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The association between two intrinsically disordered proteins (IDPs) may produce a
fuzzy complex characterized by a high binding affinity, similar to that found in the
ultrastable complexes formed between two well-structured proteins. Here, using coarse-
grained simulations, we quantified the biophysical forces driving the formation of such
fuzzy complexes. We found that the high-affinity complex formed between the highly
and oppositely charged H1 and ProTα proteins is sensitive to electrostatic interactions.
We investigated 52 variants of the complex by swapping charges between the two oppo-
sitely charged proteins to produce sequences whose negatively or positively charged resi-
due content was more homogeneous or heterogenous (i.e., polyelectrolytic or
polyampholytic, having higher or lower absolute net charges, respectively) than the wild
type. We also changed the distributions of oppositely charged residues within each par-
ticipating sequence to produce variants in which the charges were segregated or well
mixed. Both types of changes significantly affect binding affinity in fuzzy complexes,
which is governed by both enthalpy and entropy. The formation of H1–ProTa is sup-
ported by an increase in configurational entropy and by entropy due to counterion
release. The latter can be twice as large as the former, illustrating the dominance of
counterion entropy in modulating the binding thermodynamics. Complexes formed
between proteins with greater absolute net charges are more stable, both enthalpically
and entropically, indicating that enthalpy and entropy have a mutually reinforcing
effect. The sensitivity of the thermodynamics of the complex to net charge and the
charge pattern within each of the binding constituents may provide a means to achieve
binding specificity between IDPs.

protein association j high-affinity binding j counterion entropy j intrinsically disordered proteins j
polyelectrolytes

Protein–protein interactions are essential in molecular recognition (1–7) and, thus,
essential to many biological functions. Chemical and structural complementarity are
commonly found in many protein–protein recognition processes and determine their
thermodynamic characteristics. The molecular details of the interface of the formed
complex are often acknowledged to dictate its stability; nonetheless, it is not trivial to
rationally design these properties via mutations. Although protein recognition between
two folded proteins commonly occurs, intrinsically disordered proteins (IDPs) can also
form complexes. IDPs may become more structured upon binding (8), but some
remain unstructured and disordered even in the bound state and form “fuzzy” com-
plexes (9–11) that rapidly interconvert between alternative states due to energetic
frustration (12–14). The tendency of IDPs to interact with other IDPs is illustrated by
their participation in various protein condensates formed by liquid–liquid phase separa-
tion, where IDPs largely retain their flexibility (15–21).
Similarly to the high affinity of some protein complexes formed by structured proteins,

high affinity can also be found in binding between IDPs. Recently, ultrahigh-affinity bind-
ing was reported between human linker histone (H1) and nuclear protein prothymosin-α
(ProTα), with both constituents remaining disordered in the H1–ProTα complex
(22–24). The H1 protein is primarily involved in chromatin condensation, and the ProTα
protein is involved in chromatin remodeling, cellular proliferation, apoptosis, and the tran-
scription process. The functional advantage of such disorder in a complex is still the sub-
ject of debate; however, recent studies inferred that extreme disorder may considerably
facilitate the regulatory mechanism (22, 23). Computational studies (25, 26) and single-
molecule experiments (27) revealed that the presence of disorder in the positively charged
H1 protein induces it to undergo large amplitude motions while on the nucleosome, with
these facilitating its interaction with the negatively charged ProTα. As a result, ProTα can
enter the H1–nucleosome complex and displace H1 by means of competitive substitution.
Consistently with the high and opposite absolute net charges on H1 (0.37 per resi-

due, excluding the folded domain) and ProTα (�0.40 per residue), electrostatics was
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found to play an important role in the formation of the fuzzy
complex between them. Support for the role of electrostatics as
a driving force is suggested by the strong effect of salt concen-
tration on the dissociation constant (KD) of the H1–ProTα
complex. The high affinity of the fuzzy H1–ProTα complex
(which is in the low picomolar range; ref. 23) is unique com-
pared to the lower affinity measured for other fuzzy complexes
(SI Appendix, Table S1 summarizes KD of fuzzy complexes
from the FuzDB database; ref. 28) and is quite unexpected,
given its lack of shape and the absence of chemical complemen-
tarity, which are essential for the formation of high-affinity
complexes between two well-folded proteins. Particularly high
affinities involving structured proteins have been found for the
Escherichia Colicin DNase–Im family of complexes formed
between a bacterial toxin and its specific immunity protein,
which exhibit KD of 10�12 to 10�15 M (3, 5, 29). The
barnase–barstar complex (which forms between an RNase and
its inhibitor) is also characterized by very high affinity, with KD

of 10�13 M (at 300 K and a salt concentration of 300 mM)
(30, 31).
The association of the highly charged disordered H1 and

ProTα proteins is reminiscent of the condensates, particularly
polyampholyte condensates, formed by some IDPs via liquid–
liquid phase separation (16, 32–40). It was shown that long-
range electrostatic interactions are essential to the stability of
the condensate formed by charged IDPs and for maintenance
of their internal mobility (41). Replacing long-range electro-
static interactions with short-range hydrophobic interactions
affects the stability of the protein condensate (e.g., it lowers the
critical temperature for phase separation) and its liquidlike proper-
ties (e.g., it lowers the intracondensate diffusion coefficient)
(15). It was shown that changing the electrostatic properties of
the IDPs by reorganizing the charges along their chains (i.e., by
changing their charge pattern) also has a strong effect on stability
and on the dynamics of the droplet (15, 41). These observations
may suggest that the electrostatic properties of H1 and ProTα
can dramatically affect the stability of their fuzzy complex.
Given that similarly high binding affinities have been found

for the association of two IDPs and for two folded proteins,
one may inquire whether both types of association reactions
share similar thermodynamic driving forces. Similar thermody-
namic properties were found for binding between two folded
proteins and between a folded protein and an IDP (42). Often
in these cases, binding reactions are dominated by a favorable
change in enthalpy (ΔH) due to the formation of new interfa-
cial interactions, with the change in entropy (ΔS) showing
more complex behavior. Fuzzy complexes formed between two
IDPs may make a larger entropic contribution to complex
stability compared with binding between folded proteins or
between a folded protein and an IDP. Moreover, it is unclear
whether the entropy contribution can, in these cases, dominate
the enthalpic contribution.
Furthermore, an unfavorable loss of entropy often compen-

sates for the favorable enthalpic gain upon protein association,
resulting in weaker stability. Although such enthalpy–entropy
compensation may be sensitive to the ability to detect it experi-
mentally (43), it is quite widespread and has been confirmed in
various protein systems (44). The simplest physical explanation
for the origin of enthalpy–entropy compensation is that the
formation of favorable interfacial interactions in the bound state
may be coupled with the imposition of conformational restric-
tions. Nonetheless, other molecular origins for enthalpy–entropy
compensation may exist and may depend on the extent to which
it occurs (44). Compensation between enthalpy and entropy is

often probed in terms of similar ΔH and ΔS responses to modifi-
cations made to the two binding protein partners (namely, ΔΔH
and ΔΔS share the same sign; therefore, the overall net effect on
the free energy is small). For some systems, however, an opposite
sign is measured for ΔΔH and ΔΔS that yields enhanced stabil-
ity, suggesting the occurrence of enthalpy–entropy reinforcement
(43, 45), although the microscopic interpretation of this phenom-
enon remains unclear. It is intriguing to ask whether the forma-
tion of fuzzy complexes exhibits enthalpy–entropy reinforcement
or compensation.

The current study aimed to investigate the thermodynamic
origin of the ultrahigh affinity of the fuzzy H1–ProTα complex
and to quantify the cross-talks between enthalpy and entropy.
We explored whether mutations affect the affinity of the fuzzy
complex in a similar manner to the effect of mutations on the
binding affinity of complexes between folded proteins. We applied
coarse-grained (CG) molecular dynamics (MD) simulations to
quantify the binding mechanism and thermodynamics of wild-
type (WT) H1–ProTα as well as several of its mutants. As the
complex involves highly charged proteins, we explored the effect
on binding affinity of swapping charged residues between the two
participating protein sequences (which affects their polyelectrolytic
or polyampholytic character and, thus, their respective net charges)
and within the sequences (which affects the charge pattern, i.e, the
extent to which like charges are mixed or segregated within each
sequence). We examined sets of variants of H1 and ProTα in an
effort to comprehensively characterize the relationship between the
various thermodynamic properties and the conformational ensem-
ble of the complex.

Results and Discussion

Stability Analysis of Ordered and Disordered Protein Complexes.
To study the mechanism and thermodynamics of the association
of H1 and ProTα, extensive simulations of the CG model of their
complex were performed to obtain their potential of mean force
(PMF) profiles as a plot of their free energy (F) along the distance
between their centers of mass (COMs) (RCOM). To obtain a bet-
ter evaluation of the PMF of the high-affinity fuzzy complex
formed by the H1 and ProTα IDPs, we also calculated the PMFs
of the structured high-affinity complexes formed by the well-
folded Im2 and Em2 proteins and by the barnase and barstar pro-
teins (Fig. 1A). The PMF profiles of these three systems capture
differences in the natures of the interactions within a fuzzy com-
plex or an ordered-protein complex (Fig. 1B and SI Appendix, Fig.
S1). The fuzzy complex H1–ProTα spans an almost 20-nm dis-
tance between the COMs of the two proteins (see SI Appendix,
Fig. S2 for illustration of the long-range attraction between H1
and ProTα), whereas the PMF of the two ordered protein com-
plexes is extremely sharp. This difference arises from fuzzy com-
plex formation being driven by electrostatic interactions between
highly charged proteins, whereas a folded protein complex charac-
terized by relatively negligible charge content is stabilized by the
formation of interfacial contact pairs between the two protein
units. The electrostatic interactions are long range and persist as
the proteins are drawn apart; however, the short-range contact
pairs break down over much shorter distances.

To assess the predictive power of our model, we estimated
the dissociation constants (KD) of the three protein complexes.
The deoxyribonuclease 2 and the immunity protein for colicin
E2 (DNase2–Im2) and barnase–barstar complexes were chosen
for reference, as they belong to a relatively well-studied, ordered
protein complex family. The simulated KD values were calcu-
lated as 4.3 × 10�10 M (at 200 mM NaCl) for H1–ProTα,
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6.41 × 10�13 M (at 300 mM NaCl) for barnase–barstar, and
5.5 × 10�16 M (at 200 mM NaCl) for DNase2–Im2 (Fig. 1C).
In general, the simulated KD values are consistent with the experi-
mental KD values, even at several salt concentrations. Fig. 1C
shows that the experimental value of the salt-dependent KD of
H1–ProTα is in very good agreement with that simulated by our
model. Similarly, for the DNase2–Im2 complex, at a salt concen-
tration of 200 mM, we observe a strong match between the exper-
imental and simulated KD values (∼10�15 M). The experimental
dissociation constant data for the barnase–barstar complex (30,
31) also match the simulated KD values at various salt concentra-
tions in the 0- to 500-mM range. As expected, but unlike the
H1–ProTα complex, the two complexes between structured pro-
teins—namely, DNase2–Im2 and barnase–barstar—show a very
weak dependence of stability on salt concentration because of the
nature of the interaction involved (Fig. 1C).
The effect of temperature on stability (represented by ΔF; Fig. 1D)

is somewhat opposite to the observed effect of salt on KD (Fig. 1C).
The total enthalpy and entropy can be obtained from the intercept
and slope of the ΔF versus T curve, respectively. For the disor-
dered H1–ProTα complex, ΔE0 = �26.2 kcal/mol and ΔS0 =

�0.02 kcal/mol�K. The ordered DNase2–Im2 complex has
lower values, with ΔE0 = �53.6 kcal/mol and ΔS0 = �0.11
kcal/mol�K, as does the ordered barnase–barstar complex, with
ΔE0 = �43.4 kcal/mol and ΔS0 = �0.09 kcal/mol�K. These
data imply that the entropy loss for the formation of an ordered
protein complex is nearly four to five times larger than the
entropy loss for the formation of a fuzzy protein complex. As
temperature increases, the two structured protein complexes
show a larger gradual destabilization, due to entropy loss, than
that found for the fuzzy complex.

To understand the entropy better, we used the quasi-harmonic
approximation, which uses covariance matrix obtained from three-
dimensional Cartesian coordinates, to estimate the configurational
entropy, SCon, of the bound and unbound states of each of the
three systems. We note that similar trends of configurational
entropy were obtained by using the maximum information span-
ning tree (MIST) method (SI Appendix, Fig. S3).

Plotting �TΔSCon versus ΔE clearly highlights the differ-
ence between the association of two folded proteins and two
IDPs. While both binding reactions are supported by a favorable
enthalpic gain (ΔE < 0), the configurational entropies have
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Fig. 1. Biophysical characterization of protein–protein binding between pairs of IDPs and pairs of structured proteins. (A) Structures of the H1–ProTα
(purple) complex involving two IDPs and of the barnase–barstar (orange) and DNase2–Im2 (green) complexes involving structured (folded) proteins. The
structures of barnase–barstar and DNase2–Im2 complexes were plotted using PDB ID 1BRS and 3U43, respectively. No structure is available for the
ProTα–H1 complex because it is fuzzy; therefore, the presented snapshot is from MD simulations undertaken for this study. The folded domain of H1 was
modeled using PDB ID 6N89. (B) PMF profiles of the H1–ProTα, barnase–barstar, and DNase2–Im2 complexes plotted as free energy (F) versus the distance
between the centers of mass of the two interacting proteins (RCOM), shown using the same color code as that of their corresponding conformations in A.
The PMFs were determined at a salt concertation of 200 mM and a temperature of 300 K. (C) Dependence of the dissociation coefficient, KD, on salt concen-
tration for the three complexes. The computationally estimated KD values (empty circles fitted with a straight line) are shown together with the available
experimental values (filled triangles). (D) Change in free energy for binding (ΔF) at three different temperatures for the three complexes. (E) Change in con-
figurational entropy (represented here as �TΔSCon) and enthalpy (ΔE) for the three complexes (obtained from simulating their bound and unbound states)
at a temperature of 300 K and salt concentration of 200 mM (corresponding to Debye screening length of 0.9 nm).
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opposite signs (Fig. 1E). The binding of two structured proteins
is characterized by loss of configurational entropy (�TΔSCon >
0); however, complex formation between two IDPs is accompa-
nied by a configurational entropic gain (�TΔSCon < 0). The free
energy of the fuzzy H1–ProTα complex has almost no tempera-
ture dependence (Fig. 1D), which indicates that entropy may play
a significant role in its stabilization. The fuzzy interactions in the
H1–ProTα complex, thus, ensure an increase in configurational
entropy; yet, this gain in configurational entropy is reduced by
the loss of translational and rotational entropy (estimated to
reduce binding free energy by about 10 to 15 kcal/mol; refs. 46,
47), as suggested by the nearly zero ΔS derived from Fig. 1D. In
the next section, the configurational entropy and the potential
contribution of the solvent entropy are further quantified.

Effect of Net Charge and Charge Pattern on the Stability of
Fuzzy Complexes. H1 and ProTα are oppositely charged IDPs
with total net charges of +45 and �44, respectively. These two
IDPs, however, are not homogenously charged, with H1 con-
taining four negatively charged residues and ProTα containing
10 positively charged residues. To understand the binding of
H1 and ProTα better, we designed four additional variants of
each IDP by swapping charges between them so that the net
charge on each sequence varied while the net charge of their
complex was held constant. In the designed variants, the net
charge on H1 was +27 to +59, whereas that on ProTα was
�26 to �58; however, the net charge of the complex was kept
stable at +1. The five variants were designated variants A–E,
where variant C was the WT. For H1, variant A had the lowest
net charge, and variant E had the largest net charge, and simi-
larly for ProTα (see Table 1). Variant E, with a net charge of
+59 for H1 and �58 for ProTα, comprised two homogenously
charged sequences (i.e., polyelectrolytes). Each of the five var-
iants, A–E, of H1 and ProTα were further mutated by shuffling
the charges within their sequences to modify the charge pattern
without changing the respective charge contents. Sequence gen-
eration was guided by creating sequences with different degrees
of segregation of the charged residues, as quantified by the κ
measure (48). For each of the five variants of H1 and ProTα,
three or four sequences were generated that covered a κ value
range of 0.08 to 0.77 (see Table 1).
Following the mutation procedure, we generated 16 variants

of H1 and 16 variants of ProTα, with both varying with
respect to their net charge and their κ value. From these 32 var-
iants, the association of 52 pairs of H1 and ProTα variants
(nine pairs involving variants A, B, D, and E and 16 pairs
involving variant C) were studied. We note that in all simulated
H1 and ProTα pair associations, the total net charge of the

complex equaled 1, consistently with the binding of WT proteins.
Thus, we aimed to explore how the net charge on the constituent
binding unit sequences of H1 and ProTα and their charge pat-
terns affected the thermodynamics of their association.

The PMFs for binding of all the simulated pairs of the 34
designed variants A, C, and E are shown in Fig. 2A (in pink, pur-
ple, and blue, respectively). The PMFs illustrate that the association
between H1 and ProTα is long range and starts to be attractive
even when the distance between the COMs of the two proteins is
greater than 20 nm. The PMFs are significantly affected by the net
charge on the individual constituents of the complex, as illustrated
by the clear clustering of the PMFs of all the sequences of variant
A, whose PMFs are different from those of variants C or E. The
charge pattern has a secondary nonnegligible effect on the PMF.
The PMFs were integrated to estimate the KD of the formed com-
plex (see Materials and Methods).

Fig. 2B summarizes the KD of the 52 simulated pairs of H1
and ProTα variants and pictorially illustrates how the KD

decreases when moving from variants A to E. The change in
KD for complexes of a given variant of H1 with different var-
iants of ProTα (vertical lines) or of a given variant of ProTα
with different variants of H1 (horizontal lines) is a manifesta-
tion of fuzziness for context-dependent binding. Fig. 2C further
illustrates the strong effect that the net charge on the protein
units has on the stability of their complex. Swapping about 20
charges between WT ProTα and H1 (i.e., variant C) results in
sequences that are less homogenously charged (i.e., variant A),
with KD increasing by about 20 orders of magnitude and the
overall stability of the fuzzy complex being low. In a similar man-
ner, the KD of the WT complex can be decreased. Swapping
charged residues so that H1 and ProTα become more homoge-
nously charged to create variant E results in extremely high-affinity
binding, and KD decreases by about 15 orders of magnitude. Mod-
ifying the charge pattern in the sequences of the five variant types
of H1 and ProTα also affects KD; however, its effect is weaker
than that of the net charge. In Fig. 2C, the sequences are classified
into three groups having low, medium, or high κ values (see SI
Appendix, Fig. S4 for KD vs. κ). For most variants, modifying κ
changes KD by about 10 orders of magnitude. It is evident, there-
fore, that the change in KD strongly depends on both the net
charge and the κ value.

Biophysical Driving Forces for the Formation of the Fuzzy
Complex: Enthalpy versus Entropy. Understanding the relation-
ship between affinity and the intrinsically disordered ProTα and
H1 sequences required undertaking a detailed thermodynamic
analysis. To quantify the role of the underlying thermodynamics
in complex formation, we aimed to calculate the change in binding

Table 1. Designed sequence variants of H1 and ProTα with different charge content and charge pattern

Variant H1 (119 residues)* ProTα (110 residues)

Lys + Arg Glu + Asp Net charge Lys + Arg Glu + Asp Net charge Total net charge

A† 40 13 +27 19 45 �26 1
B† 44 9 +35 15 49 �34 1
C (WT)‡ 49 4 +45 10 54 �44 1
D† 49 0 +49 10 �58 �48 1
E† 59 0 +59 0 �58 �58 1

*The values for H1 exclude the 74-residue folded domain in H1, which has 16 positively and 5 negatively charged residues.
†Three variants were designed for each of the H1 and ProTα proteins, with the sequences differing with respect to their charge pattern (as measured by the charge-patterning
parameter, 0 < κ < 1). From these sequences, all nine possible H1–ProTα complexes were simulated.
‡Four sequences were designed for each of the H1 and ProTα proteins, with the sequences differing with respect to their charge pattern (as measured by the charge-patterning
parameter, 0 < κ < 1). From these sequences, all 16 possible H1–ProTα complexes were simulated.
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energy (ΔE) and in configurational entropy (TΔSCon) upon com-
plexation with respect to the isolated states for WT H1–ProTα
and all its variants.
To understand the origin of the high affinity of fuzzy com-

plexes, particularly its dependence on the net charge and charge
pattern, we analyzed the changes in enthalpy (ΔE) and configura-
tional entropy (�TΔSCon) upon complex formation of the 52
studied complexes (Fig. 2D). In these and similar figures, the net
charge on the H1 protein is represented by the color of the
variant, with pink for a low net charge (more polyampholytic
character) and blue for a high net charge (more homogeneously
positively or negatively charged variants with a polyelectrolytic
character). Charge pattern is represented by the symbol used for
each datapoint, with triangles for variants with low κ values,
squares for those with mid-κ values, and circles for those with
high κ values. The overall charge of the bound complex was main-
tained at +1. Similarly, SI Appendix, Figs. S4 and S5 show E, ΔE,
�TSCon, and �TΔSCon plotted as a function of κ for all the var-
iants. The values of ΔE become more negative as the absolute
value of the net charge increases and the sequences become
increasingly polyelectrolytic. This enthalpic gain from complexa-
tion increases about 3-fold from variants A to E (with a ΔΔE of
about 100 kcal/mol) due to the change in the net charge on the
two protein units. In particular, the binding of the homogenously
charged variants of H1 and ProTα (variant E) is about 50% more
energetically stable than the WT H1–ProTα complex (variant C).
For each variant of ProTα and H1, varying the value of κ affects
the ΔE of binding. The effect on ΔE of varying the κ values is
smallest for variant A (ΔΔE ∼ 25 kcal/mol as one moves between

low and high κ values for ProTα and H1). A stronger effect of κ
is observed for variant E (ΔΔE ∼ 50 kcal/mol).

The dependence of ΔE on κ suggests that the inclusion of
larger like-charged patches in the sequence (i.e., increasing κ)
tends to stabilize the bound state. Such stabilization primarily
originates from the bound state itself because of an enhance-
ment of interactions among multiple patches (SI Appendix, Fig.
S5). It is also important to note that the same effect stabilizes
the unbound state for sequences with a lower net charge (i.e.,
for polyampholytic sequences), which diminishes energetic sta-
bilization upon complexation for low net-charge systems as
charge patterning (i.e., the value of κ) increases (SI Appendix,
Figs. S5C and S6A).

The –TΔSCon term is also dependent on the net charge of
H1 and ProTα (Figs. 2D and 3A); however, the overall effect is
smaller than the effect of energy (Fig. 2D). The change in
�TΔS from variants A to E is about 4 kcal/mol. Changing κ
has a weaker effect on �TΔS, but for some variants (e.g., C
and E) the difference in configurational entropy between
sequences of low and high κ can reach 1 kcal/mol. As κ
increases in a sequence, we observe a slight rise in –TΔSCon for
the sequences with high net charge (Fig. 2D and SI Appendix,
Figs. S5 and S6), primarily due to the loss of degrees of free-
dom in the bound state itself. By contrast, sequences with low
net charge show a decrease in –TΔSCon as a function of κ, due
to a greater loss of conformational freedom in the unbound
state than in the bound state as tighter interactions prevail in
the unbound state of low net-charge sequences (i.e., those with
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tively and negatively charged residues in the sequence, and higher κ values indicate greater segregation of charged residues into positively and negatively
charged patches. It is evident that the PMF is affected by both the net charge and the charge pattern. (B) The dissociation constant (KD) of the 52 simulated
complexes of variants of H1–ProTα charge (see also Table 1). The sequences of variants A–E (marked by different colors) are ordered by their κ values
(where the lowest κ value is on the left). (C) The KD for binding between variants of ProTα and H1 plotted as a function of the net charge on H1 (note that
for each variant, the net charge of the complex equals +1). The KD of each variant A–E is colored according to its net. The KD values of each variant are
grouped based on their κ values: low κ (triangle), medium κ (square), and high κ (circle). The bars indicate SDs, which were calculated from all the sequences
in each group. The KD values for each H1–ProTα complex were measured at a salt concentration of 66 mM (corresponding to Debye screening length of
1.6 nm) and temperature of 300 K. A linear line is added for clarity to indicate the dependence of KD on the net charge. (D) Enthalpy (ΔE; left y axis) and con-
figurational entropy (TΔSCon, right y axis) as a function of the net charge on H1 for the five H1–ProTα variants examined (variants A–E; see Table 1). A linear
dependence of ΔE and TΔSCon on net charge is observed that is much stronger for the enthalpy than for the entropy. For higher net charge, a lower value is
seen for ΔE and a greater value for TΔS, which indicates greater stability. The charge pattern (as represented by the charge-patterning parameter, κ) affects
the value of ΔE of each type of variant: the higher the value of κ, the lower the value of ΔE (i.e., the greater the stability of the fuzzy complex) but has minor
effect on the configurational entropy.
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a greater polyampholytic character) (Fig. 2D and SI Appendix, Fig.
S5).
To better understand the relationship between enthalpy and

entropy, �TΔSCon was plotted against ΔE for low, intermedi-
ate, and high κ variants (Fig. 3A and SI Appendix, Fig. S6). It is
interesting to note that –TΔSCon is negative for the formation
of the fuzzy complexes formed between all the variants of H1
and ProTα, implying that configurational entropy stabilizes
complex formation (Fig. 2D). Although biomolecular association is
driven often by a favorable enthalpic change in the absence of any
stabilizing entropic contribution (i.e., ΔH < 0 and �TΔS > 0, as
was found for barnase–barstar and DNase2–Im2; Fig. 1E), exam-
ples exist in which the association is driven by changes in both
enthalpy and entropy (i.e., ΔH < 0 and �TΔS < 0). We note
that fuzzy complexes formed with IDPs may also be associated
with entropic loss, given that they involve disorder-to-order transi-
tion (49). Association reactions involving a favorable entropic
change can be found for protein–protein binding (both for folded
proteins and IDPs; ref. 42) and for protein–ligand binding (50).
In many of these cases, it is understood that the molecular origin
of this favorable entropic contribution is linked to the release of
solvent molecules upon binding as a result of the formation of
contacts at the interface (51–55), rather than being linked to a
favorable increase in configurational entropy, such as what we
found for the fuzzy H1–ProTα complex.
One may observe that ΔE and –TΔSCon are correlated line-

arly to each other (Fig. 3A, solid black line), which implies a
handshake between energy and entropy in stabilizing such
a fuzzy complex, indicating the occurrence of enthalpy–entropy
reinforcement rather than compensation. We note that enthalpy–
entropy reinforcement is observed particularly upon changing the
net charge of ProTα and H1 (i.e., from pink to blue across the

different colored variants A–H). More complex behavior is seen
when changing only κ (i.e., across the differently shaped data-
points). The three variant A sequences with different κ values,
indeed, exhibit positive correlation between �TΔS and ΔE; how-
ever, the three variant E sequences with different κ values exhibit
anticorrelation between �TΔS and ΔE, suggesting enthalpy–
entropy compensation. As we move from systems with a high net
charge (blue) to those with a low net charge (pink), the slope
of the –TΔSCon versus ΔE curve shifts from negative to positive.
Fig. 3A shows that for sequences with high net charge, as charge
segregation (i.e., the value of κ) increases, energetic stabilization is
coupled with entropic loss (i.e., enthalpy–entropy compensation
occurs, which is dominated by the bound state; SI Appendix, Fig.
S4). By contrast, for low net-charge sequences, as charge segrega-
tion increases, an entropic gain is accessed (i.e., enthalpy–entropy
reinforcement occurs) along with energetic stabilization (which is
dominated by the unbound state; SI Appendix, Fig. S5).

The favorable entropic contribution upon complexation is
expected to be even larger upon accounting for entropy gain
arising from the release of counterions, which is well acknowl-
edged to govern polyelectrolyte complexation (56–59). This
effect is not included in our model because of its high complex-
ity but can be crudely estimated. To estimate the entropy of
counterion release upon formation of H1–ProTα, we simulate
all 52 variants of H1 and ProTα in the unbound state with
counterions. In each case, the degree of counterion condensa-
tion, α, was measured from the simulations with explicit coun-
terions to be between 0.09 and 0.18. This degree of counterion
adsorption is consistent with the rough estimate that can be
made based on the columbic strength parameter of H1 and
ProTα if we treat them as polyelectrolytes. Given that their
mean charge separation distances are 2 and 3, respectively, their
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Fig. 3. Enthalpic and entropic analysis of the formation of fuzzy complexes. (A) Configuration entropy deference (�TΔSCon) plotted against the ΔE between
the bound and unbound isolated states for all the variants of the H1–ProTα system. A linear correlation (solid black line) is evident between –TΔSCon and ΔE,
illustrating the occurrence of enthalpy–entropy reinforcement. Dashed lines are plotted for variants (namely, A, D, and E), demonstrating instances when
modulating κ produces an enthalpy–entropy correlation in the opposite direction to that shown by the solid black line, consistently with the compensation
mechanism. (B) Like A, with the exception that the contribution of the counterion’s entropy is added to the configurational entropy. The counterion’s entropy
is estimated by calculating the degree of counterion’s condensations to each variant of H1 and ProTα simulated in their unbound state with explicit counter-
ions. (C) Plots of –TSCon versus E for bound proteins (Lower Left) and isolated unbound proteins (Upper Right) at a salt concentration of 66 mM at 300 K.
Dashed lines are as for C. The bars indicate SDs, which were calculated from all the sequences in each group.

6 of 11 https://doi.org/10.1073/pnas.2120456119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120456119/-/DCSupplemental


columbic strength parameters correspond to α ∼ 0.1 to 0.2 (we
note that α ∼ 0.5 for fully charged polyelectrolytes; for the rela-
tionship between the columbic strength parameter and α, see
Fig. 1 in ref. 60). For H1 and ProTα, a deviation from these
values is expected, as these IDPs are not ideal (i.e., homoge-
neously charged) polyelectrolytes. Assuming that all counterions
are released upon complexation, their entropic contribution from
either H1 or ProTa is ΔSCI∼NlnΦ �N(1 � α)ln[(1 � α)Φ],
where N is the number of counterions, and Φ is the volume frac-
tion of the counterions. We found that the entropy from counter-
ion release varies significantly between the variants, and it mostly
depends on the net charge and less on κ. Variants with greater net
charge or larger κ tend to adsorb more counterions, and, conse-
quently, their complexes will have larger favorable entropy contri-
butions from counterion release. The relationship between enthalpy
and entropy when the counterion entropy is included (Fig. 3B)
is similar to the case that includes the configurational entropy
alone (Fig. 3A). The total entropy of counterions, TΔSCI, at
room temperature is between 40 and 80 kcal/mol, indicating
that its contribution is more dominant than TΔSCon. This high-
lights that the counterions may have a significant effect and that,
overall, entropy may govern the stability of the fuzzy complex.
To understand the relative contributions of the bound and

unbound states in energy–entropy reinforcement, we plotted
–TSCon versus E for low, intermediate, and high κ values for all
the variants (Fig. 3C; see also SI Appendix, Fig. S6). Fig. 3C
shows that increasing the net charge on a sequence significantly
increases –TΔSCon. This increase can be observed for both the
unbound states (Upper Right) and the bound states (Lower Left),
with the unbound states exhibiting a much greater increase in
–TΔSCon (i.e., a much larger decrease in the configuration entropy)
as the net charge on a sequence increases.

Underlying Conformational Heterogeneity in Structure. As the
thermodynamics of a complex is intimately connected to its struc-
ture, we examined the conformational space of the fuzzy complex
formed between the different variants of H1 and ProTα. Fig. 4
shows the simulated bound state ensemble projected along the first
two principal components (PCs) of the covariance matrix for com-
plexes formed among sequences A, C, and E, for which the net
charge on each sequences increasingly differs (see Table 1). The
PC analysis (PCA) was performed for three different κ values (low,
medium, and high κ shown in Fig. 4 A–C, respectively) for each
variant. All variants of H1–ProTα exhibit a highly heterogeneous
conformational ensemble because of the flexible nature of the two
proteins in the complex. Increasing the net charge on the two
sequences in the complex reduces the spread along the two princi-
pal coordinates, signifying a loss of conformational space. Conse-
quently, configurational entropy decreases in the bound state as
the net charge on the sequence increases (as is also shown in
Fig. 3D, Bottom Left).
Charge pattern also affects the conformational heterogeneity

of the formed complex. Fig. 4 shows that as κ increases, the
configurational space of the bound state decreases (SI Appendix,
Fig. S7). This indicates that both net charge and charge pattern
affect the conformational dynamics of the complex.
We used a similar analysis to examine the dynamics of the

unbound proteins. SI Appendix, Figs. S7 and S8 show PCAs for
H1 and ProTα in the bound and isolated unbound states for
several net-charge variants with low, intermediate, and high val-
ues of κ. It is interesting to note that charge pattern affects the
configurational space in the unbound state of the two IDPs to
a greater extent when their sequences have a polyampholytic
character. As larger like-charged patches build up in a sequence

with a low net charge, interactions between oppositely charged
patches become strong enough to shrink the conformational
space of the unbound state (SI Appendix, Figs. S8 and S9).
Consequently, a larger entropy difference forms between the
bound and unbound states for sequences with high κ values. As
the net charge on the sequences increases, changing the charge
pattern has no effect on the conformational dynamics in the
unbound state, presumably because extensive repulsion between
like charges dominates the flexibility of the sequences, regardless
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Fig. 4. Conformational space of the fuzzy complexes formed between var-
iants of ProTα and H1. The simulated conformational ensembles of the
bound complexes projected onto the first two PCs (PC1 and PC2) of the
covariance matrix illustrate the conformational space of the bound state.
The conformational analysis is shown for low net-charge variant A (pink),
medium net-charge variant C (purple), and high net-charge variant E (blue)
of H1 and ProTα (see Table 1 for more details). (A–C) Simultaneous projec-
tions for all three variants having (A) low, (B) intermediate, and (C) high
charge-patterning (κ) values, as indicated on each panel. A heterogeneous
conformational ensemble is observed for the fuzzy protein complexes,
which reduces in size when the sequences have a higher net charge or
larger κ values.
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of their κ value. Unbound high net-charge sequences favor an
elongated structure because of repulsion between like-charged resi-
dues, and, accordingly, charge pattern seems to have no effect on
their conformational space (Fig. 3C and SI Appendix, Fig. S5D).
However, the bound state of high net-charge sequences is further
energetically stabilized as κ increases but has a reduced configura-
tional space, resulting in affinity that is more dominated by
enthalpy than by entropy (Fig. 3C).
We quantified the effect of net charge and charge distribu-

tion on the structure of the fuzzy complex formed between
ProTα and H1 by probing the radius of gyration (Rg) of each
protein. Fig. 5A shows the sum of the Rg values for the two
proteins that form the disordered complex as a function of the
net charge and for different κ values. Rg is markedly lower for
the higher net-charge sequences, with their relatively higher
polyelectrolyte character, implying a more collapsed and com-
pact bound state for such sequences (Fig. 5A and SI Appendix,
Fig. S10). Modulating the charge pattern also affects the Rg of
the complex, such that within the same variant, Rg is smaller
for proteins having larger κ. We observed that κ particularly
affects the compactness of the complex for low net-charge pro-
teins and has a milder effect on variants with high net charge.
Representative snapshots capture the dependence on net charge
and charge pattern of the bound-state structure for 9 out of the
52 studied variants (Fig. 5B). Compared with higher net-
charge and higher κ variants, lower net-charge and lower κ var-
iants exhibit a significantly more open structure in the bound
state because their interaction sites are weaker.

Conclusions. The ability of some IDPs to form high-affinity
fuzzy complexes is intriguing, given the lack of specific interac-
tions and shape complementarity. Such high-affinity binding
was measured recently for the H1–ProTα complex (23, 24).
The KD of such disordered complexes is similar to that

measured for the most stable complexes formed between highly
structured proteins (e.g., as found for the barnase–barstar and
DNase2–Im2 complexes). However, it is unclear whether
similar molecular driving forces control the formation of high-
affinity protein complexes involving proteins with very different
properties.

In this study, we used CG simulations to show that the fuzzy
complex between H1 and ProTα is stabilized by favorable enthalpy,
similarly to the structured barnase–barstar and DNase2–Im2 com-
plexes. However, in contrast to the structured complexes, the
fuzzy H1–ProTα complex is also stabilized by favorable entropy,
which originates from the greater configurational entropy of its
bound state compared to its unbound state. The increased con-
figurational entropy in the bound state of the fuzzy complex is
due to the relatively small entropy of the unbound state due to
intrachain repulsion. In addition, due to the nonspecificity of
the long-range electrostatics, significant exchange of interactions
among many interacting oppositely charged patches may enhance
the configurational entropy of bound state and contribute to its
disordered nature. Such exchange of interactions is negligible in
isolated proteins due to fewer oppositely charged motifs present.
Although structured complexes are often destabilized entropically,
entropic stabilization has been reported for some structured com-
plexes, with such occurrences generally linked to the release of
solvent upon complexation (53, 54), rather than to a change in
the protein configurational entropy. The actual role of entropy in
the stability of the fuzzy complex is expected to be further
enhanced by the release of counterions attracted originally to the
unbound highly charged proteins. Given the large counterion
entropy, the overall entropic contribution to the complex
thermodynamic stability may increase the enthalpic favorable
contribution and, therefore, dominate the affinity of polyelectro-
lyte complexation. This effect might even be magnified by the
expected less-favorable enthalpic contribution caused by screening
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Fig. 5. Structural analysis of the fuzzy complexes formed between variants of ProTα and H1. (A) Sum of the Rg of ProTα and H1 in the bound state of their
fuzzy complexes plotted against the net charge on H1 (corresponding to variants A–E; see Table 1 for more details). The different charge patterns on each
of the simulated variants are grouped into three groups: low κ (triangle), medium κ (square), and high κ (circle). The bars indicate SDs, which were calculated
from all the sequences in each group. Rg is linearly anticorrelated with the net charge, with the strongest anticorrelation for the sequences with lower κ val-
ues (i.e., the triangles). For the sequences with high κ, there is only a mild dependence of Rg on the net charge. (B) Representative snapshots of the bound
complex formed among variants A, C, and E. Three sequences having low, medium, and high κ values are shown for complexes formed between pairs of
each variant. The snapshots were selected to have Rg values close to the mean of the corresponding variant ensemble. In the snapshots, the H1 and ProTα
sequences are shown in blue and red, respectively. The folded domain in H1 is shown as a surface. The exact κ value of the H1 and ProTα complex (being
the average of the κ values of each of the two sequences) is indicated in each case.
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by the adsorbed counterions in the unbound state. Nonetheless,
counterion entropy may strongly depend on the net charge on
each participating protein and on charge distribution, as these
influence the tendency of the counterions to interact with charged
polymers. This should be investigated in future studies.
We quantified the role of electrostatic forces in controlling

binding affinity in fuzzy complexes by studying 52 complexes
that encompassed a wide range of net charges and charge pat-
terns in the participating sequences. We found that changing
the net charge of each protein unit considerably affected bind-
ing affinity. The greater the difference in net charge between
the two oppositely charged H1 and ProTα sequences, the
greater their affinity. Manipulating κ by changing the distribu-
tions of oppositely charged residues along the linear sequence
also affected binding affinity, with greater charge segregation
(higher κ values) associated with greater binding affinity; how-
ever, the effect of charge pattern on binding affinity was more
moderate compared with the effect of net charge. The sensitiv-
ity of the affinity of the fuzzy complex to the net charge on
each sequence and to charge distribution, which can be inter-
preted in terms of energy frustration that has been recently
linked to fuzziness (12), is reminiscent of their effect on the
critical temperature and dynamics of IDP condensates formed
via liquid–liquid phase separation (15, 41).
Binding between more homogeneously charged IDPs is char-

acterized by a more negative ΔH, which is coupled with more
negative �TΔS, indicating enthalpy–entropy reinforcement.
Some cases of reinforcement between enthalpy and entropy
have been reported (43, 45), yet their microscopic origin
remained unclear. Recently, a favorable entropic contribution
(i.e., �TΔS < 0) was measured for binding of small molecules
to IDPs, illustrating the role entropy expansion may play for
affinity and that IDP may increase their degree of disorder upon
binding (61, 62). For the association of oppositely charged IDPs,
the modulation of net charge shows that enthalpy–entropy rein-
forcement originates primarily from a change in the entropy of
the unbound state. We note that changing the κ values of sequen-
ces with the same net charge may result in enthalpy–entropy
compensation rather than reinforcement. This transition from
enthalpy–entropy reinforcement to compensation demonstrates
the high sensitivity of IDP complexation thermodynamics to the
details of the sequence. Furthermore, the enthalpy–entropy rela-
tionship is also expected to be affected upon involvement of
hydrophobic and pi-charge interactions, which are common in
various IDPs and may change the thermodynamics of fuzzy com-
plexes due to the change in the balance between long- and short-
range interactions (15).
The binding of highly oppositely charged IDPs that remain

disordered and dynamic in the bound state has been already
observed for several systems (23, 63–66). The current study
shows that notwithstanding the lack of structural complemen-
tarity and specificity, the polyelectrolytic properties of the IDPs
as well as their charge patterns can bias the thermodynamics
of the fuzzy complex. These features of the charged residues
may serve to determine not only binding affinity, but also
specificity.

Materials and Methods

Studied Systems. To understand how the net charge on a sequence and its
charge pattern affect the stability of fuzzy protein complexes, we prepared five
net-charge variants of the WT H1–ProTα complex by interchanging charged resi-
dues between the two oppositely charged proteins involved (Table 1). By swap-
ping charges between H1 and ProTα, we designed sequences that had either

greater polyelectrolytic character (i.e., they were more homogenously charged
with either positively or negative residues and, thus, had a higher absolute net
charge) or greater polyampholytic character (i.e., they contained a more even
balance of positively and negatively charged residues and, thus, had a smaller
absolute net charge). We then prepared 9 to 12 charge-pattern variants from
each of the net-charge variants by scrambling the charged residues within the
sequence. We used the patterning parameter (κ) to quantify the difference
between various distributions of oppositely charged residues in a linear sequence,
where 0 ≤ κ ≤ 1 (48). In this manner, we obtained patterning parameter (κ) val-
ues ranging from nearly 0.10 (indicating strong mixing of charged residues within
the linear sequence of each protein binding partner) to 0.8 (indicating strong segre-
gation of oppositely charged residues within the linear sequence of each protein
binding partner) (SI Appendix, Fig. S11).

Model. To analyze the stability of the disordered H1–ProTα complex and com-
pare it with known ordered complexes, we applied a simple CG model for the
proteins where each residue is represented as a single bead (67–70) and electro-
static interactions are applied between charged beads. The potential energy func-
tion consists of the following energies:
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The first two terms represent bonded interactions and angular interactions with
uniform force constants, with the third term representing dihedral angles. We
used a dihedral force constant of 0.24 kcal/mol rad2, which is low enough to cap-
ture the intrinsically disordered behavior of the H1–ProTα system. The next term
defines the electrostatic contribution (6), where qi and qj represent the charge of
the two amino acids involved in the interaction, rij is the interbead distance, ε is
the dielectric constant of the solvent, and KCoulomb ¼ 4πε0 ¼ 332 kcal=mol. The
term BðκÞ is a function of salt concentration and the radius (a) of ions generated
by the dissociation of the salt, and it is given by B κð Þ ¼ eκa

1þeκa. According to
Debye-H€uckel theory, the range of electrostatic interactions of an ion is of the
order of κ�1, which is called the Debye screening length. The Debye screening

length is related to ionic strength as follows: κ2 ¼ 8πNAe2ρAI
1000εkBT

, where NA is Avoga-
dro’s number, e is the charge of an electron, ρA is the solvent density, I denotes
the ionic strength of the medium, kB is the Boltzmann constant, and T denotes
temperature.

In addition to the electrostatics, a short-range Lennard-Jones potential was
used for the folded domains and for interface contacts in the ordered protein
complexes. For the H1–ProTα system, this short-range interaction was applied
only to the folded domain of histone and not to the interfaces. For the ordered
protein complex DNase2–Im2, a uniform strength of εC = 0.50 kcal/mol was
used for the interfacial pairs, but for folded domain pairs, the contact strength
was set to εC = 0.70 kcal/mol. For the ordered barnase–barstar protein complex,
a uniform strength of εC = 0.55 kcal/mol was used for the interfacial pairs, but
for folded domain pairs, the contact strength was set to εC = 0.70 kcal/mol.
GROMACS simulation package 5.1.5 (71) was used to run Langevin dynamics
simulations with a friction coefficient of 0.1 ps�1 and a time step of 10 fs for a
total of 2 μs for equilibration of the complexes.
Steered MD, umbrella sampling, and conformational entropy. The dissocia-
tion constants for the binding of the three selected systems (H1–ProTα, barnase–
barnstar, and DNase2–Im2) were estimated from PMF profiles. The PMF was plot-
ted as free energy (F) as a function of the distance between the COMs of the two
interacting proteins (RCOM), with this distance used as the reaction coordinate. After
the 2-μs equilibration, a pulling force was applied to the COM of ProTα at a pulling
rate of 0.01 nm/ps and a pull force constant of 2.4 kcal/mol nm2 to achieve a sepa-
ration of 30 nm from the histone. Using steered MD to separate the two com-
plexed proteins to a dissociation distance of 30 nm creates a vector between their
COMs. The PMF was then estimated using the umbrella sampling technique by
spacing 200 harmonic umbrellas at distances of 0 to 30 nm along the vector. Each
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umbrella sampling window was equilibrated for 2 μs. The PMF profile was recon-
structed from the equilibrated umbrella sampling windows using the weighted histo-
gram analysis method (72). The convergence of the PMF profiles was confirmed for
three selected systems (SI Appendix, Fig. S1).

The dissociation constant is related to the PMF by the following relation:

KD ¼ 1

4πNAv
Ð RbCOM
0 e�βFðRCOMÞR2COMdRCOM

;

where β¼ 1
kBT
, and RbCOM defines the maximum extent of the bound state. For

the folded DNase2–Im2 and barnase–barstar protein complexes, steered MD
was used to apply a force constant of 70 kcal/mol nm2 with the same pull rate of
0.01 nm/ps to separate the two proteins to a dissociation distance of 10 nm. For the
DNase2–Im2 and barnase–barstar complexes, 370 umbrella windows were spaced at

a distance of 0 to 6 nm, while a pulling force constant of 200 kcal/mol nm2 was
applied to separate the COMs of each of the two protein units in the complex.

To determine the conformational entropy, we employed two methods that
have been widely used in studies: quasi-harmonic analysis (73) and MIST (74),
which produced very well-matched results. However, the MIST approach was found
to be less sensitive to the κ parameter, most likely because obtaining the configu-
rational entropy using the MIST approach involves a directly correlated movement
of beads of up to a maximum of four atoms (a dihedral angle); however, charged
patches demonstrate correlated movement over a longer range. The current paper
discusses the results in light of the conformational entropy obtained from quasi-
harmonic analysis, the details of which can be found in the SI Appendix.

Data Availability. All study data are included in the article and/or SI Appendix.
All data discussed in the paper have been deposited in Open Science Framework
(https://osf.io/4ysaz/) (75).
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