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Abstract: Individualized long-term management of chronic pathologies remains an elusive goal
despite recent progress in drug formulation and implantable devices. The lack of advanced systems
for therapeutic administration that can be controlled and tailored based on patient needs precludes
optimal management of pathologies, such as diabetes, hypertension, rheumatoid arthritis. Several
triggered systems for drug delivery have been demonstrated. However, they mostly rely on continuous
external stimuli, which hinder their application for long-term treatments. In this work, we investigated
a silicon nanofluidic technology that incorporates a gate electrode and examined its ability to achieve
reproducible control of drug release. Silicon carbide (SiC) was used to coat the membrane surface,
including nanochannels, ensuring biocompatibility and chemical inertness for long-term stability
for in vivo deployment. With the application of a small voltage (≤ 3 V DC) to the buried polysilicon
electrode, we showed in vitro repeatable modulation of membrane permeability of two model
analytes—methotrexate and quantum dots. Methotrexate is a first-line therapeutic approach for
rheumatoid arthritis; quantum dots represent multi-functional nanoparticles with broad applicability
from bio-labeling to targeted drug delivery. Importantly, SiC coating demonstrated optimal properties
as a gate dielectric, which rendered our membrane relevant for multiple applications beyond drug
delivery, such as lab on a chip and micro total analysis systems (µTAS).

Keywords: electrostatic gating; nanofluidic diffusion; controlled drug release; silicon membrane;
smart drug delivery

1. Introduction

Chronic pathologies affect nearly half of the population worldwide [1,2] and represent one of
the leading causes of death and disability [3]. Management of chronic conditions is challenged by
co-morbidities [4], poor adherence to treatment [5], and a lack of therapeutic technologies suitable
to address the complexity of the disease [6]. Long-acting controlled therapeutic administration
represents a promising strategy for medical conditions requiring repeated daily dosing [7,8].
In view of this, long-acting platforms for sustained drug release have been developed, leading to
significant improvements in the management of conditions, such as hormone deficiency and infectious
diseases [9–11]. However, the pathophysiology of most chronic diseases is determined by circadian
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biological cycles [12], which have a significant impact on the efficacy of treatment and associated adverse
effects [13]. This is the case for pathologies, such as diabetes and metabolic disorders [14], hypertension,
psychiatric and neurodegenerative conditions [15], rheumatoid arthritis [16], and chronic pain [17],
to name a few, where the timing of drug administration is key to elicit the intended therapeutic effect.

Advanced technologies enabling personalized adjustments of therapeutic administration, both in
time and dose, represent a desirable but unmet clinical need [18,19]. Ideally, these technologies should
incorporate a drug delivery mechanism that can be rapidly and easily tuned to release the required
dosage, at the right time, without requiring continuous external stimuli. Further, they should allow
for pre-programmed dosing schedules as well as remote control capabilities, to enable healthcare
providers to adjust medication through telemedicine approaches [20]. Devices with such capabilities
could eradicate treatment compliance issues and dramatically improve the therapeutic index and the
quality of life of patients, while substantially reducing healthcare expenditure.

Current approaches developed for controlled drug administration are based on modulation of
permeability of membranes via sustained external stimuli. These systems mostly rely on polymeric
membrane architectures and achieve changes in pore size and conformation via temperature variation
triggered by a magnetic field [21], near-infrared irradiation [22–24], or ultrasound [25]. Other devices use
a magnetic field to reversibly or irreversibly obstruct the pores of a membrane using microparticles [26]
or low melting temperature polymers [27]. Albeit promising, these strategies are limited by the
need for continuous external activation and associated cumbersome external equipment. Electrical
actuation offers a solution to these limitations, enabling control via miniaturized circuitry and low
energy radio-frequency (RF) communications. In this context, various technologies have been created,
either integrating gate electrodes [28] or polypyrrole (PPy) [29,30] on anodic aluminum oxide (AAO)
membranes. However, polydispersity in pore size common to AAO membranes represents a limitation
to achieve fine control of drug release [28,31].

In this study, we investigated the performance of a silicon nanofluidic membrane that uses
electrostatic gating [32] to modulate the transport of charged molecules by modifying nanochannel
permeability. Microfabricated using standard semiconductor manufacturing techniques, this membrane
features hundreds of thousands of identical slit-nanochannels geometrically distributed across the
membrane surface to maximize porosity while maintaining mechanical integrity. A buried polysilicon
layer extends over the entire nanochannel surface and acts as a single distributed gate electrode.
An outermost layer of biocompatible silicon carbide (SiC) is adopted to bury and insulate the gate
electrode and minimize leakage while providing chemical inertness for applications in vivo or in
contact with biological fluids. SiC insulation properties were studied in comparison with silicon dioxide
(SiO2), the most common gate dielectric material in metal–oxide–semiconductor field-effect transistor
(MOSFET). Further, energy consumption leakage current and gating performance were assessed at
different gate potentials. Finally, we adopted two relevant model analytes—methotrexate and quantum
dots—to assess the in vitro transport modulation performances. Methotrexate represents an important
therapeutic agent commonly used for rheumatoid arthritis [33], whereas quantum dots are adopted
for a variety of biomedical imaging applications as well as drug delivery and theranostics [34,35].
In light of the promising results and the ease of integration within implantable devices, our gated
membrane might constitute a promising step forward in the development of flexible technologies
for the treatment of chronic diseases. Further, our nanofluidic technology could be adopted in other
applications for lab on a chip [36] and micro total analysis systems (µTAS) devices for electrokinetic
separation processes [37], bio-sample sorting and analysis [38], among others.

2. Materials and Methods

2.1. Nanofluidic Membrane Fabrication

Silicon membranes fabrication was performed using standard semiconductor techniques.
The fabrication process is described step-by-step elsewhere [39]. Briefly, a dense array of nanochannels
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(500 nm width, 6 µm length) was obtained by vertically etching via deep reactive ion etching (DRIE)
the device layer (10 µm) of a silicon on insulator (SOI) wafer (total thickness 411 µm). The etching
was stopped at the middle oxide layer (1 µm). The handle wafer (400 µm) on the opposite side of the
SOI was etched using DRIE up to the oxide layer to create a hexagonal pattern of densely packed
circular microchannels. To connect the nanochannels to the microchannels, the buried oxide layer
was etched by a buffered oxide etchant solution (BOE). The resulting nanochannels size (770 nm) was
reduced by three subsequent processes. First, wet thermal oxidation generated a 175 nm layer of SiO2,
and then a 121 nm layer of polycrystalline silicon (poly-Si) was obtained via low-pressure chemical
vapor deposition (LPCVD). Plasma-enhanced chemical vapor deposition (PECVD) was then used for
the silicon carbide coating (SiC, 64 nm). Electrode pads were exposed via selective etching of SiC
via fluorine-based RIE. Wafers were then diced into individual membranes (ADT 7100 Dicing Saw,
Advanced Dicing Technologies, Zhengzhou, China), obtaining individual silicon membranes of 6 mm
× 6 mm × 411 µm. Each membrane featured a total of 278,600 identical slit nanochannels 10 µm long
and 6 µm wide. Nanochannels were arranged in groups of 1400, where each group led to one circular
microchannel on the opposite side of the chip. Finally, microchannels were geometrically organized in
a hexagonal pattern to maximize porosity and structural integrity. In this study, membranes with a
final layer of SiO2 were also used and obtained by wet thermal oxidation of poly-Si.

2.2. Assessment of Membrane Structure

Morphological assessment and characterization of the nanochannel multi-layer structure were
performed via scanning electron microscopy (SEM). A focused ion beam (FIB) system FEI 235
(Nanofabrication facility of the University of Houston, Houston, TX, USA) was used to simultaneously
create nanochannels’ cross-sections and acquire images. Gallium ion milling was performed on the
micromachine parts of the membrane and to expose the nanochannel cross-section. Imaging was then
performed at a 52◦ angle.

2.3. Electrode Connection

Electrical wires (36 AWG, McMaster Carr, Elmhurst, IL, USA) were epoxied to the membrane
pads using a silver-based conductive adhesive (H20E, Epoxy Technology, Inc., Billerica, MA, USA) and
cured at 150 ◦C for 1 h. Electrode insulation was achieved by applying a thin layer of UV epoxy (OG116,
Epoxy Technologies, Inc. Billerica, MA, USA) over the conductive pad and UV-curing (UVP UVL-18
EL Series, Analytik Jena US LLC, Upland, CA, USA) for 120 min. The correct electrode connection
was tested by measuring the resistance between the two connection pads with a Fluke 177 True RMS
Multimeter (Fluke Corporation, Everett, WA, USA).

2.4. Electrochemical Characterization

A custom dual-reservoir polymethyl methacrylate (PMMA) apparatus [39] was employed to
perform electrochemical measurements. Membranes were clamped between the two 2 mL reservoirs of
the testing apparatus, each containing two Ag/AgCl electrodes (64-1313, Harvard Apparatus, Holliston,
MA, USA). All measurements were performed in PBS, except for conductance studies, where KCl
solutions at different concentrations (from 10−6 to 10−1 M) were used. A benchtop electrochemical
tester (CH Instruments, Inc. 660E, Austin, TX, USA) was used in either 3 or 4 electrode configurations.

Impedance was measured with a 4-electrodes configuration. A 50 mV perturbation signal was
applied through the electrochemical analyzer within a frequency window from 10 mH to 10 kH.
The measurements were performed with a superimposed DC voltage in the range −3 V to 3 V in steps
of 1 V. Fittings to a Randles cell model were performed with the CHI 660E software (CH Instruments,
Inc. 660E, Austin, TX, USA).

Leakage current was measured with a 3-electrodes configuration. Voltages were applied using
the CHI 660E between the electrode pad and Ag/AgCl electrodes in solution at a distance of ~1 cm
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from the membrane. Measurements were performed in the −3 V to +3 V range in 1 V steps, and each
step lasted for 120 s, allowing for transient phenomena to resolve and obtain a stable measurement.

For conductance experiments, we employed a 4-electrodes configuration. Measurements were
performed for KCl concentrations from 1 µM to 100 mM from the lower to the highest ionic strength.
Reservoirs were rinsed with deionized water for 1 min, and the solution was replaced after each
measurement. Steps of 400 mV were applied using the CHI 660E from −2 V to 2 V, with 30 s pauses to
exhaust possible transient effects. Conductance measurements were performed with a floating gate,
and the values calculated for each step and averaged.

Cyclic voltammetry measurements were conducted with a 3-electrodes configuration and a
scanning rate of 50 mV/s within the interval −2 V to 2 V. Electrochemical measurements were carried
out on membranes with a final dielectric layer of both SiC and SiO2.

2.5. In Vitro Release Modulation

In vitro release modulation experiments were performed employing a custom dual-reservoir device
described in detail elsewhere [40]. Nanochannel membranes were individually clamped between a
250µL drug reservoir and a UV-Vis transparent macro-cuvette serving as the sink reservoir. Two O-rings
were used to prevent fluid leakage between membranes and the reservoir. Fluid evaporation was
prevented by sealing a drug reservoir with biocompatible silicone plugs (McMaster Carr, Elmhurst,
IL, USA).

Experiments were performed using SiC-coated membranes with ~300 nm nanochannels. To ensure
proper channel wetting, membranes were immersed in isopropyl alcohol for 1 h and then rinsed
three times in deionized H2O. Membranes were then placed overnight in 0.01 × PBS or 1 × PBS in
preparation for quantum dots and methotrexate release, respectively. Sink reservoirs (4.45 mL) were
filled with matching PBS solutions. After fixture assembly, the source reservoir was loaded with either
1 mg/mL 0.01 × PBS solution of quantum dots (CdTe core-type, COOH functionalized, 777978-10MG,
Sigma Aldrich, St. Louis, MO, USA) or 2.5 mg/mL PBS solution of methotrexate (13960, Cayman
Chemical, Ann Arbor, MI, USA). Both molecules possess a negative charge at pH 7.4, with methotrexate
presenting a stable −2q charge (−3.2 × 10−19 C) and quantum dots having a charge that ranges from
−5q to −15q depending on pH and ionic strength [41]. Methotrexate has a molar mass of 454 Da and an
estimated diameter of 1.6 nm [42], while quantum dots have an estimated molar mass of 200 kDa and
an estimated diameter of 4.7 nm [43]. An Ag/AgCl reference electrode (Harvard Apparatus, Holliston,
MA, USA) was used and placed in the source drug reservoir.

Absorbance measurements of every sample were performed at 5 min intervals using a custom
UV-vis spectrophotometer apparatus consisting of a robotic carousel [44] connected to an Agilent
Cary 50 spectrophotometer (Agilent, Technologies, Santa Clara, CA, USA). Sink solution homogeneity
was maintained by constant magnetic stirring (600 rpm). Methotrexate absorbance was measured
at 373 nm, while quantum dots at 240 nm. An electrical potential (0, −1.5, or −3 V DC) was applied
between the Ag/AgCl and the membrane electrodes through a waveform generator (33522A, Keysight
Technologies, Santa Clara, CA, USA). Passive (0 V) and active (−1.5 or −3 V) phases were alternated at
regular intervals. For methotrexate, phases were alternated every 6 h between passive and active (0
and −3 V DC, respectively). For quantum dots, 12 h passive phases were alternated with 8 h of active
applied potential (−1.5 V).

2.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8 (version 8.1.1; GraphPad Software, Inc.,
San Diego, CA, USA). Mean ± SD values were calculated for all results. Further statistical significance
was assessed, adopting the two-tailed paired t-tests (** p ≤ 0.01; **** p ≤ 0.0001). Cumulative releases
were split into phases, and each fitted by a first-order polynomial (MATLAB® polyfit, MathWorks,
Natick, MA, USA). Slopes of cumulative release curves were normalized and displayed as a percentage
of the passive release profiles.
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3. Results and Discussion

3.1. Nanofluidic Membrane

Prior to investigating the electrical performance of the membranes, we sought to analyze the
quality of the membrane fabrication process (Figure 1). Individual silicon membranes were first
visually inspected to assess integrity. Figure 1A shows a stereomicroscope picture of a single membrane,
highlighting the conductive electrode pads at the top right and bottom left edges. The hexagonal
arrangement of microchannels allowed us to maximize packing density without compromising
mechanical robustness. By measuring transmembrane nitrogen gas flow and adopting our predictive
model for nanofluidic gas transport [45], we obtained an indirect measurement for the size of
nanochannels (~300 nm). Sample membranes were further analyzed with SEM imaging. Figure 1B
shows the tightly packed nanochannel arranged in arrays of 19 rows and 96 columns with a horizontal
pitch of 2 µm and a vertical pitch of 10 µm. No macroscopic defects or pinholes were observed across
wafers, which indicated that the fabrication protocol was repeatable.

The analysis of the membrane cross-sections obtained via FIB milling was performed to evaluate
the uniformity of layer deposition at different nanofabrication steps. SiO2 growth via thermal oxidation
resulted in a highly uniform layer along the whole length of the vertical nanochannels (Figure 1C).
Thermal oxidation is a slow process that enables precise control over layer thickness. Thus, it allowed
us to accurately and homogeneously reduce the size of nanochannels. The subsequent deposition
of poly-Si (Figure 1D) was used to create a gate electrode that coats the whole nanofluidic structure
with the objective of maximizing the electrostatic gating performances. Uniform poly-Si deposition
through the chemical vapor deposition-based (CVD) process in high-aspect-ratio hollow structures
can be challenging. However, our imaging analysis showed that the deposited layer was uniform
(Figure 1D), except for a slight increase in thickness at the nanochannel outlet (bottom right). Finally,
a thin layer of SiC (Figure 1E) was used to coat the conductive poly-Si and act as an insulating and
chemical inert layer. Despite the high-aspect-ratio of the slit nanochannels, the deposition of SiC was
also achieved with good uniformity (Figure 1E). Slight material accumulations at the inlet and outlet
of nanochannels were expected. While we did not generate these intentionally, we noted that a local
restriction at the nanochannel extremities could improve gating performance.

All materials used for the fabrication of the nanofluidic membrane have previously been
demonstrated to be biocompatible using ISO 10993 standards by Kotzar et al. [46]. A subset of
these materials has also been investigated in vivo in rodents and has shown biocompatibility and
low biofouling [47]. Moreover, in our fabrication protocol, silicon carbide completely encapsulates
the membrane and, therefore, is the only material exposed to the environment. Silicon carbide was
specifically chosen for this encapsulation purpose as it’s considered a versatile material for biomedical
applications where extended exposure to physiological fluids is needed [48,49]. Additionally, in vivo
biocompatibility of SiC was demonstrated by Cogan et al. [50], who subcutaneously implanted SiC
discs in New Zealand White rabbit, the histological evaluation showed no chronic inflammatory
response, and a capsule thickness comparable to controls was found.

Furthermore, silicon carbide has previously been shown to offer reduced biofouling when
compared to other biocompatible materials, such as silicon or silicon dioxide [51]. Although complete
protection against protein adsorption could not be achieved [52], we previously showed that biofouling
did not negatively affect the function of our devices. Specifically, nanofluidic membranes, similar
to the one presented in this study, have been used in-vivo in rats for up to 6 months [53] and in
non-human primates for up to 4 months [54] with no alteration of drug release from biofouling or
fibrotic tissue encapsulation.

When compared to membrane architectures previously developed in our lab [55–57],
this membrane presented a less cumbersome fabrication process, thanks to the direct alignment of
nanochannels and microchannels [58,59]. Further, a substantially higher nanochannels density [55,60]
was achieved. In contrast with other gated membrane based on porous alumina (AAO) [29], presenting
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an irregular pore size distribution [28], our structure achieved a monodispersed nanochannel size
that could aid in better control of molecular transport. In its current configuration, featuring 278,600
nanochannels, our membrane configuration was designed to achieve high mass transport rates per
unit surface area. This is typically preferable in the context of implantable drug delivery application,
where miniaturization is a requirement [39]. However, in light of its modular structure, the same
fabrication process could be employed to create alternative configurations with a different number
of channels for adoption in electrokinetic-enabled molecular manipulation or sorting applications.
For these purposes, the large gate electrode surface area might provide increased electrostatic control
of fluid molecules as compared to common Polydimethylsiloxane-glass (PDMS-glass) systems [61,62]
which feature localized gate electrodes.
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Figure 1. Nanochannel membrane structure. (A) Optical image of a silicon nanofluidic membrane,
presenting electrode pads with exposed conductive polysilicon. (B) SEM micrograph, showing the
array of nanochannel inlets. (C,D,E) Vertical cross-section image (SEM) obtained along the length of
nanochannel, showing the membrane fabrication at different stages. Micrographs were color-enhanced
for clarity of visualization. (C) Thermally grown SiO2 layer (~175 nm, blue); (D) Low-pressure
chemical vapor deposition (LPCVD)-deposited poly-Si layer (~121 nm, red); (E) Plasma-enhanced-CVD
deposited SiC coating (~64 nm, gray). Images C, D, and E do not picture the same membrane location.

3.2. Solid–Liquid Interface, SiO2 vs SiC

To evaluate SiC properties as a gate dielectric in contact with ionic solutions, we compared
its insulation performance to SiO2, which is a broadly used gate dielectric in solid electronics [63].
SiO2 and other metal oxides, such as alumina and hafnium dioxide, owe their success to their high
dielectric constants that allow for low leakage currents. Even though these materials excel in solid
electronic manufacturing, they either lack biocompatibility or chemical inertness and durability in
aqueous environments [50].
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Leakage current measurements (Figure 2A) performed with our membranes did not show
substantial differences between SiO2 and SiC, except for 3 V. However, the steep increase in leakage
observed for SiC between 2 and 3 V, emphasized by the electrolytic solution environment, suggests
that the molecular arrangement in the dielectric layer is not ideal [64]. The literature on gate dielectric
leakage in ionic solutions is scarce, and the available models for a solid-state field-effect transistor
(FET) are unable to account for the effect of the electrolyte solution environment. In aqueous solutions,
currents in the order of µA were measured for electric fields as low as 0.5 MV cm−1 (Figure 2A).
In contrast, for solid-state FET, currents in the order of magnitude of µA are only expected for electric
fields greater than 15 and 2 MV cm−1 for SiO2 and SiC, respectively. High leakage currents are usually
attributed to the formation of conductive filaments within the oxide, whereby electrons are trapped
and form clusters within defects in the material. When clusters are at tunneling distance, a conductive
path can form, leading to high leakage currents [65,66]. The proportional increase in leakage currents
at increasing ionic strength of the solution, previously reported by this group [39], provides further
support for this phenomenon.
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In the voltage range between −2 and 2 V, SiC and SiO2 exhibited similar values of leakage currents.
Thus, to closer investigate differences in performances, we used cyclic voltammetry (CV). As compared
to SiO2-coated membranes, lower currents were measured for SiC at each applied voltage (Figure 2B).
Interestingly, we observed a non-linear proportional relationship between voltage and current for both
materials. SiC exhibited a steep increase in current for voltages higher than 1 V in absolute value.
This suggested that for small applied voltages, no faradaic currents occurred, and the material behaved
almost as an ideal capacitor. For voltages above ± 1 V, electrochemical reactions between the surface
groups (C, SiO−) and reactive species in the electrolyte solution (Cl−, HO−) led to increased currents.

In contrast, the significant current increase observed for the leakage currents (Figure 2A) for
voltages over 2 V was likely related to material deterioration and conductive filament formation.
The asymmetry between results obtained with positive and negative voltages provided further support
for this theory. Higher currents for negative applied voltages were observed in both measurements.
For negative voltages, positive species were attracted to the surface. The percolation model suggests
that in the presence of strong electrostatic attraction, protons can diffuse in the insulator, starting a
percolating path that can lead to the formation of a conductive filament [65]. Instead, for positive
potentials, proton repulsion may cause a reversible interruption of the conductive filament, effectively
decreasing leakage [67]. Additionally, the difference in hysteresis between the two CV profiles
(Figure 2B) was suggestive of differences in surface charge accumulation between the two materials.
A thinner CV profile usually correlates with low charge accumulation. Collectively, the results
showed that SiC suffered lower leakage currents in the −2 V to 2 V range, exhibiting better insulation
performance than SiO2.
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3.3. Electrochemical Characterization: Conductance

To further investigate the surface properties of SiC, we performed conductance measurements of
SiC-coated membranes in the ionic concentration range between 1 µM and 100 mM. We employed
a custom fixture [39] that allowed us to limit wetting to the nanochannel part of the membrane.
The results are shown in Figure 3A. At high ionic strengths (>10−4 M), conductance measurements
displayed a linear dependence on the ionic strength. In these conditions, the Debye length was
significantly smaller than the size of nanochannels. Accordingly, the results were consistent with
the bulk electrolyte conductance (red dashed line in Figure 3A). In contrast, at low ionic strengths
(≤10−4 M), we observed a plateau in conductance (in the log-log scale). This occurred when the
Debye length approached the nanochannel dimension, and the excess of counter-ions balanced the
surface charge, reaching channel electroneutrality [68]. Here, as it directly related to the conductance,
the surface charge could be calculated by fitting the results to the equation [69]:

I
V

= 2Fµ

√(Σ
2

)2
+ c2

0
wh
l

(1)

In Equation (1), F, µ, and Σ are the Faraday’s constant, ionic mobility, and the volume charge
density, respectively. Further, c0 is the solution molarity, and w, h, and l are the nanochannels’ width,
height, and length, respectively. Using the relation zFΣ = −2σs/h, we obtained a surface charge value
of σs = 1.81 µC/m2, which was consistent with the previously reported data for SiC surfaces [70].
Our SiC coating exhibited a surface charge orders of magnitude smaller than SiO2 (1–100 mC/m2) [71],
which correlated with better performance in electrostatic gating control. In fact, chemically reactive
surfaces act as charge buffers. An externally applied electric field is quickly compensated by protonation
or deprotonation of reactive groups on the surface, limiting charge rearrangement in the electrical
double layer (EDL) [72]. Thus, to minimize surface charge, materials are often artificially treated [28].
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Figure 3. Electrochemical measurements. (A) Measured transmembrane ionic conductance.
(B) Schematic of the electric double layer and relative model. (1) Inner Helmholtz plane; (2) Outer
Helmholtz plane; (3) Diffuse layer; (4) Solvated ion; (5) Specifically adsorbed ion; (6) Molecules of
the electrolyte solvent. (C) Fitted resistance of charge transfer (Rct) of SiO2-coated membranes versus
SiC-coated membranes. (D) Fitted double-layer capacitance (Cdl) of SiO2-coated membranes versus
SiC-coated membranes.
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3.4. Electrochemical Characterization: Electrochemical Impedance Spectroscopy

To investigate dielectric/liquid interface properties with the application of an external voltage,
we performed electrochemical impedance spectroscopy (EIS) measurements. Specifically, we compared
the resistance to charge transfer and the double layer capacitance at different gate voltages.
A comparative assessment was conducted using SiC- and SiO2-coated chips. Figure 3B shows
a schematics of the electrical double layer (EDL), which described the ionic distribution that occurres
at the solid–liquid interface of a charged surface to maintain local electroneutrality. The EDL is usually
described by that Grahame model, which identifies three main layers consisting of 1) non-hydrated ions
adsorbed to the surface, ii) hydrated immobile ions, iii) free moving hydrated ions [73]. The first and
second layers of immobile ions are often referred to as the Stern layer. The EDL region is modeled by a
series of capacitors, referred to as double-layer capacitance (CEDL), where the Stern layer (~0.2 nm) [74]
corresponds to the most significant contribution. As current can flow across the interface upon
application of a DC potential, a resistive path is considered in parallel to the capacitance. This is usually
referred to as a charge-transfer resistance (Rct). Rct can vary substantially depending on the material
ability to exchange electrons with the electrolyte solution. Upon application of an external DC potential,
if electrons cannot be easily exchanged, an overpotential builds up at the interface. In non-polarizable
materials, such as Ag/AgCl, small Rct permits high currents. In contrast, polarizable materials present
high Rct, and the current exchange is limited.

By fitting our EIS measurements to the model described above (Figure 3B), we calculated Rct and
CEDL for both a SiO2- and a SiC-coated membrane at different gate voltages (VG) applied (Figure 3C,D).
Depending on the applied potential, SiC showed an Rct 1.5 to 8 times bigger than SiO2 (Figure 3C).
Interestingly, both materials showed a clear dependence of Rct with the applied voltage. SiO2 exhibited
a monotonic increase of Rct with the applied voltage, where more positive voltages resulted in higher
Rct. In contrast, SiC showed a decrease in Rct proportional to the absolute value of the applied voltage.
We attributed these phenomena to the difference in surface charge between SiO2 and SiC. In fact,
a higher number of available SiO− sites on the SiO2 surface allowed for increased electron exchange.

CEDL did not exhibit a correlation with the applied gate voltage for either material (Figure 3D).
Moreover, we unexpectedly found six times higher CEDL for SiC with respect to SiO2. As CEDL mainly
depends on the surface area and EDL thickness, our results could be explained in the context of the
material porosity [75]. By presenting a larger surface area, pores displayed increased capacity. Overall,
the low surface charge exposed by SiC and the high resistance to charge transfer qualified SiC as a
polarizable interface suitable for electrostatic gating.

3.5. Mechanism of Analyte Flow Control through Electrostatic Gating

Nanofluidic systems present high surface to volume ratios. In light of this, charged species
diffusing in nanoconfinement exhibit unique behaviors [76,77]. Electrostatic, steric, and hydrodynamic
interactions with the nanochannel walls influence local molecular concentration and effective diffusivity.
Depending on solution properties, such as ionic strength, pH, and surface charge density, the EDL can
extend from a fraction to hundreds of nm in the fluid. Both SiC and SiO2 surface expose native silanol
groups, resulting in a net negative surface charge at pH 7.4 [78]. In proximity to the surface, charged
species redistribute to reach electroneutrality [73]. While counter-ions concentration increases, co-ions
are depleted following distribution with a characteristic dimension equal to the Debye length.

Once solution properties are defined, the surface charge is the only parameter that has a significant
effect on the distribution of charges in the fluid. Thus, nanochannel charge-selectivity can be altered
by controlling the channel surface charge. An applied difference in potential between a buried gate
electrode and an electrode in solution creates an overpotential at the surface. We employed this strategy
to modulate the diffusive transport of analytes through our nanofluidic membrane. With no applied
voltage, molecules diffused through the channel unperturbed. By applying a negative gate potential,
the transmembrane transport of co-ions was substantially reduced.
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3.6. In Vitro Release Modulation of Methotrexate

To investigate the effectiveness of electrostatic gating on controlling trans-membrane transport of a
small charged analyte, we performed an in vitro diffusion study using methotrexate. Methotrexate has
a molecular weight of 454 Da and is a good representative of small molecules (<900 Da) therapeutics,
which accounts for the majority of pharmaceuticals [79]. Clinically, methotrexate is used as a
chemotherapeutic agent for the treatment of various cancers, as well as in the management of
rheumatoid arthritis [33].

Figure 4A shows the normalized release rates for four consecutive cycles alternating between
passive and active phases. During the passive phases, negatively charged molecules (−2q for
methotrexate) diffused trough the nanochannels freely, largely unaffected by the low native charge of
the SiC surfaces. When a negative voltage was applied (−3 V), an increase in negative surface charge
repelled methotrexate molecules, reducing their release. The four alternation cycles between passive
and active phases demonstrated that electrostatic gating allowed for repeatability of release modulation.

Pharmaceutics 2020, 12, x 10 of 16 

 

membrane. With no applied voltage, molecules diffused through the channel unperturbed. By 

applying a negative gate potential, the transmembrane transport of co-ions was substantially 

reduced. 

3.6. In Vitro Release Modulation of Methotrexate 

To investigate the effectiveness of electrostatic gating on controlling trans-membrane transport 

of a small charged analyte, we performed an in vitro diffusion study using methotrexate. 

Methotrexate has a molecular weight of 454 Da and is a good representative of small molecules (< 

900 Da) therapeutics, which accounts for the majority of pharmaceuticals [79]. Clinically, 

methotrexate is used as a chemotherapeutic agent for the treatment of various cancers, as well as in 

the management of rheumatoid arthritis [33]. 

Figure 4A shows the normalized release rates for four consecutive cycles alternating between 

passive and active phases. During the passive phases, negatively charged molecules (−2q for 

methotrexate) diffused trough the nanochannels freely, largely unaffected by the low native charge 

of the SiC surfaces. When a negative voltage was applied (−3 V), an increase in negative surface 

charge repelled methotrexate molecules, reducing their release. The four alternation cycles between 

passive and active phases demonstrated that electrostatic gating allowed for repeatability of release 

modulation. 

 

Figure 4. Electrostatically controlled release of methotrexate. (A) The normalized release rate of 

methotrexate for four cycles between free diffusion (Passive) and gated diffusion (Active). (B) Release 

rates grouped by phase typology. 

We observed a statistically significant difference in release rate between active and passive 

phases, whereby the applied potential −3 V yielded a decrease in the release rate of ~35%. During the 

passive phase, an average release rate of 10 µg/day was obtained, which was consistent with daily 

doses used to treat rheumatoid arthritis in pre-clinical testing [80]. Other small molecule therapeutics, 

including glucocorticoids [81], hormone therapeutics [82], and antivirals [83], present effective daily 

doses in the order of micrograms. This indicates that the current membrane architecture could, in 

principle, be adopted for various therapeutic applications. However, further testing with different 

pharmaceutical agents is warranted. 

3.7. In Vitro Controlled Release of Quantum Dots 

To assess the ability of our membrane to modulate the release rate of larger molecules, we 

performed an in vitro release study with quantum dots. Quantum dots possess broad applicability 

in bioengineering, including imaging [84], theranostics [85], cell labeling for in vivo tracking [86], 

tissue staining [87]. They have also been investigated as biomarkers for cancer detection and for 

targeted drug delivery [35]. Figure 5A shows the normalized release rate of each phase, where passive 

(0 V) and active phases (−1.5 V) were alternated over three cycles.  

Figure 4. Electrostatically controlled release of methotrexate. (A) The normalized release rate of
methotrexate for four cycles between free diffusion (Passive) and gated diffusion (Active). (B) Release
rates grouped by phase typology (** p ≤ 0.01).

We observed a statistically significant (** p ≤ 0.01) difference in release rate between active and
passive phases, whereby the applied potential −3 V yielded a decrease in the release rate of ~35%.
During the passive phase, an average release rate of 10 µg/day was obtained, which was consistent
with daily doses used to treat rheumatoid arthritis in pre-clinical testing [80]. Other small molecule
therapeutics, including glucocorticoids [81], hormone therapeutics [82], and antivirals [83], present
effective daily doses in the order of micrograms. This indicates that the current membrane architecture
could, in principle, be adopted for various therapeutic applications. However, further testing with
different pharmaceutical agents is warranted.

3.7. In Vitro Controlled Release of Quantum Dots

To assess the ability of our membrane to modulate the release rate of larger molecules,
we performed an in vitro release study with quantum dots. Quantum dots possess broad applicability
in bioengineering, including imaging [84], theranostics [85], cell labeling for in vivo tracking [86], tissue
staining [87]. They have also been investigated as biomarkers for cancer detection and for targeted
drug delivery [35]. Figure 5A shows the normalized release rate of each phase, where passive (0 V)
and active phases (−1.5 V) were alternated over three cycles.

The application of the negative gate potential drastically reduced the release of quantum dots from
the membrane. Subsequent cycles demonstrated consistent and reproducible release rate reduction,
suggesting that the membrane and the gating performance were consistent over time. A statistically
significant difference (**** p ≤ 0.0001) in the release between active and passive phases (84%) was
observed (Figure 5B). When compared to methotrexate, quantum dots clearly showed a more effective
electrostatic modulation, which could be attributed to higher particle charge and lower ionic strength
of the solution. Specifically, the high exposed charge is due to the carboxylic functionalization,
where several groups result in a negative net charge that ranges from −5 to −15 depending on pH and
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ionic strength [41]. Moreover, the low ionic strength solution (0.01 × PBS) has a Debye length 10 times
greater than the 1 × PBS. These two properties contribute to enhance the electrostatic interactions
between the wall and the solute. Thus, the application of the gate potential resulted in increased
efficacy of release modulation.Pharmaceutics 2020, 12, x 11 of 16 
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3.8. Considerations on Electrostatic Gating Performance

To achieve efficient devices for tunable molecular diffusion via electrostatic gating, various
parameters need to be optimized. Of utmost importance is the choice of dielectric material to insulate
the buried gate electrode. In this study, we investigated SiC as it conciliates the need for low leakage
currents, with a dielectric constant similar to SiO2 (4.4–4.9) [88], and offers chemical inertness in
aqueous solutions [48]. Moreover, SiC offers a low native charge; therefore, it minimizes unwanted
non-linearities connected to the buffer capacity of strongly charged surfaces [72].

Further, efficient electrostatic flow modulation is strictly connected to the nanochannel size to
the Debye length ratio (h/λ). Our membrane was designed for medical applications, where the ionic
strength and pH were bound to physiological values. Our future investigations focus on manufacturing
membranes with smaller nanochannels to be able, in principle, to completely stop analyte diffusion.
Finally, as flow control trough electrostatic gating is mainly based on coulombic interactions, analytes
that expose high surface charges are more suitable for gate modulation. Therefore, drug encapsulation
with highly charged polymers can significantly improve administration control of small analytes.

4. Conclusions

In this work, we investigated a SiC-coated nanofluidic membrane capable of the reproducible
control of analyte transport via electrostatic gating. The application of a low-intensity electrical potential
to the gate electrode allowed us to alter nanochannel surface charge, leading to tunable membrane
charge-selectivity, and control over the release of methotrexate and quantum dots. Electrochemical
characterization showed that SiC dielectric coating exhibited low leakage current and reduced intrinsic
charge as compared to SiO2. Moreover, SiC offered chemical bioinertness, which rendered it an
ideal candidate for use in biomedical devices for therapeutic delivery based on electrostatic-gating.
In this context, our membranes could be employed as actuators for remotely controlled drug delivery
systems. The low voltage needed to modulate the release rate could be provided via small scale
and low-power circuitry. This investigation might pave the way for the development of the next
generation of drug delivery systems, enabling pre-programmed or remotely managed pharmaceutic
administration. Further, our gated nanofluidic membrane might find applicability in molecular sieving
and lab on a chip diagnostic.
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5. Patents
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