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Abstract Targeting SARS-CoV-2 papain-like protease using inhibitors is a suitable approach for

inhibition of virus replication and dysregulation of host anti-viral immunity. Engaging all five bind-

ing sites far from the catalytic site of PLpro is essential for developing a potent inhibitor. We devel-

oped and validated a structure-based pharmacophore model with 9 features of a potent PLpro

inhibitor. The pharmacophore model-aided virtual screening of the comprehensive marine natural

product database predicted 66 initial hits. This hit library was downsized by filtration through a

molecular weight filter of � 500 g/mol. The 50 resultant hits were screened by comparative molec-

ular docking using AutoDock and AutoDock Vina. Comparative molecular docking enables bench-

marking docking and relieves the disparities in the search and scoring functions of docking engines.

Both docking engines retrieved 3 same compounds at different positions in the top 1 % rank, hence

consensus scoring was applied, through which CMNPD28766, aspergillipeptide F emerged as the

best PLpro inhibitor. Aspergillipeptide F topped the 50-hit library with a pharmacophore-fit score

of 75.916. Favorable binding interactions were predicted between aspergillipeptide F and PLpro

similar to the native ligand XR8-24. Aspergillipeptide F was able to engage all the 5 binding sites

including the newly discovered BL2 groove, site V. Molecular dynamics for quantification of Ca-
atom movements of PLpro after ligand binding indicated that it exhibits highly correlated domain

movements contributing to the low free energy of binding and a stable conformation. Thus,
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aspergillipeptide F is a promising candidate for pharmaceutical and clinical development as a

potent SARS-CoV-2 PLpro inhibitor.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ensemble of steric and electronic characteristics of a ligand that

encodes for optimal binding to a specific macromolecular target is

known as the pharmacophore model. Pharmacophore modeling is a

robust technique that enables the virtual screening of huge compound

libraries by applying the unique pharmacophore model as the filter to

identify hits against a target under investigation. Structure-dependent

pharmacophore models require a 3D structure of a ligand-bound

macromolecular target for extraction of essential chemical features

of the ligand, based on interaction points on the target (Muhammed

and Esin, 2021). The pharmacophore model can be represented in a

3D or 2D fashion. A typical 3D pharmacophore model illustrates

the ligand’s functional groups or atoms patterns for molecular percep-

tion as spheres with varying radii and colours. The sphere’s radii show

the degree of deviation of the steric or electronic feature in the gener-

ated pharmacophore model from the native position (Gaurav et al.,

2014). Different pharmacophore modeling software uses different col-

ours and feature templates for chemical characteristics influencing

ligand binding like hydrogen bond acceptor and donor, positive and

negative ion centre, and hydrophobic rings, or groups. The 2D models

are simple and easy to interpret as they exemplify the ligand pharma-

cophoric features using letter codes like HBD, HBA, H, and PI for

hydrogen bond donor, hydrogen bond acceptor, hydrophobic, or aro-

matic ring contacts, and positive ionization contact, respectively (Qing

et al., 2014). Virtual screening facilitated by a pharmacophore model-

ing approach results in a minimum number of hits from a large data of

compounds which reduces the work up in the sequential molecular

docking phase (Prachayasittikul et al., 2015). Moreover, as the hits

bear required pharmacophoric features for the best possible interaction

with the chosen target, the lead identification process is expected to

have an enhanced success rate.

Authentic data sources like protein data bank (PDB) for 3D struc-

tures of biological macromolecules with bound bioactive enrich the

process of pharmacophore model generation. Freely accessible com-

pound libraries like DrugBank, PubChem, ChEMBL, and ZINC per-

mit data mining and high-throughput virtual screening in the drug

discovery process (Kaserer et al., 2015). The Comprehensive Marine

Natural Product Database (CMNPD) is one such publicly available

data source for harnessing the goodness of the natural products of

marine origin (Lyu et al., 2021). This database supplies 3D structures

of natural compounds of marine origin and enables query-based search

for data mining. It also provides the available bioactive conformations,

physico-chemical properties, ADMETox characteristics, and biologi-

cal activity data of the compounds present in the dataset.

SARS-CoV-2 spread has been curtailed by vaccines and to date, no

new drug is approved for clinical use. Extensive research is necessary to

invent a broad range of small molecules targeting different phases in

the lifecycle of the coronavirus. It is important to be prepared with

prospective ligands that bind to different coronavirus targets to com-

bat future pandemics. SARS-CoV-2 papain-like protease (PLpro) is

a proteolytic enzyme that breakdown two polyproteins namely Pp1a

and Pp1b into non-structural proteins, which interacts with host cellu-

lar components supporting virus replication. PLpro also interferes with

host immunity due to its deubiquitinating property. PLpro elicits a

deubiquitinating activity by deletion of ubiquitin and other related

ubiquitins, especially the ISG15 from host proteins. Removal of ubiq-

uitin and its related molecules from host proteins dysregulates the anti-

viral defence and interferon-mediated inflammatory, immune

responses. PLpro inhibition is critical to inhibiting coronavirus replica-
tion and improving host immunity. Recent research has shed light on

ligand’s structural requirements for exhibiting potent SARS-CoV-2

PLpro inhibition by binding to multiple binding sites including a newly

identified binding groove (Shen et al., 2022). Therefore, we aimed to

develop a receptor structure-based pharmacophore model that encodes

for potent SARS-CoV-2 PLpro inhibition and to apply the developed

model for virtual screening of marine natural product database for

identification of hits. The identified hits were subjected to comparative

molecular docking, a benchmarking procedure for docking. To

improve the docking results and active compound selection, consensus

scoring was employed. We also predicted the inhibitor interactions and

stability of the best inhibitor in complex with SARS-CoV-2 PLpro

(will be referred to as PLpro) by binding interaction analysis and

molecular dynamics (MD) study, respectively.

2. Material and methods

Structure-based pharmacophore modeling, virtual screening,
comparative molecular docking, and molecular dynamics sim-
ulation studies were applied in sequence to predict hit com-

pounds from CMNPD. The scheme of work is illustrated in
Fig. 1.

2.1. Pharmacophore-aided virtual screening

2.1.1. Pharmacophore model generation

The main goal of the study was to generate a receptor

structure-based pharmacophore model depicting the charac-
teristic steric and electronic features of ligands, facilitating
their binding to multiple binding sites on PLpro. Hence, we

chose the recently reported 3D X-ray crystalline structures of
PLpro receptor bound to potent inhibitors available in PDB

(https://www.rcsb.org). The PDB IDs of 3D structures of
PLpro are: 7LBS (native ligand: XR8-24), 7LOS (native
ligand: XR8-65), 7LLZ (native ligand: XR8-69), and 7LLF

(native ligand: XR8-83) (Shen et al., 2022). These PDB struc-
tures were directly fetched into LigandScout 4.4.8. software
using their codes (Wolber & Langer, 2005). LigandScout can
be accessed through a valid license on Inte: Ligand [http://

www.inteligand.com/ligandscout/download.shtml]. All four
receptor-ligand structures were visualized in structure-based

modeling perspective mode, checked for missing atoms in the
ligand structures, and four pharmacophore models were gener-
ated individually. To select a suitable pharmacophore model

for virtual screening, all 4 models were evaluated against a
set of known actives derived from literature (Shen et al.,
2022). Known active compounds were carefully chosen based

on their experimentally determined PLpro inhibition constant
(IC50) ranging from 0.1 to 5.7 lM provided possess structural
characteristics necessary for exhibiting multiple binding site

modalities. Pharmacophore models were evaluated against
the actives using the screen pharmacophore mode under the
structure-based perspective. During the process, every model
was optimized manually by varying the degree of tolerance

of pharmacophoric features under consideration. We varied

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Scheme of work.

Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for
the features by increasing or decreasing the tolerance, and
weightage, adding or excluding exclusion volume spheres,

and omitting a minimum number of features to increase the
sensitivity of the models (Opo et al., 2021). The optimum phar-
macophore model is the one that identified maximum hits

among the actives, which was considered for further study
(Luo et al., 2021).

2.1.2. Pharmacophore model validation

The pharmacophore model obtained by optimization in Sec-
tion 2.1.1 has to be validated by evaluation of its ability to dis-
tinguish active compounds from decoys (Temml et al., 2017).

The structures of 23 known actives identified from the litera-
ture were drawn in ChemDraw Ultra 10.0 and the smiles were

copied to OpenBabelGUI (https://openbabel.org/wiki/Open-

BabelGUI) to convert into a single sdf file of actives

(O’Boyle et al., 2013). Decoys for PLpro are available in the
DEKOIS.2.0 database (Bauer et al., 2013). These property-
matched decoys were recently generated and validated for

PLpro binding (Ibrahim et al., 2020). The decoy set consisted
of 720 compounds in a single sdf file prepared for screening.
Actives and decoys sets were processed to ldb (library in local
database) files in LigandScout using create screening database

module, which is the only accepted format by the software.
Actives and decoys sets were loaded in the ldb formats. The
7LBS model was optimized for sensitivity by increasing the tol-

erance of positive ionizable area, two of the hydrophobic inter-
actions of alkyl groups to 0.3 Å, and decreasing the tolerance
of hydrogen bond donor and acceptor features to 0.3 Å. Exclu-

sion volume spheres were also added. The optimized pharma-
cophore model was copied to the screening perspective. The
pharmacophore-fit score was set as the scoring function, match
all query features was the screening mode, get the best match-
ing conformation was the retrieval mode, and maximum num-

ber of omitted features was 2. Boolean expression was set to
choose the optimized pharmacophore model depicted as {1}
and the screening was initiated. After the run, results were ana-

lyzed in LigandScout by retrieving the receiver operating char-
acteristic curve (ROC) constructed based on the ratio of
actives and decoys identified by the pharmacophore model.

The area under the curve (ROC-AUC) is used to estimate
the detecting power of the model A pharmacophore model is
said to be valid if it exhibits an AUC> 0.5 and will have excel-

lent detective capacity if it is near 1. Early enrichment factors
(EF) at 1, 5, 10, and 100 % also reveal the early detection of
actives and support model validation (Kirchmair et al., 2008).

2.1.3. Pharmacophore model aided virtual screening

The CMNPD facilitates the download of chemical structures

in sdf format (https://www.cmnpd.org/). The entire database
is available for download and all compounds were down-
loaded. The sdf file contained 47,451 marine natural com-
pounds which were then converted to a ldb file in

LigandScout during which 1,320 duplicates were removed.
LigandScout generates 25 conformers for each compound.
The iconFast mode for fast, high throughput generation of

high-quality conformers was chosen to create the database
for screening. The optimized pharmacophore model was fed
to the screening perspective. CMNPD and decoy libraries were

loaded to the screening mode and screening was conducted
adopting the scoring, query, matching, and omitted features
as mentioned in Section 2.1.2. The results were visualized in

the library view, ROC was constructed, and the validity was
assessed based on ROC-AUC. The data of resultant initial hits

https://openbabel.org/wiki/OpenBabelGUI
https://openbabel.org/wiki/OpenBabelGUI
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were saved as a sdf file and further refinement in OpenBabel-
GUI applying a molecular weight filter of � 500 was carried
out. The compounds with molecular weight � 500, known

from OpenBabelGUI results were chosen manually to align
to the pharmacophore model in LigandScout. This refined
hit library was stored in sdf and xls formats for the next stage

of molecular docking studies. The sdf files can be saved to
retain 2D or 3D coordinates of the selected conformation of
the ligands. The minimum energy conformer was chosen for

all ligands and the sdf file was written with 2D and 3D coordi-
nates separately.

2.2. Comparative molecular docking

Pharmacophore model-aided virtual screening in LigandScout
does not dock compounds to the target, rather it picks the
prospective compounds with the potential to bind to the refer-

ence points (amino acids) identified through the receptor-
ligand structure used as the starting point for modeling (Opo
et al., 2021). Consequently, molecular docking of identified

pharmacophoric hits to PLpro is required to i) downsize the
number of hits and predict the most bioactive compound ii)
predict the binding affinity iii) retrieve the predicted bioactive

conformation, and iv) explore the binding interactions. Screen-
ing of compounds by docking supports decision-making in
drug discovery. The prediction accuracy is a significant factor
that influences the quality of virtual screening results. The final

hit from docking shall be promoted to subsequent preclinical
testing, hence the predictive efficiency of docking engines must
be reliable and valid. Docking engines search for binding con-

formations and estimates the binding affinity of ligands using
characteristic search algorithms and scoring functions
(Gaillard, 2018). Docking engines must be capable of differen-

tiating a prospective binder and a non-binder compound,
which improves the detection accuracy leading to decreased
false positives and false negatives. Benchmarking molecular

docking or comparative docking is a strategy that compares
and validates docking results from a minimum of two docking
engines functioning on different search algorithms and scoring
functions. To enable this process of validation, docking is per-

formed on a specific macromolecular system and ligand sets
containing decoy and active compounds (Vieira and Sousa,
2019). Therefore, we decided to utilize a comparative molecu-

lar docking strategy for docking the 50-refined hits from vir-
tual screening to PLpro against known decoys from
DEKOIS 2.0. library. We used two docking engines AutoDock

4.2.1. and AutoDock Vina 1.1.2. for docking (Morris et al.,
2009; Trott & Olson, 2010).

2.2.1. Processing of PLpro and ligand structures

The PLpro structure used for docking was 7LBS which con-
tains a native ligand. MGL tools was used to prepare the tar-
get structure. The native ligand, water molecules, and other

non-standard residues were removed. Gasteiger charges and
polar hydrogens were added. The energy-minimized target
structure was saved in pdbqt format. For the hits and decoys,
the sdf file containing the 3D coordinates of the minimum

energy structure obtained in LigandScout was used. These
structures in sdf were then converted to individual pdbqt files
applying OpenBabelGUI. The native ligand XR8-24 structure

saved in PDB was converted to pdbqt in OpenBabelGUI and
was included in the docking study for comparison with
ligands.

2.2.2. Molecular docking

The binding site of PLpro was identified according to the liter-
ature by highlighting the residues Asp164, Arg166, Glu167,
Pro248, Tyr264, Gly266, Tyr268, Tyr273, and Pro299 (Shen

et al., 2022). This created a grid box with dimensions of 9 Å
X 8 Å X 35 Å, and size of 30 Å in X, Y, and Z coordinates.
This docking grid covered only the binding sites and not the

whole surface of the target. Same docking coordinates were
applied for docking in both docking engines. All other docking
parameters were kept at default for both docking engines.

Chiefly, in AutoDock the genetic algorithm runs were 10,
and in AutoDock Vina the number of conformers generated
was 10 at exhaustiveness of search 8 with an energy difference

of 3 kcal/mol. The binding affinities in terms of binding energy
(DG in kcal/mol) for the hits and decoys were predicted by
both docking engines. The conformer with minimum binding
energy, the one with the highest negative value was chosen

for binding interaction analysis, individual, and consensus
scoring. PLpro bound to the predicted best inhibitor was visu-
alized for the binding site engagement in UCSF Chimera

1.13.1. (https://www.cgl.ucsf.edu/chimera/download.html)
(Pettersen et al., 2004). Binding interaction analysis was per-

formed in Discovery Studio 2016 (https://discover.3ds.com/

discovery-studio-visualizer-download).

2.2.3. Benchmarking molecular docking

Benchmarking procedures to assess the predictive potential of

docking engines based on individual scoring and consensus
scoring was applied.

2.2.3.1. Individual scoring. Benchmarking molecular docking is
a comparative evaluation of the predictive capacity of Auto-
Dock and AutoDock Vina. Benchmark analysis was per-

formed using Screening Explorer, an online tool (http://

stats.drugdesign.fr/) (Empereur-Mot et al., 2016). Screening
Explorer needs the docking results with ligand IDs, their pre-
dicted binding energy scores, and tags for active compounds or

decoys as 1 or 0, respectively. These inputs are used for the
generation of ligand rankings by Screening Explorer. Based
on the ranks predictiveness curve, ROC, and enrichment
curves are constructed. From the ROC curve AUC-ROC,

Boltzmann-Enhanced Discrimination of ROC (BEDROC),
and Robust Initial Enhancement (RIE) values are calculated.
Enrichment factors (EF) are calculated from the enrichment

curve. The Predictiveness curve was graphed with compound
ranks on the X-axis and probability of activity on the Y-
axis, indicating the potential of the docking engine’s scoring

function in discriminating actives and decoys. A measure
called total gain (TG) that relates the discriminative power
to the score variation was calculated from the predictiveness
curve (Empereur-Mot et al., 2015). Partial metrics like EF at

1 %, 5 %, and 10 % were implemented, which measures the
early recognition of actives at a specific threshold. All the met-
rices mentioned in this section were applied to evaluate the pre-

dictive power of the docking engines used in the study.

https://www.cgl.ucsf.edu/chimera/download.html
https://discover.3ds.com/discovery-studio-visualizer-download
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2.2.3.2. Consensus scoring. Consensus scoring improves the

active compound detection from docking generated hit com-
pounds list. We applied established metrices of consensus scor-
ing like minimum and average of ranks, maximum and average

of Z scores, and maximum and average of normalized scores.
Consensus scoring was performed in Screening Explorer. The
input files in Section 2.2.3.1 were utilized for consensus scor-
ing. Screening Explorer allows individual and consensus scor-

ing at the same time. The results of benchmarking docking
based on individual and consensus scoring and binding inter-
action analysis were considered to decide the active compound.

The structure of the docked complex of PLpro with the active
thus obtained was carried over to the next stage of molecular
dynamics.

2.3. Molecular dynamics

The structure of PLpro docked to the predicted active com-
pound was investigated for stability by MD under a physiolog-

ically simulated environment. The changes in the target
protein’s conformation and movements upon ligand binding
that influences its stability can be monitored by MD

(Hollingsworth and Dror, 2018). Desmond 5.9 (https://www.

deshawresearch.com/) was employed for carrying out MD sim-
ulation analysis. The 7LBS-active compound docked complex
was submerged into an orthorhombic cube imbibed with

TIP3P solvent water, buffers, and NaCl was also added as
counterions to neutralize charges. Desmond’s forcefield with
the simple point charge model and OPLS criterion was applied

to minimize the energy of the whole system prepared above.
The submerged system was heated slowly, varying the temper-
ature from 0 to 300 K in the NVT package. Then the system
was equilibrated to apply an NPT package of 300 K tempera-

ture and 1 atm pressure and maintained throughout the MD
run. MD of the 7LBS-active compound complex was per-
formed for 50 ns and the trajectories were recorded and ana-

lyzed for stability. The RMSD and RMSF of PLpro as a
result of ligand binding were predicted. The molecular
mechanics generalized Born surface area energy (MMGBSA)

in OPLS 2005 forcefield was calculated from three of the mon-
itored trajectories from the final 50 ps of simulation and the
mean value with standard deviation is reported (Tuccinardi,

2021). The MMGBSA energy was calculated from the
formula:

DGbinding = G-docked – (G-protein + G-ligand) where
DGbinding = binding free energy, G-docked, G-protein, and

G-ligand are the free energies of the docked complexes, pro-
tein, and ligand, respectively.

The dynamic cross-correlation matrix (DCCM) was con-

structed for all Ca backbone atoms of PLpro from MD trajec-
tory snapshots obtained over the final 50 ps of simulation (Yu
and Dalby, 2020). The principal component analysis (PCA)

was performed with the above system containing explicit water
molecules and from the MD trajectory of the final 50 ps of sim-
ulation (David and Jacobs, 2014). DCCM and PCA were car-

ried out using an essential python script in Desmond
(Bharadwaj et al., 2021). Together, MMGBSA, DCCM, and
PCA predicted from the MD simulation trajectories helped
to exploit the protein’s domain movements and essential

dynamics during ligand binding (Genheden and Ryde, 2015;
Pierdominici-Sottile and Palma, 2015).
3. Results and discussion

3.1. Pharmacophore-aided virtual screening

SARS-CoV-2 pandemic had a devastating impact on the
human community since 2019. The current global environment

has improved a lot due to massive COVID-19 vaccination pro-
grams. Drug discovery strategies to exploit existing drugs,
investigational and experimental compounds as anti-SARS-

CoV-2 drugs have played a significant role in recent times.
Among these, high-throughput computational screening tech-
niques like molecular docking, network pharmacology, and
virtual screening of large databases centred on divergent chem-

ical concepts have taken the lead. Pharmacophore model-aided
virtual screening is one such technique, that relies on the phar-
macophoric description of ligands of concern. A pharma-

cophore model collectively represents the structural attributes
for a ligand to complement a biological macromolecule’s bind-
ing site to bring on maximum binding and favorable pharma-

cological response. The structural coordinates of a receptor
and its complementary ligand that bring about expected bio-
logical behaviour are used to construct a structure-based phar-
macophore model. A particular pharmacophore model is

applied to filter hit compounds from databases containing a
large number of compounds. Utilizing natural resources for
discovering drugs has always been rewarding. Natural com-

pounds surprise scientists with their novel chemical structures
and they also possess a wide range of biological properties.
Natural products of marine origin remain unexplored for their

potential therapeutic activities. Consequently, we performed
pharmacophore manoeuvres on CMNPD to identify potential
hits targeting the inhibition of SARS-CoV-2 PLpro. These hits

were then filtered applying a molecular weight filter of � 500
and then processed by molecular docking. A comparative
molecular docking of these hits and decoys on two docking
platforms yielded one active compound. The final active com-

pound in complex with PLpro was analyzed for its stability by
molecular dynamics. The results of the processes are discussed
step-by-step.

3.1.1. Pharmacophore model generation

We used LigandScout 4.4.8. software for structure-based phar-
macophore model generation. LigandScout is advanced molec-

ular design software that functions on a graphical user
interface (GUI) and is robust in creating 3D and 2D
structure-based and ligand-based pharmacophore models.

LigandScout automatically generates 3D pharmacophore
models applying unique algorithms that deduce and interpret
ligands and their target structure environment from PDB files.

It also enables visualization, alignment, and manual refining of
pharmacophore models to understand and optimize models
for improved prediction accuracy (Seidel et al., 2017).

Recent PDB depositions of PLpro 3D structures with IDs

7LBS, 7LOS, 7LLZ, and 7LLF were chosen for pharma-
cophore model generation. We chose these PLpro structures
with ligands because the chemistry of ligands is proposed to

encourage cooperative binding that strengthens the binding
to multiple binding sites resulting in a potent inhibitory activ-
ity (Shen et al., 2022). Each structure has a ligand bound to it

that guided the pharmacophore generation. Four pharma-
cophore models containing the essence of the corresponding

https://www.deshawresearch.com/
https://www.deshawresearch.com/
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ligand characteristics were generated by applying default set-
tings. We hand-picked a set of 23 active compounds having
the chemistry supporting cooperative binding to PLpro and

experimental inhibition constant, IC50 in the range of 0.1 to
5.7 lM from the literature to evaluate the selectivity index,
i.e., the number of actives retrieved to the total number of

actives (Luo et al., 2021; Shen et al., 2022). During this process
of evaluation, the pharmacophoric features of all 4 models
were manually optimized to improve the number of actives

retrieved. After several attempts, the pharmacophore model
derived from 7LBS was ranked 1 because it exhibited a better
selectivity profile than other models, as shown in Table 1. The
final optimized 7LBS model was obtained by choosing the

screening mode to match all pharmacophoric features,
decreasing the tolerance of HBD, and HBA by 0.3 Å, increas-
ing the tolerance of two hydrophobic features of the alkyl

groups by 0.3 Å, increasing the tolerance of PI group by
0.3 Å, and permission to omit a maximum of 2 features. We
also added exclusion volume coats to the model. Exclusion vol-

ume spheres increase the sensitivity of pharmacophore models
because these areas are forbidden for the ligand to interact and
they pose a stereochemical constraint for ligand binding

(Spitzer et al., 2010). Hence, the exclusion volume spheres in
our refined pharmacophore model present a barrier to binding
to non-specific ligands (Seidel et al., 2010). Fig. 2 represents
the structure-based pharmacophore model derived from the

structure of PLpro-7LBS and its complementary ligand
XR8-24.

3.1.2. Pharmacophore features analysis

Fig. 2A provides the complete view of native ligand XR8-24
bound to the active site of PLpro and the native pharma-
cophore model aligned to the XR8-24 structure. Fig. 2B is

the optimized pharmacophore model in 3D and Fig. 2C shows
the optimized model with the exclusive volume coats. Fig. 2D
is the two-dimensional depiction of the optimized pharma-

cophore model with reference points, i.e., the interacting
amino acid residues of PLpro. The model derived from the
key structural elements of XR8-24 in a 3D chemical space con-

sisted of 9 features. According to the model in Fig. 2B, a pos-
Table 1 Pharmacophore models and their rankings: blue (positive

bond acceptor); yellow (hydrophobic interactions).
itive ionization centre, 2 hydrogen bond donors, 2 hydrogen
bond acceptors, and 4 hydrophobic features in a particular
geometry are essential for the ligand to recognize multiple

binding sites on PLpro ensuring binding cooperativity and
potent inhibition. Exclusion volume spheres in Fig. 2C con-
templates the steric nature of the target’s binding site and con-

fer additional stereochemical constraint for binding of ligands
enhancing ligand selectivity by the target macromolecule. It is
impressive to view the model in 2D because it is a simplified

version of 3D. In the 2D depiction of the model, Fig. 2D shows
the native ligand structure besides the deduced pharma-
cophoric characteristics. Typically, pharmacophore models
consider the binding site characteristics and its geometry while

mapping the pharmacophore features of a ligand and the 2D
model proposes the interacting binding site residues. In the
PLpro-XR8-24-based model, the interacting residues are

Leu162, Asp164, Glu167, Tyr264, Tyr268, Gln269, Tyr273,
and Thr301. A viewer can understand from the 2D diagram
that the positive ionization centre is an ionized or protonated

amine proposed to interact with Asp164 through a hydrogen
bond and ionic bond. Any ligand to bind to PLpro may
require keto oxygen providing the scope of hydrogen bond

acceptor atom for two hydrogen bonds, as specified in the
model. There is a need for a hydrogen bond donor group like
–NH for any ligand to leverage binding to multiple sites on
PLpro. Four hydrophobic areas, in particular, phenyl rings

or alkyl groups in the ligand shall provide excellent binding
and PLpro inhibition according to the model. Therefore, the
generated model supports the study with knowledge about

ligand’s structural elements crucial for the predicted interac-
tion pattern with PLpro.

3.1.3. Validation of the pharmacophore model

Validation of the predicted pharmacophore model is critical to
determine its effectiveness and reliability in distinguishing
active compounds from decoys. Certain quality indicators like

ROC, AUC-ROC, and EF are universally accepted for phar-
macophore model validation (Kaserer et al., 2015; Kirchmair
et al., 2008). LigandScout enables model validation in screen-

ing mode when a set of actives and decoys are loaded into the
ionization centre); green (hydrogen bond donor); red (hydrogen



Fig. 2 A) 7LBS-XR8-24-based pharmacophore model at the PLpro active site B) Optimized pharmacophore model in 3D C) Optimized

view of the model with exclusion volume coats D) 2D depiction of the model showing the interacting residues of PLpro.

Fig. 3 Pharmacophore model validation. ROC metrics indicate

the accuracy and reliability of the model.

Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for
screening window. The 23 active compounds explained in Sec-
tion 2.1.1 were utilized for model validation. DEKOIS 2.0

library provided 720 decoy structures for screening against
the known actives. The actives and decoys libraries were
screened using the pharmacophore template created in
LigandScout. The predicted pharmacophore model was able

to identify 20 out of 23 actives and 37 out of 720 decoys. All
decoys had only one hydrophobic feature matched with the
model and a pharmacophore-fit score ranging from 15.22 to

15.63. The native ligand XR8-24 was retrieved at rank 1 with
all matched features and a pharmacophore fit score of 97.18
indicating the accuracy of the model. Table S1 has the details

of the total actives and decoys, retrieved actives and decoys
during model validation. ROC for model validation is a plot
of specificity vs sensitivity. Specificity is plotted on the X-

axis indicates the false positives or decoys retrieved, hence
ROC close to zero on the X-axis indicates the high accuracy
of the model. Sensitivity, on Y-axis, represents the true posi-
tives or actives retrieved, therefore, the higher the value on

X-axis, the higher the accuracy. The dotted line in ROC repre-
sents random prediction. ROC closer to the axis-Y and the
greater the AUC-ROC, the greater the prediction accuracy

(Kirchmair et al., 2008; Luo et al., 2021). Fig. 3 is the ROC
curve for pharmacophore model validation that reveals the
model’s predictive ability is well above random prediction.

AUC-ROC (AUC1% = 1.00) and EF values (EF1% = 24.3)
on the curve indicate our pharmacophore model has high pre-
dictive accuracy, sensitivity, and specificity. Thus, it is a reli-
able model for the virtual screening of CMNPD.

3.1.4. Pharmacophore model-aided virtual screening

The prepared CMNPD for virtual screening was made up of

46,131 marine natural compounds. The decoy set containing
720 decoys was used against the CMNPD in virtual screening
to evaluate the reliability of the results. So, the final dataset for
virtual screening had a total of 46,851 compounds. LigandS-

cout has an impressive protocol for screening large databases
by applying the validated pharmacophore template. The
screening protocol attempts to search ligands by matching all

pharmacophoric features preferably, when it fails, it omits a
maximum of two features and refines the search on each ligand
until it gets a single pharmacophore feature match. The phar-

macophore model-aided virtual screening of CMNPD in
LigandScout yielded 66 hit compounds. Table S2 has informa-
tion about 66 hit compounds including their pharmacophore-
fit scores and matching pharmacophoric features. In a nutshell,

virtual screening retrieved a total of 103 hits, which included
66 hits and 37 decoys. The AUC-ROC at 1, 5, 10, and
100 % are 1.00, 0.77, 0.70, and 0.57, respectively. The EF at

1, 5, 10, and 100 % are 24.3, 12.6, 6.2, and 3.3, respectively.
AUC and EF values are good and acceptable. Therefore, vir-
tual screening results are valid and the protocol was successful

in retrieving hit compounds in alignment with the model.
Physicochemical properties of chemical compounds influ-

ence their biological activity. Molecular weight, lipophilicity,

rotational bonds, and number of hydrogen bond donors or
acceptors are important molecular descriptors that signifi-
cantly affect ionization, absorption, distribution, metabolism,
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excretion, toxicity, and binding affinity properties of drugs.
Lipinski’s rule of 5 is a key to deciding the oral bioavailability
of drugs and an MW ˃ 500 may result in poor oral absorption

(Bunally et al., 2019). Accordingly, to downsize the number of
hits, we filtered the initial 66-hit library through a molecular
weight filter of � 500, which yielded 50 hits. When we

attempted to apply a rotational bond filter and ADME filter,
the number of hits was reduced but the results obtained in
sequential molecular docking were not fruitful. Hence, we pro-

ceeded with 50 hit compounds having a molecular weight of
less than 500. Table S3 contains information about 50 hit com-
pounds and their MW. Fig. 4 shows 50 hits of MW less than
500, aligned to the pharmacophore model.

3.2. Comparative molecular docking

It is imperative to apply and evaluate different docking engines

on the same macromolecular target and accept results from the
reliable docking engine. Comparative docking is a strategy,
which utilizes two or more docking engines for docking fol-

lowed by performance evaluation based on suitable bench-
marking metrices. Benchmarking docking included two
methods: i) use of active and decoy compounds and ii) use

of two docking engines that work on different search algo-
rithms and scoring functions (Ibrahim et al., 2020). AutoDock
and AutoDock Vina were chosen for docking the 50 hit com-
pounds to PLpro structure, 7LBS. Both docking software is

free for academic use. AutoDock predicts docked poses accu-
rately and is the most widely used software. AutoDock
searches conformations based on the Lamarckian genetic algo-

rithm and scores the active conformation based on empirical
scoring of free energy. AutoDock Vina is said to be a fast per-
former and is suitable for the virtual screening of large data-

bases. It applies a global–local-gradient optimization search
method and empirical free energy-based scoring function
(Palacio-Rodrı́guez et al., 2019). Both docking engines have

a few similarities like the input macromolecule and ligand for-
mat in pdbqt, definition of binding site as a grid box, and cal-
Fig. 4 Virtual screening results show 50 hit compounds aligned

to the pharmacophore model.
culation of atom pair interactions at all distances. Finally,
both docking engines scores and ranks the docked poses based
on predicted binding energy (DG, Kcal/mol) (Guedes et al.,

2018).

3.2.1. Benchmarking molecular docking

The hit library for molecular docking, generated by

pharmacophore-based virtual screening contained marine nat-
ural compounds that are relatively small, as it is a library that
has been filtered based on MW. The decoys from DEKOIS 2.0

were used for benchmarking. Therefore, 50 hits from virtual
screening and 720 decoys were docked to 7LBS using both
docking engines. The performance of AutoDock and Auto-

Dock Vina were compared for their predictive ability and their
accuracy to select active compounds at top ranks. Conven-
tional evaluation metrices of individual and consensus scoring

were applied for performance evaluation (Empereur-Mot
et al., 2015; Empereur-Mot et al., 2016).

3.2.1.1. Individual scoring. The binding energy scores obtained

from both docking engines were almost similar in the range of
�9.9 to �6.4 kcal/mol for active compounds. Fig. S1 shows
the distribution of scores for all actives and decoys and their

corresponding ranks allotted by the two docking engines.
Fig. 5 shows the predictiveness curve, ROC, and enrichment
curves obtained from individual scoring. The predictiveness

curve provides the probability of activity [P(act)] based on
the scores and corresponding ranks of actives. The P(act) for
AutoDock was 0.573 and AutoDock Vina was 0.715 at a set

threshold of 0.01. Both docking engines identified the native
ligand XR8-24 at the first position in the active compound list.
None of the hit compounds had a score greater than the native
ligand. Table 2, is the top 1 % rank list retrieved from two

docking engines, has 6 actives each, out of which 3 compounds
were enriched, but with different ranks. Table 3 shows the
structures of 3 compounds that enrich the top 1 % rank list

from AutoDock and AutoDock Vina. From Fig. 5 it is under-
stood that both docking engines retrieved active compounds
with early enrichment and possess good predictive power,

AutoDock Vina scored a better position though. The metrices
calculated from Fig. 5A, 5B, and 5C are reported in Table 4
under individual scoring. To reach an agreement between the
results and to improve active compound selection, we

attempted consensus scoring.

3.2.1.2. Consensus scoring. Consensus scoring ensures fairness

between scores of two docking engines and reduces the discrep-
ancies due to outliers. Screening Explorer applies i) normaliza-
tion of scores ii) standardization of scores, and iii) ranking-

dependent methods for consensus scoring. For both docking
engines, all 3 of the consensus scoring were carried out. A con-
sensus selection of the best active compound arising from dif-

ferent scoring functions is possible based on the maximum of Z
and normalized scores, and the minimum of ranks. The dom-
inance or shortfall of scoring functions, if any, are balanced by
implementing averages of ranks, Z, and score values. Fig. 6

shows the ROC and enrichment curves from consensus
scoring.

3.2.1.3. Consensus scoring guided active compound selection.
Individual scoring results indicated that both AutoDock and



Fig. 5 Comparative molecular docking results based on individual scoring. Red. AutoDock, green. AutoDock Vina. A) Predictiveness

curves B) ROC curves C) Enrichment curves.

Table 2 Top 1% compounds retrieved by comparative

molecular docking.

AutoDock AutoDock Vina

Compound

retrieved

Predicted

binding energy

(DG,

kcal/mol)

Compound

retrieved

Predicted

binding energy

(DG,

kcal/mol)

XR8-24 �9.8 XR8-24 �9.9

CMNPD23373 �9.8 CMNPD28766 �9.9

CMNPD30040 �9.8 CMNPD13919 �9.8

CMNPD28766 �9.7 CMNPD7007 �9.8

CMNPD13919 �9.6 CMNPD24799 �9.7

CMNPD1441 �9.6 CMNPD23373 �9.7

Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for
AutoDock Vina have performed well in retrieving the actives.
The high ROC-AUC values in Table 4 indicate both docking

engines are able to discriminate actives from decoys and high
BEDROC values indicate successful early recognition of
actives. The higher BEDROC and EF1% for AutoDock Vina

than AutoDock indicate the predictive power of Vina. RIE
is the normalized BEDROC. The high total gain values
obtained from the predictiveness curve show that there exists

relevant score variation in differentiating the actives and
decoys and the results are reproducible. As both docking engi-
nes performed well and three compounds were enriched early
in the 1 % list at different positions, we considered checking

consensus scores for any improvement in compound selection.
Table 4 shows the individual and consensus scores of Auto-
Dock and AutoDock Vina.

Consensus scoring results indicate that scoring with a max-
imum of Z scores can improve active compound selection. In
Table 4, the ROC-AUC, BEDROC, and EF1% of consensus

maximum of Z scores are higher than any other consensus
or individual parameter. Therefore, a compound retrieved
within the 1 % threshold by both docking engines and having
maximum Z scores (less deviation from mean value) in both

docking engine predicted scores is the best choice of active
compound (Kim et al., 2019). Analysis of Z scores for binding
energy values in Table 2 indicated that CMNPD28766 is the
best active compound to have potent SARS CoV-2 PLpro
inhibitory activity, because it was retrieved by both docking
engines within the top 1 % rank and also exhibits lesser devi-

ation from the mean score than the other two enriched com-
pounds in the list, CMNPD23373, and CMNPD13919. Thus,
consensus scoring improved the docking results and has guided
active compound selection from the docking-based active com-

pound list.

3.2.1.4. Active compound properties and pharmacophore model

alignment. CMNPD28766, is aspergillipeptide F. SwissADME
predicted molecular properties of aspergillipeptide F: MW –
450.53 g/mol, HBA – 7, HBD – 6, rotatable bonds – 14,

lipophilicity (Log P) – 2.41, pharmacokinetic properties: GI
absorption low, BB permeation low, the substrate of p-
glycoprotein, not an inhibitor of CYP1A2, CYP2C19,
CYP2C9, CYP2D6, CYP3A4, bioavailability score 0.55, and

drug-likeness properties: Lipinski’s violation – 1 (HBA,
HBD > 5), lead likeness violation – 2 (MW > 350, rotatable
bonds > 7), synthetic accessibility – 3.98 (easy). No PAIN or

structural alert from ADME. Collectively, predicted molecular
and ADME properties indicate that aspergillipeptide F has
good drug-likeness (up to 1 Lipinski’s violation is acceptable)

and is less toxic (Daina et al., 2017). Chemically aspergillipep-
tide F is described in the literature as a linear tetrapeptide
(Carroll et al., 2019; Liu, 2017). It was reported from the fungi

Aspergillus sp. of the South China sea. No biological activities
have been reported for aspergillipeptide F. CMNPD28766
pharmacophore-fit score is 75.916 in LigandScout pharma-
cophore model-aided virtual screening. Interestingly, this com-

pound topped the pharmacophore-fit score list of compounds
possessing MW less than 500 g/mol. CMNPD28766 had 7 out
of 9 pharmacophoric features matched with the pharma-

cophore model. Fig. 7A and 7B show the pharmacophore fea-
tures alignment of aspergillipeptide F (CMNPD28766) with
the 3D and 2D pharmacophore models respectively.

Aspergillipeptide F possesses a positive ionization centre, 2
HBA, 1 HBD, and 3 hydrophobic features aligned to the
structure-based pharmacophore model. When compared to

the developed pharmacophore model, 1 HBD and 1 hydropho-
bic feature are absent in the aspergillipeptide F derived model.



Table 3 Structures of compounds that enrich the top 1% rank list retrieved from AutoDock and AutoDock Vina.

Table 4 Individual and consensus scoring metrices of AutoDock and AutoDock Vina.

Individual scoring - global metrices Individual scoring- partial metrices

Docking engine ROC-AUC TG RIE BEDROC EF1% EF5% EF10%

AD 0.957 0.680 6.99 0.630 11.34 7.56 7.36

AV 0.993 0.918 9.98 0.901 13.23 13.13 9.82

Consensus scoring - global metrices Consensus scoring - partial metrices

Metrices ROC-AUC RIE BEDROC EF1% EF5% EF10%

Min of ranks 0.974 7.74 0.699 5.67 8.75 8.64

Average of ranks 0.991 9.93 0.896 11.34 11.34 9.82

Max of Z scores 0.995 10.32 0.931 13.53 13.13 9.82

Average of Z scores 0.981 9.02 0.814 11.34 11.14 8.83

Max of normalized scores 0.974 8.08 0.729 9.45 9.15 8.85

Average of normalized scores 0.992 9.91 0.894 11.34 12.73 9.82
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Fig. 6 Consensus scoring of AutoDock and AutoDock Vina results. A) ROC curves, B) Enrichment curves, blue (minimum of ranks),

red (average of ranks), purple (maximum of z scores), green (average of Z scores), yellow (maximum of normalized scores), and cyan

(average of normalized scores).

Fig. 7 A) CMNPD28766, aspergillipeptide F aligned to 3D pharmacophore model B) 2D depiction of aspergillipeptide F

pharmacophore model interaction features.

Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for
3.2.1.5. Binding interaction analysis. Native ligand XR8-24 was

included along with hit compounds for docking and its active
conformation generated by the developed docking protocol
was aligned to the native PDB conformer. Fig. 8A shows the

superposed native and redocked conformers of XR8-24 that
exhibited an RMSD of 0.764 Å. The active conformations of
native ligand XR8-24 and aspergillipeptide F in the active site
of PLpro are shown in 3D in Fig. 8B. The RMSD between

these two conformers was 1.056 Å indicating an acceptable
fit of aspergillipeptide F into the same binding site of XR8-
24. Fig. 8C is the 3D illustration of the binding sites occupied
by aspergillipeptide F. Fig. 9A and 9B represent the 2D inter-
action diagrams of XR8-24 and aspergillipeptide, respectively.

The SARS-CoV-2 PLpro catalytic binding site is a triad of
Cys111, His272, and Asp286 residues. GRL0617 is the proto-
type of SARS-CoV-2 PLpro non-covalent inhibitors and is a

peptide (Osipiuk et al., 2021; Shen et al., 2022). Shen et al.
(2022) aimed to develop potent PLpro inhibitors using
GRL0617 as the lead and demonstrated that ligand XR8-24

undergoes non-covalent binding to multiple binding sites



Fig. 8 A) Superposed native and redocked conformations of XR8-24, red (native), green (redocked), B) Superposed active

conformations of XR8-24 (stick) and aspergillipeptide F (ball and stick) inside the binding pocket of PLpro, C) Aspergillipeptide F

conformation engaging all five binding sites of PLpro.
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implementing binding cooperativity leading to enhanced in-
vitro anti-viral potency than GRL0617. Shen et al. (2022) con-
cluded that there are five binding sites far from the active cat-
alytic triad residues of PLpro that needs to be occupied for

potent inhibition. Site I, Glu167, and Asp164 are crucial for
PLpro binding to its substrate ubiquitin/ISG15. Site II is sur-
rounded by Arg166 which interacts with ubiquitin. The com-

pounds designed by this research group failed to interact
with site II, except Zn-3–56 which lacked the characteristic
azetidine of other compounds and ZN-3–56 also exhibited
improved in-vitro activity than GRL0617. Site III, the BL2
loop featuring Gln269 and Tyr268 also plays a significant role

in substrate binding. Site IV is hydrophobic due to Leu162,
Tyr264, and Tyr273. In addition, a new binding site V, named
BL2 groove formed by the hydrophobic residues Pro248 and

Pro299 was identified. Non-covalent inhibitors are capable of



Fig. 9 2D interaction diagrams of A) XR8-24B) aspergillipeptide F with PLpro active site residues.

Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for



Table 5 Comparison of chemical features of the active

binding poses of XR8-24 and Aspergillipeptide F.

Nature of

interactions

Chemical features

XR8-24 Aspergillipeptide F

Hydrogen

bond

Oxygen (acceptor)

and nitrogen (donor)

of the amide

Carboxylic acid oxygens

(acceptor), keto oxygens

(acceptor)of peptide, and

nitrogen (donor) of amine

Electrostatic

p-anion
Phenyl Absent

p-sulfur Sulfur of thiophene Absent

Van der

Waal’s

Azetidine, phenyl,

pyrrole, thiophene,

and aliphatic methyl

Phenyl, aliphatic

isopropyl, and methyl

Hydrophobic Phenyl, pyrrole, and

methyl

Phenyl

Attractive

charge

(ionic)

Absent Protonated amine
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PLpro inhibition by engaging site V without accessing the
active catalytic triad site. Engaging site V blocks the access
of the catalytic site of PLpro to its substrate ubiquitin/ISG.

CMNPD23373 and CMNPD13919 were unable to bind to
all 5 binding sites. We compared the binding interactions of
XR8-24 and aspergillipeptide F as shown in Fig. 9A and 9B.

XR8-24 has 5 rings and interacts in a double ‘U’ conformation
and aspergillipeptide F interacts in a single ‘U’ shaped confor-
mation as it has only one ring. The most significant observa-

tion is that the LigandScout-predicted 7LBS-XR8-24-based
model in Fig. 2, proposed electrostatic interactions through
the positive ionization centre and HBD in the azetidine ring
of XR8-24 with Glu167 of site I, but the active conformation

of XR8-24 lacked electrostatic interactions and exhibited van
der Waal’s interactions. Similarly, aspergillipeptide F also
interacted with Glu167 through van der Waal’s interactions.

The fascinating phenomenon was that aspergillipeptide F
behaved according to the predicted pharmacophore model
and the ionized primary amine in the side chain established

an ionic interaction with Asp164 and a hydrogen bond with
Ala246. Ionic hydrogen bonds play an important role in bio-
molecule recognition by receptors; hence it is suggested that

the pharmacophore model was effective in predicting a suitable
pharmacophore for molecular recognition by SARS-CoV-2
PLpro (Meot-Ner, 2005). Asp164 of site I binds through a
Pi-anion bond to XR8-24.

XR8-24 established 3 hydrogen bonds whereas
aspergillipeptide formed 5 hydrogen bonds (4 HBA and 1
HBD atoms). The developed pharmacophore model in

Fig. 2D proposed four hydrogen bonds taking into account
2 HBA and 2 HBD groups of ligands. Interestingly,
aspergillipeptide F interacted through its HBA ‘O’ atoms of

the amide chain to form 2 hydrogen bonds with Arg166 of site
II. Designing compounds that can block site I and site II
simultaneously was reported to be difficult and harnessing nat-

ural compounds proved effective (Shen et al., 2022). XR8-24
lacks interaction with Arg166 which suggests the significance
of the structural motif of aspergillipeptide F. XR8-24 and
aspergillipeptide F (HBA ‘O’ atom of –COOH), both formed

a hydrogen bond with Site III residue Gln269. Site IV
Tyr264 interacted by forming a hydrogen bond with XR8-24
whereas Tyr273 of site IV interacted through a hydrogen bond

with aspergillipeptide F (HBA ‘O’ atom of –COOH).
The predicted pharmacophore model in Fig. 2D proposed 4

hydrophobic interactions and in Fig. 7B, the model for

aspergillipeptide F predicted 3 hydrophobic interactions. The
chemical features of active poses of XR8-24 and aspergillipep-
tide F involved in binding are compared in Table 5. Molecular
docking has predicted 2 hydrophobic interactions, besides van

der Waal’s interactions. As per the developed model, methyl
and 2 isopropyl groups of aspergillipeptide F were predicted
to involve in hydrophobic interactions. Molecular docking

also predicted the contributions of methyl and 1 isopropyl
group of aspergillipeptide F towards hydrophobic interactions.
However, the phenyl ring of aspergillipeptide F contributes

significantly to hydrophobic interactions. Hydrophobic inter-
actions were almost similar in XR8-24 and aspergillipeptide
F, the most significant interaction being the Pi-Pi T-shaped

interaction with Tyr268. Interactions of XR8-24 and
aspergillipeptide F with Gln269 and Tyr268 lead to BL2 loop
closure. Also, van der Waal’s interaction with Asn267 supports
BL2 loop closure. The closure of the BL2 loop blocks the
access of substrates to the active site, thus blocking the PLpro
protease activity resulting in inhibition of virus replication. Pi-

alkyl interaction of aspergillipeptide F with Pro248 of site V
closes the BL2 groove, blocks the access of PLpro active site
to ubiquitin/ISG15, and inhibits the deubiquitinating activity

of PLpro, thus improving host anti-viral immunity.
The interatomic distances for the charged interactions of

aspergillipeptide F with PLpro range between 1.82 and

2.96 Å and hydrophobic interactions occurred at a distance
of 2.44–4.46 Å suggesting stable interactions. Amide or peptide
linkages have been associated with greater PLpro binding than
other moieties (De Vita et al., 2020; Osipiuk et al., 2021; Pang

et al., 2021; Shen et al., 2022). Molecular docking results are in
favour of peptide linkages in aspergillipeptide F. Together,
pharmacophore model-aided virtual screening along with con-

sensus molecular docking was successful in retrieving a natural
compound of marine origin with the potential of SARS-CoV-2
PLpro inhibition similar to synthetic potent non-covalent inhi-

bitor XR8-24.
Thus, explored in-silico binding interactions delineate the

mode of action of aspergillipeptide F as an anti-SARS-CoV-
2 compound. Consequently, we proceeded to verify the stabil-

ity of the aspergillipeptide F-PLpro complex and essential
dynamics of PLpro during aspergillipeptide F binding by
molecular dynamics simulation studies.

3.3. Molecular dynamics

During MD simulation, counter ions were added to neutralize

charges (42Na+ and 42Cl- ions for PLpro) and 0.15 M NaCl
salt level was utilized to simulate the physiological condition
of the human system. Proteins undergo structural fluctuations

or conformational changes on ligand binding. RMSD and
RMSF are commonly used to measure these fluctuations as
a measure of conformational stability. RMSD estimates the
structural fluctuation from the 1st frame of MD trajectory

taken as the reference structure to the chosen MD trajectory
structure, in this study the structure at the final 50 ps of simu-
lation. Divergence from the initial RMSDs indicates initial
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conformational changes of protein and ligand. Later when the
system gets equilibrated, RMSDs of the protein and ligand
fluctuate around an average RMSD indicating a stable confor-

mation (Martı́nez, 2015). The retrospective MD analysis to
measure RMSD of aspergillipeptide F-PLpro complex indi-
cated that the bound system has undergone initial conforma-

tional changes as shown in Fig. 10A. After 20 ns, the system
got equilibrated and settled over an average and stable con-
former at an RMSD of 2 Å. RMSF measures the movement

of macromolecule’s Ca-atoms at a specific time of MD run
to an average structure (Patel et al., 2022). Fig. 10B displays
the RMSF of PLpro Ca-atoms in complex with aspergillipep-
tide F in which Thr265 has fluctuated the most, > 4 Å from

the average structure. The RMSF values of other residues
are below 2 Å suggesting a favorable conformation and good
stability of the complex. Fig. 10C shows the radius of gyration

of PLpro Ca-atoms during the 50 ns MD run. Initially, upon
ligand binding radius of gyration was slightly high which
decreased after 15 ns and was maintained around an average

of 22.25 ± 0.012 Å (2.22 nm) indicating good compactness
and stability of the macromolecule. Compactness determines
the protein’s kinetics and degree of folding, therefore the low

radius of gyration of PLpro indicates favorable stability
(MIu et al., 2008). A plot of an average number of hydrogen
bonds maintained during the MD run, Fig. 10D suggested
the presence of 4 ± 0.545 hydrogen bonds indicating a good

fit into the binding sites and stability of the complex.
Fig. 10 A) RMSD of aspergillipeptide F-PLpro complex, B) RMSF

ligand binding, D) Number of hydrogen bonds maintained during MD
The MMGBSA energy and the contributing free energies of
the aspergillipeptide F-PLpro system was calculated from the
final 50 ps trajectories. The more negative values indicate a sta-

bilizing influence and positive values suggest a destabilizing
contribution to the total free energy of the system (Pang
et al., 2021). DGbinding = �58.08 ± 9.45; DGbindLipo = �1

4.44 ± 2.08; DGbindvdW = �34.37 ± 6.17; DGbind-
Coulomb = �26.44 ± 8.69 DGbindSolvGB = 28.14 ± 7.42
and DGbindCovalent = 5.22 ± 1.28 Kcal/mol. The docked

aspergillipeptide F-PLpro system was stabilized by DGbind-
Coulomb, DGbindvdW, and DGbindLipo. Van der Waal’s inter-
actions have been a critical contributor to the total binding
free energy. This is in good correlation with molecular docking

results that suggested a good number of van der Waal’s inter-
actions with critical binding site residues.

DCCM and PCA of MD trajectories are complementary to

RMSD and RMSF in analysing the essential dynamics of pro-
teins during ligand binding. Recent studies have utilized
DCCM and PCA to analyse the protein motions in the

ligand-bound form (Bharadwaj et al., 2021; Shafie et al.,
2021). DCCM quantified the dynamics of Ca-atoms move-
ments from the final 50 ps of MD trajectories. The correlation

between the movements of pairs of atoms was estimated by
measuring their covariance. Fig. 11A is the contour map of
the covariance matrix (DCCM), with cross correlation-
coefficient values indicated on the right. Positive (correlated

movements) and negative (anti-correlated movements) values
of PLpro on ligand binding, C) Radius of gyration of PLpro after

run.



Fig. 11 A) Dynamic cross-correlation map of Ca backbone atom pairs of ligand-bound SARS-CoV-2 PLpro, B) Domains of PLpro

correlated to the protein’s dynamics, C) PCA of two contributing motions clustered from MD trajectories of aspergillipeptide F bound

PLpro.
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in the map indicate the directions of movements of pair of
atoms in the same or opposite directions, respectively. The
blue colour indicates + 1, demonstrating correlated move-

ments and have alike period and phase. The intense blue color
off-diagonal blocks indicate highly correlated atom pairs’
nearest-neighbor movements resulting in a stable conforma-

tion (Yu and Dalby, 2020). Three well-defined blue square
blocks correspond to three structural domains of PLpro. The
domain correlations obtained from MD analysis show that
the D1 domain has residues 1–50 that conform to two distinct

b-sheets and a helical turn (red, Fig. 11B). Residue numbers
51–180 also had correlated motion and folded into 6 a-
helices (teal, Fig. 11B), forming the D2 domain. Domain D3

has the largest cross-correlation of residues 181–300, shaped
into 6 pairs of b and 1 a-helix antiparallel sheets (magenta,
Fig. 11B). All through the analyzed time scale of trajectories

for domain correlation, prominent and substantial cross-
correlation peaks are present, and weak correlation and anti-
correlation peaks are seen dispersed in the matrix indicating
the stability of PLpro domains and binding sites. These results

are in correlation with the low RMSD, RMSF, and
MMGBSA energy of the ligand-bound system.

The PCA analysis of movements of Ca-atoms of PLpro in

the bound state obtained from the MD trajectories is shown in
Fig. 11C. PCA revealed the association of magnitude of two
principal components, fast localized motion (PC1) and slow
universal motion (PC2) of residues to the stability of the bound

complex. Each trajectory’s eigenvalues marked as co-variance
were clustered and plotted in a PCA contour map to show the
magnitude of movement and residue paths. PCA indicated

26.83 % of PC2 variance of the observed total variance for
aspergillipeptide F-PLpro complex. This suggests that the uni-
versal slow motion of residues contributed significantly to the
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stability of the complex. PCA results also corroborated
MMGBSA calculated total binding free energy of the system.

We considered 50 ns simulation time shall provide mean-

ingful interpretations of the protein’s initial and final confor-
mations upon ligand binding, as the structure started
stabilizing after 15 ns and there were no drifts observed in

the protein’s movements up to 50 ns. Performing long-time
simulations may not be useful because MD explores the mini-
mum energy conformation adjacent to the initial conforma-

tion. To overcome doubts about the successful sampling of
stable conformations, running parallel simulations with differ-
ent initial protein conformations is recommended. The limita-
tion of the applied method is that the pharmacophore model

was generated from a single PDB structure and only one initial
conformation was available, hence parallel sampling was
impossible (Hospital et al., 2015).

4. Conclusion

SARS-CoV-2 PLpro inhibition is a valuable therapeutic strategy to

curb SARS-CoV-2 replication and is also beneficial in improving host

anti-viral immunity. A structure-based pharmacophore model from

the 3D structure of 7LBS-XR8-24 was developed and was successfully

applied for virtual screening of comprehensive marine natural product

database to identify potent SARS-CoV-2 PLpro inhibitors. The resul-

tant 50 small ligands on comparative molecular docking and consensus

scoring, predicted aspergillipeptide F as the best PLpro inhibitor.

Binding interaction analysis indicated that aspergillipeptide F engaged

all the 5 binding sites on PLpro and exhibited a greater number of

hydrogen bonds than the native ligand XR8-24 suggesting potent inhi-

bition. Molecular dynamics of aspergillipeptide F-PLpro complex dis-

played good stability influenced by the macromolecule’s strongly

correlated domain movements. Aspergillipeptide F has preferable

drug-like properties and is less toxic according to its predicted molec-

ular and ADME properties. Therefore, this study has the scope for

pharmaceutical, pre-clinical and clinical studies to convert

aspergillipeptide F into a clinical candidate for SARS-CoV-2 therapy.
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