – high incidence 60.06 44.17

13. High inward migration – high incidence – low population density 30.88 99.27

14. High incidence – low population density – high inward migration 41.21 19.25

15. High incidence – high inward migration – low population density 47.67 20.91

Figure 2.  Percentage of statistically significant results at the 5% level by analytical strategy for both simulated and observed data. 
Selective subregion analytical strategy results were analyzed using the binomial exact test; direction of the bars indicates whether 
the estimated probabilities of the significant test results were greater (above zero) or less than (below zero) the national average. 
Region-wide analytical strategy results were analyzed using Poisson regression; direction of the bars indicates whether statistically 
significant coefficients were greater (above zero) or less than (below zero) zero. D, population density; M, inward migration; and 
I, childhood leukemia incidence; order of letters indicates the order used to select data for analysis.
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In the simulated data, the median risk ratios (RR) for the 
effects of inward migration were consistently 1.0, indicating 
agreement with the null hypotheses (e.g., RR vs 0% migra-
tion: 25% = 1.0 [95% range = 0.08–8.81]). In the observed 
data, however, increasing levels of inward migration were 
associated with lower incidence of leukemia (e.g., RR vs 0%: 
25% = 0.33 [95% range = 0.02–2.05]).

All risk ratios for the effect of population density in both 
the simulated data and observed data were close to 1.0, indi-
cating consistent agreement with the null hypotheses (RRs 
per unit increase in person/km2 in simulated data: 500 people/
km2 = 1.0 [95% range = 0.95–1.03]; in observed data: 500 
people/km2 = 0.98 [95% range = 0.90–1.05]). Coefficients of 
adjusted regression models (including both inward migration 
and population density as covariates) did not materially differ 
from those in unadjusted models (Figure 4).

DISCUSSION
The present study uses simulation and observed data 

analysis to contrast the two most commonly used analytical 
strategies found in the literature that investigate the proposed 

relationship between population mixing and childhood leuke-
mia incidence. We demonstrate how the different analytical 
strategies used to examine the relationship between “popula-
tion mixing” and childhood leukemia incidence can generate 
radically divergent results. Considerable bias occurs if geo-
graphic areas are selected prior to analysis and selection is 
influenced by elevated childhood leukemia incidence (i.e., 
clusters). Bias is also evident where selection involves mea-
sures of population mixing, as population mixing appears 
adversely associated with elevated childhood leukemia 
incidence.

We did not examine all the measures of population mix-
ing used by previous studies and did not attempt to gener-
ate alternative proxies for population mixing. Our aim was 
to examine the impact of the two most common analytical 
strategies using two typical measures of population mixing. 
Furthermore, since the observed and simulated data did not 
differentiate between cases of childhood leukemia among 
residents and inward migrants, we could not assess whether 
population mixing might be associated with a differential risk 
of childhood leukemia in each. However, the small numbers 
of inward migrants, and of 0- to 14-year-olds therein, would 
make such analyses challenging and may explain why few 
previous studies have sought to do this. A further limitation of 
the present study is that we did not examine possible temporal 
effects related to the timing of population mixing events and/
or age at exposure. Despite substantial variation in these crite-
ria among previously published studies, few sought to exam-
ine their impact on the direction or strength of the associations 
found. This, however, is less relevant to our study’s focus on 
the comparison of analytic strategies.

Analyses of rare diseases such as childhood leukemia 
are challenging because disease registries often only collect 
summary information on the denominator (or population at 
risk) within areas for aggregated blocks of time. By far, the 

Figure 3.  95% empirically derived 
ranges (95% range: 2.5 and 97.5% 
centile estimates from the 10,000 
datasets, points indicate the median) 
of the distribution of childhood leu-
kemia incidence from the binomial 
exact test of the selective subregion 
analytical strategy. The dashed line 
indicates the incidence rate used 
to generate the simulated datasets, 
that is, two cases per 10,000 zero- to 
fourteen-year olds in a 5-year period. 
This is the incidence expected under 
the null hypothesis; any deviation 
from this indicates bias. D, popula-
tion density; M, inward migration; 
and I, childhood leukemia incidence; 
order of letters indicates the order 
used to select data for analysis.

TABLE 2.  Type I Error Rates of the Region-wide Analytical 
Strategy According to the Covariate Examined in the Model

Covariate

Observed Data;  
Percentage  
Statistically  

Significant (5%)

Simulated Data;  
Type I Error  

Rate (5%)

Population density 8.71 4.16

Inward migration 12.99 5.10

Population density (adjusted  

for inward migration)

7.91 4.16

Inward migration (adjusted  

for population density)

12.43 5.18
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most common type of analysis is therefore to conduct aggre-
gated analyses of incidence proportions, that is, comparing 
cases per population within fixed units of time. Because of the 
size of the areas typically examined, and the rarity of child-
hood leukemia, such analyses are prone to an abundance of 
zero cell counts. The most common solution is to preserve 
the area level granularity and collapse the time frame into 
longer periods, with 5-year periods being the most common 
approach in the literature; we have adopted the same approach 
in our indicative analyses. Alongside the limitations imposed 
from using data from disease registries mentioned above, we 
are also limited to describing averaged area-level migration 
patterns from census data which measure migration based on 
change of address from a year prior to the census date. There-
fore, we cannot take account of the likely time lag between 
exposure and event; however, this is also a limitation of many 
of the studies we wish to emulate.

Notwithstanding these limitations, our study confirms 
that analyses based on nonrandom area/subregion selections 
that are influenced by or associated with elevated childhood 
leukemia incidence can generate entirely erroneous findings. 
In all scenarios with such selection, associations were pro-
foundly biased, falsely suggesting that low population density 

and/or high inward migration were associated with elevated 
childhood leukemia incidence.

Unfortunately, the lack of methodologic clarity in 
research adopting a selective subregion analytical strategy 
means it is not possible to establish which studies might be 
prone to biases associated with this strategy. Even if studies 
sought to select areas using only variables chosen as mea-
sures for population mixing, it is feasible that selection was 
affected instrumentally (by co-dependence on demographic 
characteristics) or implicitly (by knowledge of, interest in, or 
attention to the outcome). The latter is likely to be central to 
the importance afforded to clusters of similarly rare events. 
It seems likely that focusing on clusters of childhood leuke-
mia, together with the confirmatory results produced by selec-
tive subregion analyses, researchers are encouraged to use 
this analytic strategy, unaware of the bias it generates. This 
would explain the publication bias among studies examining 
the population mixing hypothesis.21 Studies using the unbi-
ased region-wide approach are more challenging to publish 
because they fail to identify the large artifact found in selec-
tive subregion analyses. Nevertheless, region-wide analytic 
strategies avoid the risk of explicit or implicit attention to 
clusters, ensure that selection biases cannot occur, and ensure 

Figure 4.  95% empirically derived ranges (95% range: 2.5 and 97.5% centile estimates from the 10,000 datasets, points indicate 
the median) of the percentage increase or decrease in childhood leukemia incidence from the regression models of the region-
wide analytical strategy with an increase of inward migration of 25% and an increase in population density to 500 persons/km2. 
The dashed line indicates no change in childhood leukemia incidence as expected under the null hypothesis. Results shown with 
log scaling.
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the analysis can be extended to cover any available geographic 
characteristics. For this reason, ecologic studies of the popula-
tion-mixing hypothesis that have used a nonrandom selective 
subregion approach should be viewed with extreme caution.

CONCLUSIONS
Future studies investigating the association between 

population mixing and childhood leukemia (or other appar-
ently clustered events) should adopt a region-wide analytic 
strategy to avoid the potential biases inherent in a nonran-
dom selective subregion approach. Where an entire dataset 
is not available for analysis, sampling should be random to 
avoid potential subregion selection biases. Syntheses of previ-
ous studies examining this association should place greater 
emphasis on findings from studies adopting region-wide 
analyses and only consider findings from those studies using 
selective subregion analyses where the authors have explic-
itly used random selection methods to avoid the potential risk 
of focusing on areas exhibiting apparent clusters (i.e., a high 
incidence) of leukemia.
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