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Abstract

Normalization is an essential step with considerable impact on high-throughput RNA

sequencing (RNA-seq) data analysis. Although there are numerous methods for read count

normalization, it remains a challenge to choose an optimal method due to multiple factors

contributing to read count variability that affects the overall sensitivity and specificity. In

order to properly determine the most appropriate normalization methods, it is critical to com-

pare the performance and shortcomings of a representative set of normalization routines

based on different dataset characteristics. Therefore, we set out to evaluate the perfor-

mance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ

and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normaliza-

tion after per-sample median or upper-quartile global scaling). Our per-gene normalization

approach allows for comparisons between conditions based on similar count levels. Using

the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we per-

formed differential gene expression analysis to evaluate these methods. When evaluating

MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly

higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate >
85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given

the nominal FDR (�0.05). Although the top commonly used methods (DESeq and TMM-

edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specific-

ity (<70%) and a slightly higher actual FDR than our proposed methods. In addition, the

results from an analysis based on the qualitative characteristics of sample distribution for

MAQC2 and human breast cancer datasets show that only our gene-wise normalization

methods corrected data skewed towards lower read counts. However, when we evaluated
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MAQC3 with less variation in five replicates, all methods performed similarly. Thus, our pro-

posed Med-pgQ2 and UQ-pgQ2 methods perform slightly better for differential gene analy-

sis of RNA-seq data skewed towards lowly expressed read counts with high variation by

improving specificity while maintaining a good detection power with a control of the nominal

FDR level.

Introduction

High-throughput RNA sequencing (RNA-seq) has become the preferred choice for gene

expression studies due to technological advances allowing for increased transcriptome cover-

age and reduced cost. These improvements have enabled studies with a large range of applica-

tions including identification of alternative splicing isoforms [1–3], de novo transcript

assembly to identify novel genes and isoforms [4–6], detection of single-nucleotide polymor-

phisms (SNPs) [7,8] and novel single nucleotide variants (SNVs) [9], and characterization of

mRNA editing [10]. In addition, RNA-seq enables the detection of rare transcripts while allow-

ing for high coverage of the genome, which cannot be identified as well by microarray technol-

ogies [11]. However, the most common and popular application of RNA-seq experiments is

the identification of differentially expressed genes (DEGs) between two or more conditions.

These DEGs may serve as biomarkers for clinical diagnosis, with possible implications for pre-

vention, prognosis and treatment [12,13].

Currently, several sequencing platforms exist, which require similar sample pre-processing

and subsequent analytical steps, as summarized by Zhang et al. [14]. Briefly, this RNA-seq

workflow consists of three major steps: 1) RNA-seq library construction; 2) sequencing and

mapping; and 3) normalization and statistical modeling to identify the DEGs or transcript iso-

forms. Following the second step, raw mapped reads generated by an aligner such as TopHat2

[15] are further normalized by a variety of methods, which generally include within-sample

and between-sample normalization. Normalization is a crucial step in gene expression studies

for both microarray and RNA-seq data [16–19].

In RNA-seq, the expression level of each mRNA transcript is measured by the total number

of mapped fragmented transcripts, which is expected to directly correlate with its abundance

level. The expected expression level of each transcript is limited by the sequencing depth or

total number of reads, which is pre-determined by the experimental design and budget before

sequencing. Since the expression level of the transcripts within the sample is dependent upon

the other transcripts present [20], given a fixed total read count, higher expressed transcripts

will have a greater proportion of total reads [19,21]. Furthermore, longer transcripts have

more reads mapping to them compared with shorter transcripts of a similar expression level

[22]. Therefore, a number of normalization methods for RNA-seq data have been proposed to

correct for library size bias as well as length and GC-content bias. These methods include per-

sample Total Counts (TC) implemented in EDASeq [23,24], per-sample Upper Quartile (UQ)

implemented in edgeR, Cufflink-Cuffdiff2 and EDASeq [18,24–26], per-sample Median (Med)

implemented in EDASeq [23,24], DESeq normalization (median-of-ratios) implemented in

DESeq and DESeq2 [27,28], Trimmed Mean of M values (TMM) implemented in edgeR [19],

Full Quantile (FQ) implemented in Aroma.light [29,30], Reads Per Kilobase per Million

mapped reads (RPKM) [21] and Fragments Per Kilobase per Million mapped fragments

(FPKM) implemented in Cufflinks-CuffDiff and Cufflinks-CuffDiff2 [26,31,32], normalization

by control genes [18,33] and normalization by GC-content [24]. To correct for library size,

RNA-seq normalization methods
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most of these methods, including TC, UQ, Med, DESeq and TMM, use a common scaling fac-

tor per sample to normalize genes. Among these, UQ, Med, FQ and control gene normaliza-

tion are techniques previously employed in microarray analysis.

Given the variety of read count normalization methods for RNA-seq analysis, it can be chal-

lenging for scientists to determine which method is optimal with regards to sensitivity and

specificity due to a variety of factors such as read depth, biological variation and the number of

biological replicates in the RNA-seq data. Previous studies comparing these methods for DEG

analysis suggested the use of DESeq and TMM-edgeR packages based on the false positive rate

and detection power [18,20,23,34–36]. However, while DESeq and TMM-edgeR were reported

to have overall better performance, these studies also report the false discovery rate (FDR) was

higher than the nominal FDR, leading to an inflated type I error rate. Therefore, in this study,

we explore new normalization methods and find a slight improvement over the existing meth-

ods with the dual goals of maintaining a nominal FDR level and a good specificity rate.

RNA-seq data are obtained from complex experiments with a variety of technical variations

across different conditions and adjustments made for read depth and other variation [33]. For

example, the mean read counts of genes can range from less than one reads for lowly abundant

genes to thousands or millions of reads for highly abundant genes. In order to correct for the

variation of each gene across samples or conditions, we propose a two-step normalization pro-

cedure: correcting the read depth through quantile normalization per sample followed by per

gene and per 100 reads normalization across samples. This idea is adapted from the normaliza-

tion of one-color cDNA microarray and RPKM and FPKM in RNA-seq [16,17,21,31]. The

reads of each gene per sample are scaled by Med or UQ normalization. Then, the Med or UQ-

normalized reads of each gene per sample are further scaled by the median per 100 reads

across conditions. Thus, the reads in each gene are similarly scaled, allowing for an accurate

comparison of gene expression across conditions.

In this study, we evaluated our methods (Med-pgQ2 and UQ-pgQ2) along with the public

available methods. We used the exact test with a negative binomial distribution from edgeR to

identify DEGs for the normalization methods including TC, Med, UQ, FQ and our two pro-

posed methods. We used DESeq2 for DESeq normalization and Cufflinks-Cuffdiff2 for FPKM

normalization to test DEGs. The benchmark Microarray Quality Control Project (MAQC2

and MAQC3) datasets, simulated data and real human breast cancer RNA-seq data with a vari-

ety of properties were used to compare these methods.

Materials and methods

Normalization methods

Within-sample and between-sample normalization methods. Within-sample normali-

zation enables the correction of expression level in each gene associated with other genes in

the same sample. Since a long gene or transcript has more reads mapping to it compared to a

short gene or transcript with a similar expression, length normalization is taken into consider-

ation in some normalization methods. Currently, the most widely used methods, including

both within-sample and between-sample normalization, are RPKM [21] and FPKM [31].

FPKM is used to count the reads of a fragment for paired-end RNA-seq data, which produces

two mapped reads. However, the correction for the difference in gene length for analysis of

DEGs could introduce a bias in per-gene variance especially for low abundance genes [22,23].

Within-sample normalization methods. Since the prominent variation of read counts

for a gene between samples is due to differences in library size or sequencing depth, within-

sample normalization of raw reads is critical for the comparison of these gene expression mea-

sures across experimental conditions. The simplest normalization method is TC

RNA-seq normalization methods
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normalization, which adjusts the raw reads of each transcript by the total library size per sam-

ple. However, the comparison of RNA-seq normalization methods shows that Med, UQ,

TMM from edgeR, DESeq and FQ normalization methods are much better than TC [23]. One

reason is that a small number of highly expressed genes can consume a significant amount of

the total sequence [18]. To account for this feature, scaling factors are estimated from the data

and are used to achieve within-sample normalization [18,23].

Med-pgQ2 and UQ-pgQ2 normalization methods that we propose. Since the variation

among genes within a sample and the variation per-gene across samples due to the systemati-

cal bias need to be corrected in order to accurately identify DEGs between conditions, we pro-

pose two-step per-gene normalization methods called Med-pgQ2 and UQ-pgQ2.

In the following, we define statistical notations for characterizing different normalization

techniques. For simplicity, we only consider the gene g (g = 1,. . .,G) in sample j (j = 1,. . .,n)

where G is the total number of genes and n is the total number of samples. Let Ygj be the num-

ber of observed reads mapped to a gene g for sample j,Nj be the total number of mapped reads

for all genes in sample j, N be the total number of mapped reads across all samples, �N be the

mean of the reads across all samples, ugj be the true and unknown expression level and Lg be

the length of the specific gene g.
The above Nj, N and �N can be expressed as:

Nj ¼
PG
g¼1
Ygj; N ¼

Pn
j¼1
Nj; and �N ¼

ð
Pn

j¼1
NjÞ
n

:

In this study, we examine eight existing and two proposed normalization methods with

detailed statistical notations as described in S1 Appendix.

Like microarray data analysis, the raw read counts of RNA-seq data are first preprocessed

to remove all zero read counts across conditions before the normalization procedure. Thus, in

the case of a balanced sample size design, genes with total raw read counts across conditions

less than the number of sample replicates are filtered out. For data with an unbalanced sample

size design, the gene with an average number of raw reads across conditions less than one are

filtered out. In addition, a value of 0.1 is added to the raw counts for those genes to avoid zero

read counts that are used for the following normalization as well as the other normalization

methods. Our proposed methods include two steps described as follows:

Step 1: Median and Quantile normalization. a. Median (Med) [23]. Let YMedgj be the

median-normalized reads of gene g in sample j. Median normalization is based on all constitu-

tive gene reads with positive counts for all samples. For each sample j, the normalization factor

q50
j is the median (50th percentile or 2nd quartile) of the mapped reads of the genes in each sam-

ple after filtering out the genes with zero read counts across samples [18]. The observed Ygj is
scaled by q50

j per average of median reads across all samples ð �NmedÞ. YMedgj can be expressed as:

YMedgj ¼
Ygj
q50
j

� �Nmed ¼
Ygj

q50
j =

�Nmed
: ð1Þ

b. Upper Quartile (UQ) [18]. If the majority of genes have very low read counts in a RNA-

seq experiment, upper-quartile normalization is preferred to median normalization (50th per-

centile) [18]. Let YUQgj be upper-quartile-normalized reads of gene g in sample j. Upper-quartile

normalization is based on all constitutive gene reads with positive counts for all samples. For

each sample j, the normalization factor q75
j is the upper-quartile (75th percentile) of the mapped

reads of the genes in the sample after filtering out the genes with zero read counts across sam-

ples. The observed Ygj is scaled by q75
j per average of upper-quartile reads across all samples

RNA-seq normalization methods
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ð �NuqÞ. YUQgj can be expressed as:

YUQgj ¼
Ygj
q75
j

� �Nuq ¼
Ygj

q75
j =

�Nuq
: ð2Þ

A study in evaluation of statistical methods for normalization in RNA-seq experiments [18]

demonstrated that upper-quartile normalization reduced bias in the estimation of DEGs rela-

tive to qRT-PCR without noticeably increasing the level of variability as compared to TC

normalization.

Step 2: Per-gene normalization after per-sample global scaling (Med-pgQ2 and UQ-

pgQ2) as follows. a. Med-pgQ2: let YMedgj be the expression value for gene g in sample j scaled

by the median (Med) in Eq (1); let Q2Medg be the median of gene g across samples after median

normalization per sample. Thus, the new normalized counts YMed� pgQ2

gj per gene and per 100

reads can be expressed as:

YMed� pgQ2

gj ¼
YMedgj

Q2Medg
� 100: ð3Þ

b. UQ-pgQ2: let YUQgj be the expression value for gene g in sample j and normalized by UQ

(75%) in Eq (2); let Q2UQg be the median of gene g across samples after UQ normalization.

Thus, the new normalized counts YUQ� pgQ2

gj per gene and per 100 reads can be expressed as:

YUQ� pgQ2

gj ¼
YUQgj
Q2UQg

� 100: ð4Þ

The multiplication of 100 reads is used for per-gene normalization, similarly approaching

as RPKM and FPKM normalizations in which the normalized reads are obtained via multipli-

cation of one million of reads after being scaled by the length of a transcript per kilobase and

the total read counts per-sample.

Statistical model and the exact test

A study by Robinson et al. [37] demonstrated that the exact test is the best method when the

sample size is small, and results in achieving the nominal FDR compared to other methods

such as the Wald test, the Likelihood Ratio test (LRT) and the asymptotic normal score test. In

order to compare these normalization methods, we chose a negative binomial distribution to

model and the exact test to identify DEGs for the majority of the methods using edgeR. The

detailed descriptions are available in S1 Appendix: Statistical model and the exact test.

The negative binomial (NB) distribution. Briefly, Y* NB(u,ф) is a random variable to

model the observed read counts in RNA-seq data, where Y has mean u and dispersion ф. Its

probability mass function (pmf), the expected value and the variance of Y are correspondingly:

fY yju;фð Þ ¼ PðY ¼ yÞ ¼
y þ ф� 1

� 1

y

 !
1

uфþ 1

� �ф� 1

1 �
1

uфþ 1

� �y

;

EðYÞ ¼ u and VarðY Þ ¼ uþ u2ф: ð5Þ

The above NB model utilizes the conventional parameterization called “NB2” [38]. The dis-

persion parameter ф in Eq (5) measures the extra variance of Y that a Poisson (u) distribution

fails to describe. As ф goes to zero (ф!0), the variance of Y converges to u in probability and

RNA-seq normalization methods
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the distribution of f(y) in (5) converges to the Poisson(u) distribution which was shown by

Cameron and Trivedi [39].

Datasets

1. MAQC2 and MAQC3 datasets. MAQC2 contains two RNA-seq datasets from the

Microarray Quality Control Project (MAQC) [40] with two types of biological samples:

human brain reference RNA (hbr) and universal human reference RNA (uhr). The first dataset

consisted of read length of 36bp and was downloaded from the NCBI sequence read archive

(SRA) with ID SRX016359 (hbr) and SRX016367 (uhr) [18]. The second dataset (GEO series

GSE24284) consisted of the 50bp hbr (sample ID: GSM597210) and uhr (sample ID:

GSM597211) RNA samples [41].

GSE49712_HTSeq.txt.gz for MAQC3 raw read counts with five technical replicates in two

biological conditions (UHR and HBR) was downloaded from GEO (GSE49712) [20]. Four

replicate libraries for two conditions were prepared by one person and the remaining library

was prepared by Illumina. A single HiSeq2000 instrument was used for sequencing all the

samples.

2. TaqMan qRT-PCR data. PCR validation of the uhr sample from GSM12638 to

GSM129641 and the hbr sample from GSM129642 to GSM129645 were downloaded from

GEO (series GSE5350). These MAQC data (uhr and hbr) contain a total of 1044 genes assayed

and validated using TaqMan qRT-PCR with 4 technical replicates [18,41]. Thirty-seven of the

1,044 genes were marked with a Flag Detection “A” in all samples and were considered as true

negative (TN) genes. These additional genes were not filtered out as in recent studies of the

MAQC validation datasets [42] and 1028 of the 1044 genes have either a unique Ensembl gene

Identifier (ID) or Entrez gene ID used for further analysis of the true positive and true negative

genes following Bullard et al.’s study [18]. Briefly, a POLR2A-normalized cycle number for

each gene and each condition is called ΔCt. The value xgik of each gene g in replicate i and con-

dition k is obtained via log2(ΔCt)/log2(e). The log2 fold change is defined as the mean difference

of each gene between the hbr and uhr conditions (�xg;hbr � �xg;uhr), where the uhr is typically

served as a reference. The genes with |log2 FC|�2 were considered DEGs and the genes with |

log2 FC|<0.2 were considered as non-DEGs. Among the 1028 genes, 398 genes with 390

unique gene names fall into the true positive (TP) genes and 178 genes with 151 unique gene

names fall into the true negative (TN) genes. The remaining set of genes lie in a region set to

be indeterminate as far as DEG is concerned.

3. Two human breast cancer RNA-seq datasets. Dataset one is used for simulation con-

taining twenty-four normal tissues and 25 early breast neoplasia (EN) on formalin-fixed paraf-

fin-embedded tissue were sequenced at 3’-end enriched RNA-seq libraries [43].The mapped

raw counts of 49 samples with an average of 7 million reads per sample were downloaded from

NCBI GEO (series GSE47462). The dataset two contains 42 human estrogen receptor positive

(ER+) and HER2 negative breast cancer primary tumors and 30 uninvolved breast tissues sam-

ples adjacent to ER+ primary tumors. The RNA-seq raw data files with a sequence read archive

(SRA) were downloaded from NCBI GEO (GSE58135).

4. Simulated data. Simulated data was based on the human breast cancer RNA-seq data-

set one with two conditions: 24 normal tissues and 25 early neoplasia tissues. The simulation

model is similar to the one described in Dillies’s study [23]. Let G be the total number of genes

(G = 15,000), n = 20 be the total number of samples in two conditions (k = A, B), let yigk be the

count for gene g in sample i and condition k with a Poisson distribution: yigk ∽ Pois(λgk). The

parameter λgk is estimated from the mean reads per gene across samples from this human

breast cancer RNA-seq dataset. Under this model, the null hypothesis H0 (λgA = λgB) means the

RNA-seq normalization methods
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expression values of gene g between conditions A and B are not significantly different, and the

alternative hypothesis H1 (λgA 6¼ λgB) means the gene expression values are significantly differ-

ent between the two conditions. Let p0 and p1 be the proportion of genes generated underH0

andH1 among the G genes, respectively. The data is simulated with 15,000 genes and p1 is 10%

corresponding to 1,500 genes. UnderH0, the parameter λgA in the gene g of condition A and

the parameter λgB in the gene g of condition B were estimated from the breast cancer raw

counts corresponding to the mean raw counts of each gene (λgA = λgB); while underH1 the

parameters λgA and λgB in the gene g and condition A and B were equal to (1 + α)λgA for 750

downregulated genes and (1 + α)λgB for 750 upregulated genes, respectively, where α is defined

as 0.5 and 1. To assess the impact of non-equivalent library sizes, we multiplied yigk by a size

factor Si per sample of the condition, which is equal to |εi|, where εi* N(1,1). The number of

simulation was chosen as 13 due to the small variation of the AUC values from all the normali-

zation methods per simulation.

Sequence mapping and extraction of gene counts

The MAQC2 RNA-seq libraries with two technical replicates of each sample (uhr and hbr)

and the human ER+ breast cancer dataset two were mapped to the human hg19 reference

genome using tophat2 (v2.0.13) with Bowtie version (2.2.3.0) and the parameter: ‘no-coverage-

search’ [26,31]. For the FPKM normalization method, the aligned RNA-seq reads were assem-

bled according to the Homo_sapiens.GRCh37.74.gtf annotation file and normalized by FPKM

using Cufflinks-Cuffnorm (v2.2.1). For the other normalization methods, the aligned RNA-seq

reads were sorted by samtools (v0.1.19) and the read count matrix for each replicate of the con-

dition was generated using HTSeq-scripts-count (version 2.7) and provided in S1 Datasets. In

addition, for the human ER+ breast cancer dataset, the read counts from two human ER

+ breast cancer samples and one control sample failed to be extracted using HTSeq-script-

count. Therefore, only 40 ER+ breast cancer and 29 control samples were used for this study.

Software packages for detecting DEGs in normalization methods

The normalization methods and the software packages for detecting DEGs between conditions

using MAQC datasets and the human ER+ breast cancer dataset are summarized in Table 1.

Here, we give a brief description of the software packages used for the normalization and sta-

tistical tests in the present work. edgeR (v3.8.6) [25] was used to perform TMM normalization.

It uses the empirical Bayes estimation and the exact test with a negative binomial distribution.

For this study, edgeR was used to detect DEGs for all the seven normalization methods includ-

ing TC, Med, UQ, FQ, TMM, Med-pgQ2 and UQ-pgQ2. DESeq2 [28], a successor to the

Table 1. Summary of normalization methods and software packages on different datasets for DEGs analysis.

Normalization methods Datasets Statistical test Software packages

TC MAQC and simulated data Exact test edgeR(v3.8.6)

Med MAQC and simulated data Exact test edgeR (v3.8.6)

UQ MAQC and simulated data Exact test edgeR (v3.8.6)

FQ MAQC and simulated data Exact test edgeR (v3.8.6)

TMM MAQC and simulated data Exact test edgeR (v3.8.6)

Med-pgQ2 MAQC and simulated data Exact test edgeR (v3.8.6)

UQ-pgQ2 MAQC and simulated data Exact test edgeR (v3.8.6)

DESeq MAQC and simulated data Wald test DESeq2 (v1.6.3)

FPKM MAQC t-test Cufflinks-cuffdiff2 (v2.2.1)

https://doi.org/10.1371/journal.pone.0176185.t001
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DESeqmethod [27], shows higher sensitivity and precision compared to DESeq package due

to new features using shrinkage estimators for dispersion and fold changes. DESeq2 also offers

a scaling size factor procedure as DESeq to perform normalization which is based on a median

of ratio method. Cufflinks-Cuffnorm (v2.2.1) with a default parameter setting was used to per-

form FPKM normalization. Cufflinks-Cuffdiff2 was used to perform DEGs analysis at both the

transcript and gene level using a beta negative binomial model and the t-test for the fragment

counts [26]. In this study, we used the gene level results for the comparison with the other nor-

malization methods. With the aid of edgeR, we set the normalization methods to “none” and

selected the exact test with a tag-wise dispersion for each gene to perform DEGs analysis for

the normalization methods: TC, Med, UQ, FQ, Med-pgQ2 and UQ-pgQ2. The normalized

MAQC2 data from Med-pgQ2, UQ-pgQ2, DESeq and TMM-edgeR and DEGs analysis from

these methods are also provided in Supporting Information S2 Datasets–S5 Datasets. More-

over, these normalization methods are written in R (v3.1.3) with the source codes available in

S1 File (.R).

The AUC, standard error and z-statistic test for MAQC data

The area under the ROC curve (AUC) was calculated using Algorithm 2 by Fawcett (2006) [44].

The estimated standard error (se) and a two-sample one-sided z-test were computed for each

AUC value in MAQC data using Hanley J.A. et al. method (1982) [45]. Briefly, let A be the area

under ROC curve; ŝe and sd be the estimated standard error and standard deviation, respectively;

na and nn be the total number of true positive genes and false positive genes, respectively. Then,

ŝe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1=ðna� nnÞ

p
, where d1 = A × (1 −A) + (na − 1) × (Q1 −A2) + (nn − 1)(Q2 −A2),

Q1 ¼ A
2� A ; Q2 ¼ 2� A2

1þA. The Z statistic was computed as: z ¼ A1� A2ffiffiffiffiffiffiffiffiffiffi
ŝe2

1
þŝe2

2

p and p.value = 1 − Prob(Z

< z). This p-value was used to compare the AUC values between two normalization methods.

The 95% confidence interval estimation of AUC for the simulated data

The 95% CI (confidence interval) for the simulated data was computed based on the normal

approximation, which is defined as CI ¼ �A � 1:96� sdffiffi
n
p , where n = 13 is the number of simula-

tions, �A and sd are the mean and standard deviation of AUC from 13 simulations, respectively.

Results and discussion

In this study, seven different normalization methods were compared to our proposed methods

(Med-pgQ2 and UQ-pgQ2) via the qualitative characteristics of data distributions, intra-con-

dition variation, ROC curve and AUC value as well as PPV, the actual FDR, sensitivity and

specificity given the nominal FDR (� 0.05).

Qualitative characteristics of data distributions

In DEGs analysis, one important assumption of null hypothesis about normalized RNA-seq

data is that the majority of genes are not differentially expressed between conditions. There-

fore, the overall distributions across genes are expected to be similar. Boxplots of non-normal-

ized log2 expression of raw read counts in Fig 1A shows larger distributional difference

between the replicate libraries for MAQC2 data and normalization methods are needed to

make the sample distributions more similar. Although all the normalization methods stabilized

the distributions across two replicates for MAQC2 data, only our methods further can shrink

the gene expression values towards the median per sample (Fig 1A).
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It is important to compare the intra-condition variation among different normalization

methods to prevent over correction. Fig 1B from MAQC2 data illustrates that little difference

of the intra-condition variation is observed between our methods and others (DESeq, TMM,

TC, Med and UQ), which indicates that scaling does not change the coefficient of variation.

Moreover, we observed that FQ and FPKM methods greatly increased the intra-condition var-

iation compared to the un-normalized data and other normalization methods (Fig 1B). This

observation was also reported by Dillies’ study in 2012.

We further analyzed the human ER+ breast cancer RNA-seq dataset with 40 ER+ breast

cancer samples and 29 controls and MAQC3 with five technical replicates. For the human

breast cancer datasets, similar patterns for most of the normalization methods from the box-

plots (S1 and S2 Figs) are observed compared to MAQC2 in Fig 1. However, the intra-condi-

tion variation of the median across replicates for all the methods (S2 Fig) is close to 0.5, which

is much higher than the value below 0.1 for all the methods obtained from the MAQC2 data

(Fig 1B). This is expected because the breast cancer data contain biological replicates. We

found that TC normalization failed in correcting the raw read counts for some of the replicates

with a higher distributional difference within conditional replicates (S1 Fig). The failed TC

normalization was also observed by Dillies’ study in 2012 using mouse miRNA-seq data. Fur-

thermore, we also discovered that the inability of FQ normalization to minimize the intra-con-

dition variation due to the small sample size from MAQC2 was diminished for the human ER

+ breast cancer datasets with the sample size of 29 in control and 40 in ER+ breast cancer sam-

ples (S2 Fig).

For MAQC3 data, the boxplots (S3 Fig) show that sample distributions normalized by all

methods are very similar, which is expected due to technical replicates with very small varia-

tion. These data with less variation after scaling normalization suggest that a further per gene

Fig 1. Comparison of nine normalization methods. (A) Illustrated are boxplots of log2 (counts+1) for

MAQC data with two replicates in two conditions (uhr and hbr). The samples in hbr and uhr conditions are in

green and red, respectively. Med-pgQ2 and UQ-pgQ2 are our proposed methods. (B) Illustrated are boxplots

of the intra-condition coefficient of variation (uhr and hbr), respectively.

https://doi.org/10.1371/journal.pone.0176185.g001
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normalization may not show a great advantage other than shrinking the data toward the

median across samples.

RMSD between qRT-PCR and RNA-seq log2 fold change computed by

each method

To evaluate the accuracy of normalization methods, we used the MAQC2 and qRT-PCR data

to calculate RMSD (root-mean-square-deviation) correlation between the log2 fold changes

generated from statistical tests for each normalization method (Table 1) and the log2 fold

changes from qRT-PCR. Fig 2 illustrates that almost all the normalization methods have good

concordance to match the qRT-PCR data with RMSD accuracy less than 1.6 except Cufflinks-
Cuffdiff2 with a slightly higher RMSD value (1.77).

Analysis of differentially expressed genes evaluated by ROC curves and

AUC values

The ROC curve in Fig 3 is depicted by the relationship between the sensitivity and specificity

rate based on MAQC2 data. The AUC value is calculated in the full range of false positive rate

(0� FPR�1). Med-pgQ2 and UQ-pgQ2 achieve slightly higher AUC values compared to the

others, which reflects the overall performance of detection of DEGs by achieving slightly

higher sensitivity and specificity. With a false positive rate� 0.10, the ROC cures reveal our

methods perform slightly better. However, with a higher stringent false positive rate cutoff

(< 0.10), the majority of the methods perform similarly. The quantile global normalization

methods including TC, Med, UQ and FQ perform less favorable for this data. The standard

error corresponding to the AUC value was also calculated using the equation from Hanley

et al. in 1982 [45].

In addition, we further compared the AUC value from one of our methods (Med-pgQ2) to

the others using a two-sample one-sided z-test. Table 2 lists the results of the p-values for each

method. The results demonstrate statistically significant evidence that the AUC value in Med-

pgQ2 is slightly larger than every other method except UQ-pgQ2.

Analysis of PPV, actual FDR, sensitivity, specificity, and the number of

true positive and false positive genes

In order to identify the major difference among all the normalization methods for detection of

DEGs in MAQC2 and MAQC3 data, we calculated the number of true positive (TP) genes and

false positive (FP) genes given the nominal FDR� 0.05. We also calculated the positive predic-

tive value (PPV), the actual false discovery rate (FDR), sensitivity and specificity for both data-

sets (Table 3). The results from MAQC2 data suggest that Med-pgQ2 and UQ-pgQ2 can

achieve better specificity rate above 85% than other methods. While TMM-edgeR has the high-

est sensitivity rate (96.7%), its specificity rate (35%) is low. The performance of DESeq normal-

ization with the sensitivity and specificity rate at 93.1% and 60.9% correspondingly are

between our methods and TMM. The two proposed methods also achieve the lower actual

FDR (< 0.1) compared to others. However, the results from MAQC3 with small variation in

Table 3 show that all the methods achieve very high sensitivity rate above 98%, but the specific-

ity for all the methods is lower than 42% and the actual FDR is higher than 0.15. The two new

methods for these data perform slightly better in term of sensitivity, specificity and the actual

FDR.

We further analyzed the DEGs detected only by the top performers such as DESeq, TMM

and our methods using different quartile cutoff of mean expression of raw read counts from all
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genes given the nominal FDR� 0.05. The results for the actual FDR, sensitivity and specificity

are listed in Table 4. With the quantile cutoff at 75% by keeping the bottom reads in the analy-

sis, the DESeq normalization has slightly better values in term of the actual FDR and specificity

rate than other methods. TMM is least favorable in this case. With the quantile cutoff at 50%,

DESeq outperforms others. With the quantile cutoff at 25%, TMM shows better performance

than others and DESeq is relatively conserved. However, since there are a fewer genes listed as

true positive and true negative genes at the quantile cutoff at 25% in MAQC2 data, this conclu-

sion is not arbitrary. However, Table 4 suggests that our proposed methods (Med-pgQ2 and

UQ-pgQ2) at the 100% quantile can achieve a sensitivity and specificity rate higher than 92%

and 85% with the actual FDR less than 0.06, respectively. This study based on the MAQC2

data suggests our methods can improve specificity rate and the actual FDR for highly expressed

genes. Based on the overall performance, it clearly indicates our methods might be the better

choice for this kind of data.

To address the question of how gene-wise normalization methods (Med-pgQ and UQ-

pgQ2) improve specificity while maintaining good detection power for highly expressed genes,

Fig 2. RMSD (root-mean-square deviation) between the log2 expression fold changes of MAQC2 and

qRT-PCR. Illustrated is the RMSD between the log2 fold changes computed from DEGs based on different

methods and the values computed from qRT-PCR. FPKM (yellow) has the least similarity while DESeq

normalization (brown) has the highest one.

https://doi.org/10.1371/journal.pone.0176185.g002
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we further analyzed gene-wise dispersion estimated after UQ and UQ-pgQ2 normalization

with the aid of edgeR (Supplemental S4 Fig). Subsequently, gene-wise variance was estimated

on the basis of the mean and estimated dispersion assuming a negative binomial distribution.

We examined the coefficient of variation (CV) in two sets of genes based on a cutoff value of

the mean read count (<100 vs.�100) from the UQ method. Genes with mean read count<

100 after UQ normalization were considered lowly expressed while the other genes were con-

sidered highly expressed. Supplemental S5 Fig shows that the coefficient of variation for highly

Fig 3. ROC curve and AUC values from MAQC2 data. The ROC curves and AUC values (inset) for

evaluating the performance of the nine normalization methods were computed using MAQC2 with two

conditions (uhr and hbr). Our proposed methods, Med-pgQ2 and UQ-pgQ2 (blue and grey, respectively)

performed slightly better.

https://doi.org/10.1371/journal.pone.0176185.g003

Table 2. A one-sided of z-test on AUC values from Fig 3 comparing Med-pgQ2 to other methods.

UQ-pgQ2 FPKM TMM DESeq FQ TC

z-statistics 0.7554 2.0082 2.0096 2.5826 2.6861 2.7517

p-value* 0.2250 0.0223 0.02224 0.0049 0.0036 0.0030

*p-values were computed using a one-sided of z-statistic test on the AUC values between Med-pgQ2 and one of the other methods listed in Table 2.

https://doi.org/10.1371/journal.pone.0176185.t002

RNA-seq normalization methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0176185 May 1, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0176185.g003
https://doi.org/10.1371/journal.pone.0176185.t002
https://doi.org/10.1371/journal.pone.0176185


expressed genes after gene-wise normalization is increased via increasing the gene-wise disper-

sion and decreasing the per-gene mean read count compared to UQ normalization. This sug-

gests that per gene normalization is more conservative for highly expressed genes, which at

least partially explains our observation of improved specificity for these genes (Table 4). On

the other hand, the coefficient of variation in lowly expressed genes after gene-wise normaliza-

tion is slightly decreased compared to UQ normalization (S4 Fig, bottom). This suggests that

per gene normalization is less conservative for lowly expressed genes explaining our observa-

tion that our gene-wise normalization methods slightly improve sensitivity in this case

(Table 4).

Evaluation of normalization methods for detecting DEGs using different

fold changes

The simulated data with 10 replicates and two conditions with different fold changes were

used to compare our methods (Med-pgQ2 and UQ-pgQ2) based on the ROC curves. A total of

1,500 genes with a fold change (FC) of 1.5 and 2 are considered as true positive genes and the

remaining genes (13,500) are considered as true negative genes. Fig 4A shows that the ROC

curves for a FC of 1.5 in our methods have an average AUC value of 0.945 compared to others

with the AUC value less than 0.924. Fig 4B shows that the ROC curves for a FC of 2 in our

methods have the average AUC values greater than 0.980 compared to others with AUC values

less than 0.969. However, the difference in the ROC curve and AUC values between our meth-

ods and others decreases as the fold change increases.

Table 3. Analysis of DEGs for MAQC2 and MAQC3 given a nominal FDR� 0.05.

Datasets Methods # of TP genes # of FP genes Actual FDR PPV SR SPR

MAQC2 DESeq 363 59 .140 .860 .931 .609

TMM 377 97 .204 .797 .967 .358

FQ 377 100 .210 .790 .967 .338

TC, Med & UQ 376 101 .212 .788 .964 .331

Med-pgQ2 362 22 .057 .942 .928 .854

UQ-pgQ2 364 21 .055 .945 .933 .861

MAQC3 DESeq 385 105 .214 .786 .990 .271

TMM 385 98 .203 .797 .990 .319

TC, Med & UQ 384 99 .204 .795 .987 .313

Med-pgQ2 & UQ-pgQ2 387 83 .177 .823 .995 .424

The number of true positive (TP) and the false positive (FP) genes, the actual false discovery rate (FDR), the positive predictive value (PPV), the sensitivity

rate (SR) and specificity rate (SPR).

https://doi.org/10.1371/journal.pone.0176185.t003

Table 4. The actual FDR, sensitivity and specificity rate from MAQC2 data given a nominal FDR� 0.05.

Expression quantile cutoff DESeq TMM-edgeR Med-pgQ2 UQ-pgQ2

Actual FDR SR SPR Actual FDR SR SPR Actual FDR SR SPR Actual FDR SR SPR

100%(total) 0.140 0.931 0.609 0.205 0.967 0.358 0.057 0.928 0.854 0.055 0.933 0.861

75% 0.069 0.861 0.806 0.147 0.931 0.516 0.084 0.877 0.758 0.077 0.898 0.774

50% 0.091 0.476 0.926 0.184 0.738 0.740 0.304 0.762 0.482 0.292 0.810 0.482

25% 0.000 0.000 1.000 0.333 0.333 0.917 0.667 0.667 0.333 0.692 0.667 0.250

The sensitivity rate (SR) and specificity rate (SPR) for DEGs analysis by the top methods at the different-quartile cutoffs.

https://doi.org/10.1371/journal.pone.0176185.t004
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Evaluation of normalization methods for detecting DEGs with biological

replicates

We investigated the impact of biological replicates on the performance of normalization meth-

ods. We randomly sampled four and six replicates from each of 13 simulated datasets with 10

replicates used in Fig 4B, respectively. We sampled twice from one of 13 simulated data in Fig

4B yielding a total of 14 simulations. The mean AUC and standard deviation (SD) of each nor-

malization method were calculated using 14 simulations instead of 13 simulations. The results

from each simulation were consistent with a small standard deviation.

As expected, increasing the number of biological replicates yields a higher statistical power

for detection of DEGs (Fig 5). Under the control of a very small false positive rate, the perfor-

mance of all the methods (Med-pgQ2 and UQ-pgQ2) is similar. Fig 5 demonstrates that bio-

logical replicates are very important for RNA-seq data analysis in order to find true biological

difference between conditions. Our normalization methods would be a good choice for achiev-

ing a slightly higher sensitivity rate at the false positive rate cutoff greater than 0.1. However, a

closer examination for FPR cutoff less than 0.1 indicated that when the number of replicates is

smaller (4 instead of 6), the other methods actually perform better than our proposed methods

at a FPR cutoff less than 0.1 (Fig 5A). This suggests that per gene normalization does not

Fig 4. ROC curve and AUC values from the simulated data at a fold-change of 1.5 and 2. Illustrated are

the ROC curves for detecting 1, 500 DEGs (750 up and 750 dow-regulated) using a fold change = 1.5 (A) and

a fold change = 2 (B) with an unequal library size. Calculated AUC values are in the inset. The simulated data,

containing a total of 15,000 genes in two conditions and 10 replicates per condition, was used for evaluating

the performance of eight normalization methods. Our methods (UQ-pgQ2 and Med-pgQ2) are in cyan and

blue, respectively.

https://doi.org/10.1371/journal.pone.0176185.g004
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perform well for all circumstances. Therefore, caution is needed when choosing an optimal

normalization method by taking into consideration the number of different replicates and

their variation.

Evaluation of Med-pgQ2 and UQ-pgQ2 methods for detecting DEGs in

different multiplication factors (50, 100, 200, 500, 1000 and 1 million)

Like RPKM and FPKM, we chose to use the small multiplication factor of 100 for our proposed

per gene and per 100 normalization for this study. We also chose different multiplication fac-

tors such as 50, 200, 500, 1000 and 1 million to perform per gene normalization. We per-

formed DEGs analysis using Med-pgQ2 and UQ-pgQ2 with these multiplication factors. The

comparison results based on DEGs analysis are shown in S1 Table. We compared the impact

of multiplication factors on PPV, the actual FDR, sensitivity and specificity. The values of

PPV, the actual FDR, a sensitivity and specificity rate with multiplication factor� 100 (S1

Table) are more than 94%, less than 0.06, more than 92% and more than 85%, respectively. Lit-

tle difference among them is observed except with the multiplication factor of 50 having a

slightly higher sensitivity rate with a trade-off of a slightly higher actual FDR and a lower speci-

ficity rate. These results suggest that the choice of multiplication factors with a value greater

than or equal to 100 has no difference on DEG analysis results.

Fig 5. ROC curve and AUC values from the simulated data with 4 and 6 replicates in each condition.

Illustrated are the ROC curves and AUC values (inset) in analyzing the impact of biological replicates on the

performance of normalization methods. We used the simulated data with four biological replicates (A) and six

biological replicates (B), which contain 1,500 DEGs with 2 FC difference between two conditions. Our

methods (UQ-pgQ2 and Med-pgQ2) are in cyan and blue, respectively.

https://doi.org/10.1371/journal.pone.0176185.g005
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Limitations

Our study has some limitations. First, the data normalized by med-pgQ2 and UQ-pgQ2 is

restricted for DEGs analysis between groups and not for other purpose such as identifying

highly or lowly expressed genes as well as comparing gene A to gene B expression levels within

a sample due to the potential change of gene order in a sample after normalization. Second, a

simulation data using a Poisson distribution based on real RNA-seq data with additional varia-

tion generated from a normal distribution was used for the DEG analysis. We do acknowledge

that the lack of simulated data based on the NB distribution is a limitation to the study. How-

ever, inclusion of two real data sets (MAQC2 and MAQC3) offsets this limitation to an extent,

and the combination of the simulated and real data provides fairly comprehensive and consis-

tent answers. Finally, on one hand, the exact test was used to identify DEGs implemented by

edgeR. Although it is recommended for DEG analysis of RNA-seq data in two groups with a

small sample size, we think that evaluating the effect of normalization on more complicated

study designs beyond two-group comparisons is a worthwhile and interesting endeavor, and

we may consider this as potential future work. On the other hand, although a t-test is not com-

monly used for testing hypothesis in RNA-seq data, it is used for testing DEGs with small sam-

ple size in the cDNA Microarray data. Therefore, we need to mention here that a t-test is

invariant to linear transformations and thus would be unaffected by the per-gene normaliza-

tion outlined here.

Summary and conclusion

Several studies have previously compared normalization methods (TC, Med, UQ, FQ, DESeq,

TMM, FPKM and RPKM). TC, FPKM, RPKM and FQ are not suggested for use in DEG analy-

sis due to multiple issues such as lowly expressed gene issue for TC, length correction bias for

FPKM and RPKM, and potentially increasing the intra-condition variation by forcing all the

samples to have identical distributions for FQ [18,20,22,23]. One study has reported that UQ

normalization failed to remove excessive variation from some of the samples [33]. DESeq and

TMM-edgeR are in turn the only choices due to better performance compared to other exist-

ing methods. Although DESeq appears relatively conservative compared to TMM-edgeR

method [36,46], a high false-positive rate particularly for highly expressed genes for both meth-

ods has been observed by several studies [34,42].

In this study, we compared two new normalization methods for RNA-seq data analysis

(Med-pgQ2 and UQ-pgQ2) to the seven existing methods (DESeq, TMM-edgeR, FPKM-Cuff-

Diff, TC, Med, UQ and FQ) based on DEG analysis. The purpose of using per-gene normaliza-

tion approach is to remove technical variations using different chips and allow for comparison

between conditions based on similar count levels [47,48]. The results from this study demon-

strate our proposed methods (Med-pgQ2 and UQ-pgQ2) can achieve a slightly higher value of

AUC for both MAQC2 data and the simulated data at the false positive rate of 0.10, which

reflects improving the overall performance with the detection power under the control of the

low FDR compared to other normalization methods. More importantly, the results of DEG

analysis from MAQC2 data with the different quantile cutoff values given a nominal FDR�

0.05, demonstrate our methods can decrease the false positive rate for highly expressed genes

with high read counts giving the result of a specificity rate of greater than 85% without loss of a

detection power (> 92%), while the other methods (i.e., DESeq and TMM-edgeR) have a spec-

ificity rate of less than 70%. Our methods may improve the sensitivity and detect more DEGs

for lowly expressed genes with low read counts. However, given the improvement in the sensi-

tivity for low read-count genes, there is a trade-off of a higher false positive rate in this case

compared to DESeq and TMM-edgeR. Furthermore, the overall results from MAQC2 data
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also show the actual FDR from our methods is less than 0.06 while the actual FDR from

DESeq, TMM-edgeR and others are larger than 0.10. This finding is consistent with the report

by Kvam et al. in 2012. In their study they compared DESeq, edgeR, baySeq and TSPM (two-

stage Poisson model) methods via a simulated data and reported the FDR in these methods are

not controlled well and the actual FDR is larger than the observed FDR [34]. Moreover, we dis-

covered DESeq and TMM have better overall performance than TC, Med, UQ and FQ, which

is also consistent with previous studies. In addition, based on the quantile cutoff analysis of

DEGs in MAQC2 data, we observed that DESeq is a good choice for moderately expressed

genes at the quantile cutoff of 75%, but it is too conservative for lowly expressed genes at quan-

tile cutoffs below 50%. However, TMM method seems to have better control of the false posi-

tive rate for the lowly expressed genes. In addition, the simulated study with four replicates

shows that DESeq and TMM-edgeR methods perform better than our methods at the FPR cut-

off less than 0.05. These new findings may give a better idea for the choice of different normali-

zation methods.

There are several specific potential applications of our normalization methods worth men-

tioning. First, our methods may be useful for analyzing microRNA sequencing (miRNA-seq)

data. Since miRNA expression is usually low compared to the mRNA with a ratio range

0.1~1.3% of total RNA in rat and mouse species, and 0.5~9.2% of total RNA in human sam-

ples, the data might be skewed to the low read counts. Therefore, per gene normalization may

increase the sensitivity with a relative better specificity for detection of differentially expressed

miRNAs [49,50]. However, a comparison study of the performance for analyzing miRNA-seq

between our methods and TMM-edgeR is needed to make definitive conclusions. Second, our

methods are more universally applicable than using control-gene normalization in removing

technical variations since it is hard to identify control genes such as housekeeping genes that

remain at the same expression level regardless of the experimental conditions [23]. Third,

given the importance of downstream analysis on RNA-seq data with a choice of normalization

methods, our methods might be useful, particularly in light of emerging single-cell RNA-seq

data and meta-analysis of RNA-seq data which have highly variable properties.

Finally, the simulated data results show that increasing the number of the biological repli-

cates results in higher ROC curves and AUC values corresponding to higher detection power

and lower false positive rate. However, due to the cost of RNA-seq data, the sample size of bio-

logical replicates was not considered by some of the earlier researchers using NGS technolo-

gies. One study by Hansen et al. in 2011 summarized a large number of published RNA-seq

studies with a table showing that most of them had only one or a few biological replicates [51].

The thousands of DEGs identified from these RNA-seq data lack confidence and require fur-

ther validation. Although laboratory qRT-PCR and Western blotting methods can be used to

validate these identified DEGs, it is very tedious and almost impossible to validate several thou-

sand DEGs. Our per gene normalization methods may be useful for combining the single or a

few replicates of RNA-seq data from different experiments with the same conditions to

increase the power for DEGs analysis.

Like many normalization and pre-processing procedures, our methods involve several

choices of constants which we evaluated empirically. Primarily, in the 2nd step of our methods

we chose to scale the median across samples to be per 100 reads instead of per kilobase or per

million reads which was used by RPKM or FPKM. Our justification for this choice of a scaling

constant in S1 Table shows little difference of PPV, the actual FDR, specificity and sensitivity

for multiplication factors� 100 from DEGs analysis, and we picked the smallest scaling factor

possible for which this was true. Secondly, a small positive value (such as 0.1 of one read) is

added in all gene counts to avoid undefined fold changes in DEGs due to zero counts possible

in one condition. This ensures no missing value for DEGs analysis and reduces the variability
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at low count values [52]. To study the robustness of results in the analysis of MAQC2 data, we

considered different additive values (0.05, 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5). The results in S2

Table (Supplementary Information) suggest that the FDR and sensitivity rate monotonically

increased and the specificity rate monotonically decreased as increase in the additive values.

Small positive values such as 0.05, 0.10 and 0.20 are recommended as FDR is reasonably main-

tained (less than 10%) with sensitivity and specificity rates of at least 80%. Furthermore, it is

worth mentioning that preprocessing RNA-seq data such as prefiltering zero read counts

across groups or adding a small positive number to all gene read counts is an option in RNA-

seq data analysis. For example, the procedure to prefilter zero read counts may not avoid filter-

ing out the lowly expressed genes which may be of interest by some researchers. Therefore, the

choice of preprocessing the data will vary according to the experimental study.

Taken together, with the regards to all the discussed limitations, we think our proposed

gene-wise normalization methods (Med-pgQ2 and UQ-pgQ2) might be a good choice for the

skewed RNA-seq data with high variation via improving the false positive rate and maintaining

a good detection power for DEGs analysis of RNA-seq data compared to the other normaliza-

tion methods.

Supporting information

S1 Fig. Data distribution from seven normalization methods using human ER+ breast can-

cer datasets.

(PDF)
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