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Abstract: A new emerging disease called “translucent post-larvae disease” (TPD) or “glass post-larvae
disease” (GPD) of Penaeus vannamei, characterized by pale or colorless hepatopancreas and digestive
tract, has become an urgent threat to the shrimp farming industry. Following this clue that treatment
of an antibacterial agent could alleviate the disease, systematic investigation of the potential infectious
agent of TPD was conducted using bacterial identification and artificial challenge tests to fulfill Koch’s
postulates. A dominant bacterial isolate, Vp-JS20200428004-2, from the moribund individuals was
isolated and identified as Vibrio parahaemolyticus based on multi-locus sequence analysis. However,
Vp-JS20200428004-2 differed from the V. parahaemolyticus that caused typical acute hepatopancreatic
necrosis disease. Immersion challenge tests revealed that Vp-JS20200428004-2 could cause 100%
mortality within 40 h at a dose of 1.83 × 106 CFU/mL, and experimental infected shrimp showed
similar clinical signs of TPD. The Vp-JS20200428004-2 could be re-isolated and identified from the
experimental infected individuals. Moreover, histopathological analysis of diseased samples indicated
that Vp-JS20200428004-2 caused severe necrosis and sloughing of epithelial cells of the hepatopancreas
and midgut in shrimp individuals both naturally and experimentally infected. Our present results
indicated that Vp-JS20200428004-2 is a highly virulent infectious agent associated with the TPD and
deserves further attention.

Keywords: infectious agent; Vibrio parahaemolyticus; translucent post-larvae disease (TPD);
glass post-larvae disease (GPD); Penaeus vannamei

1. Introduction

Aquaculture, including shrimp farming, is the fastest-growing sector producing food of animal
origin in the world [1]. Several emerging diseases, including acute hepatopancreatic necrosis disease
(AHPND), viral covert mortality disease (VCMD), infection by Enterocytozoon hepatopenaei (EHP),
and infection of shrimp hemocyte iridescent virus (SHIV), have impacted on the global shrimp
aquaculture industry [1–5]. More recently, a novel disease called “translucent post-larvae disease”
(TPD) or “glass post-larvae disease” (GPD) in Penaeus vannamei has become a rapidly growing threat to
shrimp farming in China recently [6,7].
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Since March 2020, an extensive number of cases of TPD has occurred in some hatcheries of
P. vannamei in Guangdong and Guangxi provinces, after which this new disease began to spread to
major shrimp farming areas in the north of China via post-larvae (PL) transportation in April 2020 [6,7].
Translucent post-larvae disease mostly affects post-larvae at four to seven days old (PL4~PL7) with
very severe infectivity. Usually, the morbidity of a diseased population can reach up to 60% on the
second day after first observing abnormal individuals, and even up to 90–100% in severe cases on the
third day. Translucent post-larvae disease affected shrimp mainly show similar gross clinical signs,
such as a pale or colorless hepatopancreas and empty digestive tract, which causes the body of diseased
individuals to become transparent and translucent; therefore, these diseased individuals were named
“translucent post-larvae” or “glass post-larvae” by local farmers.

Since TPD disease has become prevalent in farmed shrimp stocks, leading to serious economic
losses in some shrimp farming areas in China, it is an urgent necessity to investigate and develop
strategies for preventing the disease. We sampled TPD shrimp and screened for the known pathogens,
but PCR assays indicated that TPD shrimps were free of known shrimp viral pathogens, including
white spot syndrome virus (WSSV), infectious hypodermal and hematopoietic necrosis virus (IHHNV),
VAHPND, SHIV, yellow head virus (YHV), Taura syndrome virus (TSV), and infectious myonecrosis
virus (IMNV). These results suggested that TPD might be caused by a new emerging pathogen.
In addition, some farmers found that treatment of water in rearing tanks with an antibacterial agent
could alleviate the disease. This clue suggested that the disease might be caused by a bacterial pathogen.
Therefore, a systematic investigation of the potential infectious agent causing TPD was conducted
based on bacterial isolation and identification, challenge experiments, and histopathological analysis,
the results of which are presented in this study.

2. Results

2.1. Clinical Signs

The clinical signs of diseased shrimps, either from experimental challenge tests or naturally
affected rearing tanks of TPD, were similar, with abnormal hepatopancreases and digestive tracts as
shown in Figure 1. The hepatopancreases and digestive tracts of the diseased post-larvae shrimp
became pale and colorless (Figure 1a). A high percentage of individuals of the affected post-larvae sunk
to the bottom of the rearing tanks because of the decreased swimming capability caused by the disease.
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Figure 1. Clinical signs of the Penaeus vannamei affected by the translucent post-larvae disease (TPD). 
(a) The P. vannamei individuals collected from TPD-affected rearing tanks of post-larvae. (b) The P. 
vannamei individuals from the immersion challenge bioassay. All the samples were at PL7 stage, and 
body length was approximately 0.6–0.9 cm. The diseased individuals (indicated by the white arrows) 
demonstrated syndromes of abnormal hepatopancreas and digestive tract necrosis. The 
hepatopancreas and digestive tract of the diseased post-larvae were pale and colorless. The bar scales 
are 10 mm and 2 mm in (a,b) and the magnified images, respectively. 

2.2. Detection of Known Pathogens in the Diseased Samples 

The detection results showed that the eight known shrimp pathogens, including VAHPND, WSSV, 
IHHNV, VAHPND, EHP, SHIV, YHV, TSV, and IMNV, were all negative in the shrimp samples suffering 
TPD (Supplementary Figure S1). These results suggested that the TPD-shrimp might be affected by 
a new emerging pathogen. 

2.3. Bacterial Identification 

The sequences of the PCR products were subjected to BLAST. Analysis of its 16S rRNA gene 
sequence showed that all of the 10 dominant strains including JS20200428004-2 belonged to the genus 
Vibrios with the highest similarity to V. parahaemolyticus (99.93%). Further determination of bacterial 
taxonomy was carried out by multi-locus sequence analysis (MLSA). The multi-locus sequence 
concatenated sequences of the rpoD–rctB–toxR genes analysis also clearly identified strain 
JS20200428004-2 as being the closest to V. parahaemolyticus (Figure 2). The colony of JS20200428004-2 
showed the color of milk white on the TSA agar with a neat edge and raised surface, and the diameter 
was 1.79 mm after incubation for 24 h at 28 °C; however, the colony was faint yellow on TCBS agar, 
and the diameter was 2.04 mm after incubation for 24 h at 28 °C (Figure 3a). The result of bacteria 
identification revealed that the post-larvae P. vannamei might be the carrier or infected by Vp-

Figure 1. Clinical signs of the Penaeus vannamei affected by the translucent post-larvae disease (TPD).
(a) The P. vannamei individuals collected from TPD-affected rearing tanks of post-larvae. (b) The
P. vannamei individuals from the immersion challenge bioassay. All the samples were at PL7 stage,
and body length was approximately 0.6–0.9 cm. The diseased individuals (indicated by the white arrows)
demonstrated syndromes of abnormal hepatopancreas and digestive tract necrosis. The hepatopancreas
and digestive tract of the diseased post-larvae were pale and colorless. The bar scales are 10 mm and
2 mm in (a,b) and the magnified images, respectively.

2.2. Detection of Known Pathogens in the Diseased Samples

The detection results showed that the eight known shrimp pathogens, including VAHPND, WSSV,
IHHNV, VAHPND, EHP, SHIV, YHV, TSV, and IMNV, were all negative in the shrimp samples suffering
TPD (Supplementary Figure S1). These results suggested that the TPD-shrimp might be affected by a
new emerging pathogen.

2.3. Bacterial Identification

The sequences of the PCR products were subjected to BLAST. Analysis of its 16S rRNA gene
sequence showed that all of the 10 dominant strains including JS20200428004-2 belonged to the
genus Vibrios with the highest similarity to V. parahaemolyticus (99.93%). Further determination
of bacterial taxonomy was carried out by multi-locus sequence analysis (MLSA). The multi-locus
sequence concatenated sequences of the rpoD–rctB–toxR genes analysis also clearly identified strain
JS20200428004-2 as being the closest to V. parahaemolyticus (Figure 2). The colony of JS20200428004-2
showed the color of milk white on the TSA agar with a neat edge and raised surface, and the diameter
was 1.79 mm after incubation for 24 h at 28 ◦C; however, the colony was faint yellow on TCBS
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agar, and the diameter was 2.04 mm after incubation for 24 h at 28 ◦C (Figure 3a). The result of
bacteria identification revealed that the post-larvae P. vannamei might be the carrier or infected by
Vp-JS20200428004-2. Meanwhile, the dominant colony isolated from the moribund post-larvae in the
challenge test was determined to be completely consistent with the Vp-JS20200428004-2 based on
analysis of the 16S rRNA and toxR gene, which confirms that the bacteria functioning in the challenge
test was the strain of Vp-JS20200428004-2. The result of the biochemical test showed that the parameters
of Vp-JS20200428004-2 were identical to those of Vibrio (Supplementary Table S1).
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Figure 3. Bacterial identification and analysis of virulence genes. (a) The color of Vp-JS20200428004-2 
cultured on trypticase soy (TSA) and Thiosulfate Citrate bile salts sucrose (TCBS) agar. (b) 
Electrophoretogram of molecular detection of toxin gene pirA (b1), pirB (b2), pirAB2020VP (b3), and 
ldh (b4) of collected strain in this study. p: positive control; N: negative control; 1-3: JS20200428004-2. 
M: Molecular marker. 

2.4. Virulence Genes in the Isolated Strain 

The 450 bp PCR amplicon of the ldh gene from Vp-JS20200428004-2 (Figure 3(b4)) was sequenced 
and submitted to the NCBI website for BLAST analysis. The results showed that the strain Vp-
JS20200428004-2 carried the ldh gene (also named the thermolabile hemolysin gene, tlh) and shared a 
100% homology with the known tlh genes of V. parahaemolyticus. Subsequently, the primer sets of 

Figure 3. Bacterial identification and analysis of virulence genes. (a) The color of Vp-JS20200428004-2
cultured on trypticase soy (TSA) and Thiosulfate Citrate bile salts sucrose (TCBS) agar.
(b) Electrophoretogram of molecular detection of toxin gene pirA (b1), pirB (b2), pirAB2020VP (b3),
and ldh (b4) of collected strain in this study. p: positive control; N: negative control; 1-3: JS20200428004-2.
M: Molecular marker.

2.4. Virulence Genes in the Isolated Strain

The 450 bp PCR amplicon of the ldh gene from Vp-JS20200428004-2 (Figure 3(b4)) was sequenced
and submitted to the NCBI website for BLAST analysis. The results showed that the strain
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Vp-JS20200428004-2 carried the ldh gene (also named the thermolabile hemolysin gene, tlh) and
shared a 100% homology with the known tlh genes of V. parahaemolyticus. Subsequently, the primer
sets of pirA-284F/R and pirB-392F/R produced the targets’ amplicons by using the DNA of the standard
VAHPND isolate as a template, whereas failed to amplify the DNA of the Vp-JS20200428004-2 strain
(Figure 3(b1,b2)). In addition, the entire PirABVp toxin gene tandem plus a portion of their upstream
and downstream regions of 2020 bp were obtained from standard VAHPND isolate using the primer
pirAB2020-F/R; however, the same primers failed to produce the PCR amplicon when using the DNA of
Vp-JS20200428004-2 as a template (Figure 3(b3)). The results of the PirABVp toxin gene assays indicated
that the isolated strain of Vp-JS20200428004-2 lacked the pirAVp and pirBVp genes.

2.5. Pathogenicity of the Vibrio. Parahaemolyticus Determined by the Challenge Test

The mortality rate of post-larvae P. vannamei infected with a concentration of 1.83 × 107 CFU/mL
was obviously the highest among all the infected groups, and 100% mortality was observed in the
28 h post challenge. One hundred percent mortality in the group of 1.83 × 106 CFU/mL occurred at
40 h post challenge. Finally, 75% mortality in the group of 1.83 × 104 CFU/mL, the lowest pathogen
concentration used in the challenge tests in this study, occurred at 48 h post challenge. In contrast,
there was no mortality in the negative control group during the experiment period (Figure 4). In the
challenge test, the lethal concentration of 50% (LC50) at 24 h was 9.84 × 105 CFU/mL, and the lethal
times of 50% (LT50) in these 56 h challenge tests with a dose of 1.83 × 107, 1.83 × 106, 1.83 × 105,
and 1.83 × 104 CFU/mL were 15.7 h, 24.6 h, 28.9 h, and 38.6 h, respectively.

Pathogens 2020, 9, x FOR PEER REVIEW 6 of 16 

pirA-284F/R and pirB-392F/R produced the targets’ amplicons by using the DNA of the standard 
VAHPND isolate as a template, whereas failed to amplify the DNA of the Vp-JS20200428004-2 strain 
(Figure 3(b1,b2)). In addition, the entire PirABVp toxin gene tandem plus a portion of their upstream 
and downstream regions of 2020 bp were obtained from standard VAHPND isolate using the primer 
pirAB2020-F/R; however, the same primers failed to produce the PCR amplicon when using the DNA 
of Vp-JS20200428004-2 as a template (Figure 3(b3)). The results of the PirABVp toxin gene assays 
indicated that the isolated strain of Vp-JS20200428004-2 lacked the pirAVp and pirBVp genes. 

2.5. Pathogenicity of the Vibrio. Parahaemolyticus Determined by the Challenge Test 

The mortality rate of post-larvae P. vannamei infected with a concentration of 1.83 × 107 CFU/mL 
was obviously the highest among all the infected groups, and 100% mortality was observed in the 28 
h post challenge. One hundred percent mortality in the group of 1.83 × 106 CFU/mL occurred at 40 h 
post challenge. Finally, 75% mortality in the group of 1.83 × 104 CFU/mL, the lowest pathogen 
concentration used in the challenge tests in this study, occurred at 48 h post challenge. In contrast, 
there was no mortality in the negative control group during the experiment period (Figure 4). In the 
challenge test, the lethal concentration of 50% (LC50) at 24 h was 9.84 × 105 CFU/mL, and the lethal 
times of 50% (LT50) in these 56 h challenge tests with a dose of 1.83 × 107, 1.83 × 106, 1.83 × 105, and 1.83 
× 104 CFU/mL were 15.7 h, 24.6 h, 28.9 h, and 38.6 h, respectively. 

 
Figure 4. Cumulative mortality of Penaeus vannamei induced by immersion in gradient concentration 
of bacteria Vp-JS20200428004-2. Four groups of healthy shrimp were immersed in a dilution 
concentration of 1.83 × 107 ~ 1.83 × 104 CFU/mL (infected group), and one group was immersed in 
boiled seawater (control group). The cumulative mortalities of shrimp are shown as the means and 
SD of data from two replicates for each experimental group. 

Meanwhile, most of the individual shrimp in the challenged group showed the typical clinical 
signs of TPD, including pale, colorless hepatopancreas and midgut. Meanwhile the diseased 
individuals showed obvious signs of being lack of food in the hepatopancreas and digestive tract at 
high magnification (Figure 1b). 

2.6. Histopathology Analysis of the Vibrio Infection 

Histopathological examination of the naturally infected individuals showed that necrosis, as 
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5). In the early phase of infection, necrosis of epithelial cells was minor in the hepatopancreatic 
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Figure 4. Cumulative mortality of Penaeus vannamei induced by immersion in gradient concentration of
bacteria Vp-JS20200428004-2. Four groups of healthy shrimp were immersed in a dilution concentration
of 1.83 × 107~1.83 × 104 CFU/mL (infected group), and one group was immersed in boiled seawater
(control group). The cumulative mortalities of shrimp are shown as the means and SD of data from two
replicates for each experimental group.

Meanwhile, most of the individual shrimp in the challenged group showed the typical clinical signs
of TPD, including pale, colorless hepatopancreas and midgut. Meanwhile the diseased individuals
showed obvious signs of being lack of food in the hepatopancreas and digestive tract at high
magnification (Figure 1b).

2.6. Histopathology Analysis of the Vibrio Infection

Histopathological examination of the naturally infected individuals showed that necrosis, as well
as sloughing of the epithelial cells, occurred in the hepatopancreatic tubules and midgut (Figure 5).
In the early phase of infection, necrosis of epithelial cells was minor in the hepatopancreatic tubules
(Figure 5a,b), but necrosis and sloughing of epithelial cells were severe in the midgut (Figure 5e).
Necrosis and sloughing of epithelial cells became very severe, and typical signs of significant bacterial
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colonization both in the hepatopancreas tubule lumens and the midgut lumens could be observed in
the acute and late phase of infection (Figure 5c,d,f). The bacterial colonization in the HP was verified
by using the transmission electron microscopy analysis (Figure 6a,b). All of the observations were
almost identical in the hepatopancreases and digest tracts of sick individuals sampled from different
regions. The H&E figures of the normal shrimp from rearing tanks affected by TPD is supplied in
Supplementary Materials Figure S2 as a comparison.
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Figure 5. Histological sections of the naturally infected post-larvae in shrimp rearing tanks of post-larvae
suffering from TPD. (a,b) Early phase with active destruction of the hepatopancreas. Note the mild
necrosis of epithelial cells (ECs) of hepatopancreatic (HP) tubules, especially the ECs in the dotted
boxes showing typical dark, smaller, and condensed nuclei. The bacterial colonization (BC) in the early
phase of infection was indicted by the black arrows. The arrowed ECs (black arrow) were B-cells with
the large vacuoles. (c,d) Acute phase with massive bacterial invasion. There was vast bacterial invasion
of the hepatopancreatic tubules in half of the organs, where the bacterial masses and the tubules were
destroyed. Note the detachment/sloughing of hepatopancreatic ECs (white arrows). (e,f) Midgut of an
affected digestive tract of a naturally infected post-larvae showing necrosis (dotted box) and sloughing
(white arrows) of ECs of the digestive tract. Note the mass BC in the tubule lumens of the digest tract at
the midgut. (b), (b1), (d), and (e) are the magnified micrographs of the area in the black frames in (a–c),
and (e0), respectively. (a,b,e) show the pathological change in the early phase of infection. (c,d,f) show
the pathological change in the acute phase of infection. Scale bars = (a) 100 µm, (b) 20 µm, (c) 100 µm,
(d) 20 µm, (e0) 100 µm, (e) 10 µm, and (f) 5 µm.
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Figure 6. The bacterial colonization in the HP of the naturally infected post-larvae in shrimp rearing
tanks of post-larvae suffering from TPD under transmission electron microscopy. (b) The magnified
micrographs of the area in the black frames in (a).

Histopathology of the individuals in the immersion challenge test of V. parahaemolyticus
(Vp-JS20200428004-2) indicated that HP tubule epithelial cells showed necrosis and sloughing into
the HP tubule lumens (Figure 7a–d). In the early phase, the necrosis and sloughing of epithelial cells
also appeared in the digestive tract at the midgut (Figure 8a). As the bacterial infection became more
serious, severe necrosis and sloughing of epithelial cells were observed in both the hepatopancreatic
tubules (Figure 7c,d) and the digestive tract at the midgut (Figure 8b) in the middle phase of infection.
The melanization caused by the bacterial infection was obvious in the hepatopancreatic epithelial
cells (Figure 7d), and the same symptom of melanization also appeared in the hepatopancreatic
epithelial cells of the naturally infected shrimps (Supplementary Figure S3). Obvious signs of bacterial
colonization also occurred in both of the HP tubule lumens (Figure 7f) and the digest tract (Figure 8c)
in the late phase of infection.
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Figure 8. Histological sections of a digestive tract from an artificially infected post-larvae in an 
immersion bioassay. (a) Early phase of the affected digestive tract at the midgut of the artificially 
infected post-larvae showing necrosis (dotted boxes) and sloughing of epithelial cells (ECs) of the 
digestive tract (white arrows). (b) Middle phase with severe necrosis of ECs of the digestive tract. (c) 

Figure 7. Histological sections of the artificially infected post-larvae in immersion bioassay showing
similar TPD lesions in hepatopancreas (HP) induced by Vp-JS20200428004-2 isolate. (a,b) Early phase
with active destruction of the HP. Affected HP tubules showed obvious necrosis of epithelial cells (ECs)
(dotted boxes) with typical dark, smaller, and condensed nuclei. (c,d) Middle phase with obvious
melanization (black arrows) and bacterial colonization (BC) in the HP. (e,f) Acute (late) phase with
massive bacterial invasion. Huge numbers of bacteria occupied the hepatopancreatic tubules. Note the
detachment/sloughing of hepatopancreatic ECs (white arrows). (b,d,f) are the magnified micrographs
of the area in the black frames in (a,c,e), respectively. Sloughing of the ECs in the HP tubule are indicated
by the white arrows. Note the BC in epithelial cells in the HP tubule lumens. Scale bars = (a) 100 µm,
(b) 20 µm, (c) 250 µm, (d) 20 µm, (e) 100 µm, and (f) 20 µm.
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tubule are indicated by the white arrows. Note the BC in epithelial cells in the HP tubule lumens. 
Scale bars = (a) 100 μm, (b) 20 μm, (c) 250 μm, (d) 20 μm, (e) 100 μm, and (f) 20 μm. 

 
Figure 8. Histological sections of a digestive tract from an artificially infected post-larvae in an 
immersion bioassay. (a) Early phase of the affected digestive tract at the midgut of the artificially 
infected post-larvae showing necrosis (dotted boxes) and sloughing of epithelial cells (ECs) of the 
digestive tract (white arrows). (b) Middle phase with severe necrosis of ECs of the digestive tract. (c) 

Figure 8. Histological sections of a digestive tract from an artificially infected post-larvae in an
immersion bioassay. (a) Early phase of the affected digestive tract at the midgut of the artificially
infected post-larvae showing necrosis (dotted boxes) and sloughing of epithelial cells (ECs) of the
digestive tract (white arrows). (b) Middle phase with severe necrosis of ECs of the digestive tract.
(c) Late phase with BC. (b) was a magnified micrograph of the area in the black frames in (b0). Scale
bars = (a) 20 µm, (b0) 100 µm, (b) 10 µm, and (c) 5 µm.

3. Discussion

Over the past decade, the world shrimp farming industry has been heavily affected by several
emerging and reemerging diseases [1,9,10]. One of those major diseases is AHPND, also known as early
mortality syndrome (EMS) [9,11,12]. AHPND has spread to other shrimp farming countries since it was
first reported in Vietnam and China in 2010. The global prevalence of AHPND has caused significant
losses in shrimp production in Thailand, Vietnam, China, Malaysia, and Mexico [13–16], and the direct
global economic loss caused by AHPND was over US$ 44 billion from 2010 to 2016 [17–19].

The causative agent of AHPND proved to be some unique isolates of Vibrio (VAHPND) which carry
a plasmid of approximately 70 kb carrying genes for toxins that resemble the binary Photorhabdus
insect-related (Pir) toxins PirA and PirB [13,20–22]. The pathognomonic lesions of AHPND were
characterized by massive sloughing of tubule epithelial cells of the shrimp hepatopancreas (HP) [23–26].
At the very beginning, VAHPND was deduced to be the causative agent of TPD because the gross clinical
signs of the diseased post-larvae were similar to AHPND’s syndrome to some degree. However, both
the AP4 nested PCR method and duplex pirABVp PCR assays of the TPD-shrimp samples showed
negative results for the VAHPND test. In addition, AHPND occurs approximately within 35 days after
stocking of shrimp ponds, and the onset of clinical signs and mortality of AHPND start as early as
10 days post-stocking in some extreme cases [27] (. Whereas, TPD usually occurs in post-larvae of 4 to
7 days, which is much earlier than when AHPND usually appears. Hence, we deduced that TPD was
a novel disease that differed from AHPND.

The results of molecular assays showed that the diseased individuals in the TPD-affected rearing
tanks of post-larvae were negative for WSSV, IHHNV, VAHPND, EHP, SHIV, YHV, TSV, and IMNV.
In consideration that treatment of water in rearing tanks with an antibacterial agent could alleviate the
disease, we conducted bacterial pathogen isolation and identification from the diseased P. vannamei
samples suffering from TPD first. The dominant bacteria isolate from the moribund infected shrimp
were identified as V. parahaemolyticus according to sequence alignment and evolutionary tree analysis
based on the 16S rDNA and three toxin gene sequences. Pathogenicity analysis of the V. parahaemolyticus
in the challenge test indicated that the typical gross clinical signs were similar to those of farm-based
TPD. The onset and progression of the disease in the challenge test as well as the mortality were also
similar to those of farmed-based TPD. Thus, the novel V. parahaemolyticus (Vp-JS20200428004-2) was
deduced to be the pathogenic agent of TPD in post-larvae of shrimp.

Two types of deletion mutants regarding the pirABVp genes in V. parahaemolyticus have been found
from AHPND-affected farms [28]. The type I mutants include three strains with deletion of entire
pirABVp genes. The type II mutants include three strains with smaller deletion of the pirAVp gene
and partial pirBVp gene. These two types of V. parahaemolyticus were not pathogenic to shrimp which
indicated both pirAVp and pirBVp were related to AHPND pathogenicity. Recently, a V. parahaemolyticus
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isolate (XN87) lacking pirAVp but carrying pirBVp was identified, and it could cause 47% mortality
without AHPND lesions in shrimp immersion challenge [27]. Sequence and virulence analysis revealed
that XN87 carrying mutant pVA plasmids that produce no PirVp toxins could cause mortality in
shrimp in ponds. In 2020, Andrea et al. [29] reported that there is a proportion of Vibrio isolates
(isolates 36 and 43) harboring intact pirABVp, but they did not produce AHPND PirABVp toxins.
Atypical V. parahaemolyticus isolates (isolates 36 and 43) produced neither PirABVp toxins nor AHPND
pathology but still killed shrimp. All of the abovementioned reports revealed that the pathogenic
mechanism of typical VAHPND and atypical V. parahaemolyticus is more complicated than the initial
understanding of researchers. The pVA plasmid does not always determine the pathogenicity of V.
parahaemolyticus to shrimp, and the presence of pirABVp toxin genes is insufficient for confirmation
of AHPND-causing bacteria. In the present study, results of virulent genes analysis showed that the
isolate of Vp-JS20200428004-2 lacks of the pirAVp and pirBVp genes; however, it possesses the ldh gene
which encodes a key virulent factor, thermolabile hemolysin, and is lethal to shrimp. In addition,
Vp-JS20200428004-2 of 1.83 × 106 CFU/mL caused 100% mortality within 40 h post challenge; that is,
the isolate of Vp-JS20200428004-2 seemed to be more virulent than both the typical VAHPND and atypical
V. parahaemolyticus previously reported. These results revealed the higher diversity of pathogenic
V. parahaemolyticus in shrimp.

Acute necrosis of HP epithelial cells and sloughing of the HP epithelial cells occurred
in the hepatopancreatic tubules from both naturally and the artificially infected post-larvae
individuals. The gross histopathological signs of TPD was not identical to those of AHPND,
of which there was massive cell sloughing of hepatopancreatic tubule epithelial cells [13,28].
Meanwhile, the histopathological signs of TPD were also different from those caused by atypical
V. parahaemolyticus [29,30]. The unique gross histopathological signs of TPD suggested that the
pathogenic mechanism of Vp-JS20200428004-2 was different from those of both typical VAHPND and
atypical V. parahaemolyticus. For further exploration of the pathogenic mechanism of Vp-JS20200428004-2,
more systematic comparative studies on the Vp-JS20200428004-2, typical VAHPND, and atypical
V. parahaemolyticus should be designed and conducted; details about the functional genes, plasmids,
and genome of Vp-JS20200428004-2 should especially be further investigated in the future.

So far, vibriosis, caused by various V. spp, has been reported to occur at different developmental
stages of P. vannamei including the naupllii (2 days), zoea (4–5 days), mysis (3–5 day), post-larvae
(10–15 days), and juveniles [31,32]. Vibro alginolyticus was associated with the zoea 2 syndrome and
the mysis mold syndrome in the stage of larvae, while V. alginolyticus and V. harveyi were associated
with the bolitas syndrome [32]. The bolitas syndrome was referred to a larvae syndrome in P. vannamei
involving the detachment of epithelial cells from the intestine and hepatopancreas, which appeared
as small spheres within the digestive tract [31]. Apparently, the histopathological syndromes of the
intestine and hepatopancreas of TPD caused by the Vp-JS20200428004-2 were different from that of
bolitas syndrome. In addition, the clinical signs of TPD were distinct from the clinical signs of bolitas
syndrome, which included reduced feeding, retarded development, sluggish swimming, and reduced
escape mechanism [31]. Thus, TPD was deduced to be a novel vibrio disease occurred in the stage of
post-larvae of P. vannamei.

In summary, based on the systematic analysis including pathogenic agent isolation, identification
and assays following the four criteria of Koch’s postulates, we confirmed that a novel V. parahaemolyticus
(Vp-JS20200428004-2) was the causative agent associated with the emerging TPD that affected shrimp
farming in 2020. The new pathogen shows high virulence to the post-larvae of shrimp and can cause
acute and severe histopathological changes in the hepatopancreas and midgut. The risk of epidemic
disease and losses in post-larvae caused by this new pathogen deserves further attention.
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4. Materials and Methods

4.1. Sample Collection and Experiment Shrimp

The diseased post-larvae P. vannamei (PL7, body length 6–8 mm) were sampled from a shrimp
farm in Ganyu, Jiangsu Province, on 28 April 2020. The moribund individuals were fixed in 4%
paraformaldehyde for histopathological examination and 2.5% glutaraldehyde solution for transmission
electron microscope observation, respectively. The healthy post-larvae shrimp (PL3, body length
4–6 mm) were purchased from a shrimp farm in Weifang, Shandong Province, and reared for two days
then used for the challenge test.

4.2. Detection of Eight Known Shrimp Pathogens in the Diseased Samples

The presence of 8 known shrimp pathogens (including WSSV, IHHNV, VAHPND (AP4-F/R primers),
EHP, SHIV, YHV, TSV, and IMNV) in the diseased samples was detected by using the recommended
methods in the Manual of Diagnostic Tests for Aquatic Animals [33]. In addition, the detection of
SHIV and EHP was conducted according to the previously reported protocols [5,34]. The total DNA
was extracted from the samples preserved in 95% ethanol by TIANamp Marine Animals DNA Kit
(Tiangen, Beijing, China) according to the manufacturer’s protocol. Total RNA was extracted by using
the QIAamp viral RNA kit (Qiagen Sciences, Gaithersburg, Maryland). The concentration and quality
of extracted DNA/RNA was assessed by NanoDrop 2000c Spectrophotometer at wavelengths of 260
and 280 nm (Thermo Scientific, Waltham, MA, USA).

4.3. Bacteria Isolation

After disinfection with 75% alcohol and followed with three washes of PBS buffer (pH 7.2;
Solarbio), the moribund shrimp from rearing tanks were homogenized in 0.5 mL of sterile PBS buffer.
Marine 2216 agar was used for bacterial isolation and purification at 28 ◦C. Trypticase soy agar
supplemented with 2% NaCl (TSA+) was used for the subculture of bacteria at 28 ◦C. The isolated
bacteria were stored in Marine 2216 broth containing 15% (v/v) glycerol at −80 ◦C. The isolation protocol
was also applied for re-isolation of dominant strains from the shrimp in the challenge test.

4.4. Bacteria Identification

A distinct single colony was selected from the TSA+ plate and re-suspended in 50 µL sterile water,
then boiled at 95 ◦C for 10 min. After centrifugation at 3000× g for 30 s, the supernatant was used as
template for PCR detection.

For bacteria identification, we applied 16S rRNA gene sequence analysis which provided a
genus-level taxonomy of the strain firstly, and then MLSA based on three protein-coding genes
(rctB, rpoD, and toxR) was applied for identification of strain according to the method described by
Pascual et al. [8]. The concatenated sequences of rpoD–rctB–toxR sequences alignment was processed,
and the resultant tree topology was evaluated using bootstrap analysis based on the neighbor-joining
algorithm with 1000 replicates which was embedded in MEGA7.

The universal primers for detecting 16S rDNA of the bacteria used in this study were 27F and
1492R (Table 1) according to previous studies [35,36]. The PCR reaction mixture (25 µL) for 16S rDNA
consisted of 12.5 µL ExTaq premix (Takara, Dalian, China), 1 µL of each primer (10 mM), and 1 µL
DNA template. The amplicons of PCR were obtained from the following reaction: 95 ◦C for 5 min,
followed by 30 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s and 72 ◦C for 1 min 20 s with a final extension
step at 72 ◦C for 7 min.



Pathogens 2020, 9, 741 13 of 17

Table 1. Primers sequences of rctB, rpoD, toxR, ldh, and pirABVp for PCR.

Gene Primer Primer Sequences (5′-3′) References

16S rDNA
27F AGAGTTTGATCMTGGCTCAG [35,36]

1492R GGYTACCTTGTTACGACTT

rpoD

rpoD-F ACGACTGACCCGGTACGCATGTAYATGMGNGAR
ATGGGNACNGT

[8]
rpoD-R ATAGAAATAACCAGACGTAAGTTNGCYTCNAC

CATYTCYTTYT

rctB
rctB -F ATHGARTTYACNGAYTTYCARYTNCAY

rctB-R YTTNCTYTGHATNGGYTCRAAYTCNCCRTC

toxR
toxR-F GANCARGGNTTYGARGTNGAYGAYTC

toxR-R TTDKKTTGNCCNCYNGTVGCDATNAC

ldh
ldh-F AAAGCGGATTATGCAGAAGCACTG [29]
ldh-R GCTACTTTCTAGCATTTTCTCTGC

pirAVp pirA-284F TGACTATTCTCACGATTGGACTG

[21]pirA-284R CACGACTAGCGCCATTGTTA

pirBVp pirB-392F TGATGAAGTGATGGGTGCTC

pirB-392R TGTAAGCGCCGTTTAACTCA

pirABVp pirAB2020-F GCACCGTAAATTTTCAGGTT [27]
pirAB2020-R CGTTGCAATCTAAGACATAG

AP4

AP4-1
AP4-F1: ATGAGTAACAATATAAAACATGAAAC

[37]
AP4-R1: ACGATTTCGACGTTCCCCAA

AP4-2
AP4-F2: TTGAGAATACGGGACGTGGG

AP4-R2: GTTAGTCATGTGAGCACCTTC

According to previous reports [8], the sequences of conserved rctB and rpoD genes were obtained
by a thermal program: (i) 95 ◦C for 5 min; (ii) 10 cycles of 95 ◦C for 1 min; 54 ◦C for 2 min; 72 ◦C for
1 min 15 s; (iii) 25 cycles of 95 ◦C for 35 s; 54 ◦C for 2 min; 72 ◦C for 1 min15 s; (iv) extension step at 72 ◦C
for 10 min, and the amplification of toxR fragment was completed by the touchdown PCR method:
(i) 95 ◦C for 5 min; (ii) 8 cycles of 95 ◦C for 1 min; 62 ◦C for 2 min; 72 ◦C for 1 min 15 s, with 1 ◦C drop
per cycle; (iii) 27 cycles of 95 ◦C for 35 s; 54 ◦C for 2 min; 72 ◦C for 1 min 15 s; (iv) extension step at
72 ◦C for 7 min.

The biochemical tests of Vp-JS20200428004-2 were conducted using API 20NE (BIOMERIEUX,
Marcy I’Etoile, France) after incubating for 48 h according to the protocol in previous reports [38,39].

4.5. Analysis of Virulent Genes in the Isolated Strain

The virulent genes, lecithin-dependent haemolysin gene (ldh) and pirAB2020Vp, in V. parahaemolyticus
were detected according to previous report [29]. The target genes pirAVp (284 bp) and pirBVp (392 bp)
were amplified according to Han et al. [24]. All the involved primers are listed in Table 1, and the
ldh-specific PCR was carried out at 94 ◦C for 5 min followed by 35 cycles at 94 ◦C for 30 s, 52 ◦C for
30 s, and 72 ◦C for 30 s and a final cycle at 72 ◦C for 7 min. The target gene pirAB2020Vp was amplified
by 35 cycles at 94 ◦C for 40 s, 50 ◦C for 40 s, and 72 ◦C for 2 min 10 s after denatured for 5 min at 95 ◦C,
and a final cycle at 72 ◦C for 7 min according to the OIE manuals [33].
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4.6. Experimental Challenge by Immersion

The healthy post-larvae P. vannamei were cultivated temporarily in sterile seawater (21 ◦C) for
two days and then randomly divided into 5 groups (i.e., four infected groups and one control group),
20 tails/group with two replications for each group. The average body length of the shrimp was
5.5 mm ± 0.2 mm (n = 10). The immersion challenge test was carried out as previously described by
Tran et al. [13] with modifications.

To prepare the bacterial inoculum used in the challenge test, the Vibrio strain JS20200428004-2 was
incubated in Tryptic Soy Broth medium with extra NaCl (TSB+) overnight at 28 ◦C. The concentration of
bacterial solution was adjusted to the value 1.0 of OD600 (approximately corresponding to 109 cells/mL)
in a microplate reader (Don Whitley Scientific Limited, Shipley, West Yorkshire, England) and then
confirmed by the plate colony counting method.

The obtained bacteria were centrifuged at 6000 rpm for 10 min at 4 ◦C, washed and re-suspended
three times using sterile seawater, and finally diluted to 1.83 × 107–1.83 × 104 CFU/mL in boiled
seawater as the infected group. The shrimp immersed in 1000 mL boiled seawater were only used as the
control group. Mortalities were monitored every two hours for 24 h and median lethal concentrations
(LC50) were then calculated. The dead and moribund shrimps were removed, and the moribund
shrimps were fixed in 4% paraformaldehyde, and then bacteria were re-isolated and verified following
the same protocol as the method described above.

4.7. Histopathology

The fixed shrimp with 4% PFA–PBS fixative from rearing tanks and the infected group in the
laboratory were embedded with paraffin immediately after being dehydrated with a gradient of
ethanol solutions. One slide of each sample was stained with H&E according to the routine histological
procedures described by Lightner (1996) [40]. Analysis of transmission electron microscopy was
conducted according to the protocol in a previous report [4].

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/9/741/s1,
Figure S1. Electrophoretogram of molecular detection of eight common pathogens in the diseased individuals
of the translucent post-larvae disease (TPD) case. M: molecular marker; P: positive control; N: negative control;
S: sample. (f1) showed the first step PCR amplicon of nested PCR for each pathogen. (f2) showed the second
step PCR amplicon of the nested PCR for each pathogen. AP4 primer set was used in the AHPND test. M:
Molecular markers, Figure S2. Histological sections of the normal shrimp from rearing tanks affected by TPD.
(a) micrograph of low magnification. (b) The magnified micrographs of the area in the black frames in (a). Note
the intact hepatopancreatic tubules (HTs) and epithelial cells of HTs. Scale bars = (a) 100 µm, (b) 20 µm, Figure S3.
Histological sections of the hepatopancreatic (HP) tubules from the shrimp natural infected with TPD. (a, b) The
hepatopancreas tubules infected by bacteria showed melanization (black arrows). (c, d) The massive bacterial
colonization (BC) in epithelial cells and tubule lumens of the HP. Scale bars = (a) 100 µm, (b) 20 µm, (c) 100 µm,
(d) 20 µm, Table S1. The results of biochemical test for Vp-JS20200428004-2 by API 20NE.
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