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Abstract: Obesity is a chronic condition involving low-grade inflammation and increased oxida-
tive stress; thus, obese and overweight people have lower values of serum bilirubin. Essentially,
bilirubin is a potent endogenous antioxidant molecule with anti-inflammatory, immunomodulatory,
antithrombotic, and endocrine properties. This review paper presents the interplay between obesity-
related pathological processes and bilirubin, with a focus on adipose tissue and adipokines. We
discuss potential strategies to mildly increase serum bilirubin levels in obese patients as an adjunctive
therapeutic approach.
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1. Introduction

Bilirubin, the end product of heme metabolism, is a potent endogenous antioxidant
with anti-inflammatory, immunomodulatory, antithrombotic, and endocrine properties [1–3].
Serum bilirubin concentrations depend on the complex interactions between bilirubin
production, consumption (depending on oxidative stress and inflammation), metabolism,
and elimination. Importantly, numerous studies have shown that serum bilirubin lev-
els are inversely associated with obesity, metabolic syndrome (MetS), type 2 diabetes
mellitus (T2DM), and other oxidative-stress-mediated diseases, including atherosclero-
sis [2,4,5]. Moreover, serum bilirubin levels were recently proposed as a potential pre-
disease biomarker for developing metabolic syndrome in asymptomatic middle-aged
individuals [6].

Obesity and overweight are considered pathological states of chronic low-grade in-
flammation with increased oxidative stress and altered endocrine signaling; therefore, these
conditions result in lowered serum bilirubin levels [6]; on the other hand, reducing body
weight leads to increased serum bilirubin levels [7,8]. Importantly, mild hyperbilirubinemia
is associated with health benefits in overweight and obese individuals, as well as with lower
adiposity [9,10]. This review addresses the current knowledge on how overweight and
obesity affect bilirubin levels, along with the potential intervention strategies to modulate
systemic bilirubin levels to alleviate the obesity-related negative effects on health.

2. Inflammation in Obesity

Obesity is the accumulation of excessive fat that harms health. Indeed, obesity and
overweight are associated with several dysmetabolic conditions, including T2DM, non-
alcoholic fatty liver diseases, cardiovascular diseases (CVDs), cancer, and neurodegenera-
tive disorders, among others. Recently, the understanding of adipose tissue has undergone
radical changes. Adipose tissue has been recognized as a heterogeneous tissue; indeed, it
is composed of several cell types, including preadipocytes, mature adipocytes, fibroblasts,
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dendritic cells, mast cells, T-cells, endothelial cells, and macrophages [11]. Importantly,
obesity is linked to a state of chronic low-grade inflammation, mainly due to proinflamma-
tory cytokine secretion, macrophage infiltration, and disrupted function of tissue involved
in glucose homeostasis [12]. Additionally, obesity is also associated with a significant
increase in macrophage number [13,14], which also contributes to the maintenance of the
low-grade chronic inflammation state linked to obesity [15]. Macrophages are increased
in adipose tissue during obesity due to several factors, free fatty acids, cholesterol, and
lipopolysaccharide [16]. Macrophages can be classified, based on their surface expression
or their cytokine or chemokine expression, into two main populations. M1 macrophages
are associated with a proinflammatory profile and secrete proinflammatory cytokines
(tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6)), whereas
M2 macrophages are associated with tissue remodeling and inflammation resolution and
secrete anti-inflammatory cytokines (IL-10, IL-1) [17,18]. Moreover, treating macrophages
with a mix of glucose, palmitate, and insulin generates a unique macrophage proinflamma-
tory phenotype that is different from M1 and secretes proinflammatory cytokines (TNF-α,
IL-1ß), while the secretion depends on peroxisome-proliferator-activated receptor gamma
(PPAR-γ) and p62 expression [19]. The mechanisms by which inflammation increases
during obesity are still not fully understood. First, increased proinflammatory cytokine
secretion contributes to insulin resistance and other complications related to obesity. Sec-
ond, obesity not only promotes the infiltration of macrophages but also induces a shift in
macrophage balance toward the M1 phenotype [17]; however, the adipose tissue is not the
sole site of inflammation. In contrast, obesity-related inflammation occurs in many other
tissues, such as the liver, muscle, hypothalamus, pancreatic islets, and the gut [20].

Adipose tissue was considered as an inert tissue having a primary role in control-
ling energy homeostasis. Additionally, it is now recognized that adipose tissue exhibits
endocrine-regulatory properties and releases a cluster of bioactive substances, among
them hormones and adipokines with pleiotropic functions [11,21–23]. Adipokines com-
prise, among others, classical cytokines (TNFα, IL-6) and chemokines (IL-8, monocyte
chemoattractant protein 1 (MCP-1), macrophage-inflammatory protein-1α, macrophage-
inflammatory protein-2α, stromal-cell-derived factor-1), vasoactive and coagulation fac-
tors, regulators of lipoprotein metabolism, and proteins more specifically secreted by the
adipocytes, such as leptin and adiponectin [24]. Adipocytes have been recognized as
important sources of MCP-1, which was the first discovered human ß-chemokine and is
a recognized marker of adipose tissue dysfunction in obesity and T2DM [25]. An early
study determined a link between obesity and inflammation and showed that adipose tissue
synthesizes and releases the proinflammatory cytokine TNF-α [26]. Based on these findings,
it was suggested that adipose tissue plays an important immune role and might be a major
source of proinflammatory mediators, which initiate the development of low-grade chronic
inflammation. Indeed, excess adipose tissue leads to high levels of proinflammatory cy-
tokines TNF-α and IL-6 and a sensitive marker of inflammation C-reactive protein (CRP)
in circulating blood. TNF-α is synthesized as a 26 kDa transmembrane protein. It has
been shown that macrophages from the stromal vascular fraction are also the source of
adipose-derived TNF-α and that its increased levels in obesity are due to the increased
infiltration of adipose tissue with M1 macrophages [13]. Several studies have demonstrated
that TNF-α impairs insulin signaling in hepatocytes and adipose tissue [27,28]. Moreover,
IL-6 is a cytokine produced by many different cells. Approximately one-third of the IL-
6 detected in plasma is attributed to the production from white adipose tissue [29]. In
adipocytes and hepatocytes, IL-6 has been demonstrated to impair insulin-induced insulin
receptor and insulin receptor substrate 1 phosphorylation [30,31]. Furthermore, it has been
shown that IL-6 stimulates hepatocytes to produce and secrete CRP, indicating a state of
inflammation [32]. CRP is a sensitive marker of inflammation, which is synthesized and
secreted mainly by the liver [32], the serum concentrations of which are higher among
obese subjects [33,34]. Adiponectin is one of the most abundant adipokines produced
by adipocytes and is involved in glucose and lipid metabolism [35]. In adipose tissue,
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adiponectin exerts an anti-inflammatory function by reducing macrophage infiltration
and inhibiting the local production of numerous proinflammatory cytokines [36]. Leptin,
which is almost exclusively secreted from adipocytes, controls food intake and energy
expenditure and has atherogenic and growth properties [37]. Since the discovery of leptin,
the number of adipokines has notably increased in the last years with new molecules such
as omentin-1, chemerin, resistin, visfatin, apelin, adipocyte fatty acid-binding protein (A-
FABP), retinol-binding protein 4 (RBP4), among others [38]. Visfatin, originally identified
as a pre-B-cell colony-enhancing factor (PBEF), is expressed in many cells and tissues act as
a cytokine with immune regulatory action and as nicotinamide phosphoribosyltransferase
(Nampt), an enzyme involved in the NAD+ salvage pathway [39].

3. Anti-Inflammatory Activity of Bilirubin

Bilirubin has evident anti-inflammatory activity, and indeed several studies have
shown an inverse relationship between serum bilirubin levels and CRP in overweight or
diabetic subjects [5,8,40,41]. Since low-grade chronic inflammation plays an important
role in adipose tissue, the liver, the aorta, the kidneys, and pancreatic cells, the anti-
inflammatory and antioxidative effects of bilirubin may likely contribute to the protective
effect on vascular damage [1]. Recently, adipokines were studied along with serum bilirubin
levels in normal and overweight asymptomatic adults. Importantly, there was an inverse
relationship between serum bilirubin levels and proinflammatory cytokines (TNF-α, IL-
6, visfatin, and CRP) and a positive relationship between serum bilirubin levels and
adiponectin [5,42].

Moreover, recently biliverdin treatment reduced the expression levels of M1 macrophage
markers in adipose tissues induced by high-fat diet feeding mice. This indicates that biliru-
bin may improve high-fat-diet-induced insulin resistance by reducing chronic inflammation
in adipose tissue [10].

Additionally, adiponectin exerts anti-inflammatory and antiatherogenic properties via
its ability to stimulate vascular endothelial nitric oxide (NO) production [43]. Equivalently,
more recent studies have shown the role of bilirubin in the activation of Akt and endothelial
nitric oxide synthase leading to the synthesis of NO, which can also improve endothelial
cell function and insulin resistance [44].

To address the potency of bilirubin responses, in several animal models of endotox-
emia, septicemia, and ischemia–reperfusion injury, bilirubin exhibited significant anti-
inflammatory activity via mechanisms such as inhibiting the expression of adhesion
molecules, suppressing the infiltration of inflammatory cells and reducing the levels of
proinflammatory cytokines [45]. In another study, bilirubin also suppressed T cell prolifera-
tion and activation [46]. Overall, bilirubin has complex immunosuppressive effects [47]. A
recent study also identified the neutrophil-to-lymphocyte ratio in blood as a variable that
is negatively associated with total bilirubin levels [48].

Further studies are warranted to better elucidate bilirubin’s mechanisms of action on
adipocytes and to confirm the correlation between serum bilirubin and adipokines.

Table 1 presents adipokines and inflammatory markers that are altered in obese and
overweight individuals and the relationships with serum bilirubin levels (if known).

Table 1. Adipokines and inflammatory markers that are altered in obese and overweight individuals and relationships with
serum bilirubin levels.

Adipokines/Inflammatory
Markers Bilirubin Relationship State Reference

MCP-1 Inverse relationship animal model (diet-induced
obesity in mice) Dong et al., 2014 [49]

TNF-α Inverse relationship overweight Petelin et al., 2020 [42]

IL-6 Inverse relationship overweight Petelin et al., 2020 [42]
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Table 1. Cont.

Adipokines/Inflammatory
Markers Bilirubin Relationship State Reference

CRP Inverse relationship Overweight/obese/diabetic
Petelin et al., 2020 [42]; Yoshino

et al., 2012 [5]; Melissas et al., 2006
[40]; Ohnaka et al., 2010 [41]

Adiponectin Positive relationship overweight Petelin et al., 2020 [42]

Leptin Inverse relationship animal model (diet-induced
obesity in mice) Liu et al., 2015 [50]

Omentin-1 N/A N/A N/A

chemerin Inverse relationship
cancer patients (colorectal

carcinoma and hepatocellular
carcinoma)

Feder et al., 2019 [51]

Resistin Inverse relationship overweight Petelin et al., 2020 [42]

Visfatin Inverse relationship overweight Petelin et al., 2020 [42]

Apelin N/A N/A N/A

A-FABP N/A N/A N/A

RBP-4 N/A N/A N/A

MCP-1 = monocyte chemoattractant protein 1; TNF-α = tumor necrosis factor α; IL-6 = interleukin 6; CRP = C-reactive protein;
A-FABP = adipocyte fatty acid-binding protein; RBP-4 = retinol-binding protein 4; N/A = non-applicable, no literature data.

4. Oxidative Stress in Adipose Tissue Due to Obesity

In addition to an increased proinflammatory response in adipose tissue due to over-
weight and obesity, excessive production of reactive oxygen species (ROS), decreased
antioxidant activity, and higher oxidative stress, especially in white adipose tissue, are also
observed in overweight and obese individuals [52–54].

In overweight and obese individuals, oxidative stress in adipose tissue is mainly
induced by the catalytic activity of the enzyme nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase (NOX) or by dysfunctional mitochondrial oxidative phosphory-
lation [52,55]. Electron transfer through the electron transfer chain or from NADPH to
oxygen generates superoxide anions, which are the primary ROS species that are further
converted to H2O2; however, ROS include chemically diverse compounds (nitric oxide, per-
oxynitrite, hypochlorous acid, singlet oxygen, hydroxyl radical) with diverse physiological
and pathological effects.

Several studies have shown that NOX-derived ROS production is associated with the
early stages of obesity, while mitochondrial-derived ROS production is associated with
the late stages of obesity [55]. NOX is a plasma-membrane-bound enzyme involved in
the transfer of electrons from NADPH to oxygen and is the main generator of ROS in
adipocytes [56]. In obese mice, mRNA expression levels of NOX subunits were increased
only in adipose tissue, which was associated with increased ROS production [53], while
adipose-specific deletion of NOX4 attenuated adipose tissue inflammation and early on-
set of insulin resistance in diet-induced obese mice [57]. Moreover, in cultured 3T3-L1
adipocytes, high levels of free fatty acids (FFAs) and glucose increased ROS production
via NOX activation [53,58], whereas treatment with NOX inhibitors or silencing of NOX4
ameliorated this effect by reducing ROS generation [53,58].

In overweight and obese individuals, oxidative stress in adipose tissue is also induced
by dysfunctional mitochondrial oxidative phosphorylation. Conditions that favor mito-
chondrial superoxide production include a reduction in electron carrier pools associated
with the mitochondrial respiratory chain (NADH, flavins, ubiquinone), high proton motive
force, and increased oxygen consumption within mitochondria [59]. Overeating delivers
excess electrons to the respiratory chain, while lack of physical activity and low ATP
demand promote a high proton motive force at a low respiratory rate, leading to mito-



Antioxidants 2021, 10, 1352 5 of 16

chondrial superoxide formation and oxidative stress. In a morbidly obese state, adipocytes
utilize FFAs from triglyceride stores via excessive lipolysis for energy because of glucose
deprivation due to insulin resistance [55]. Excess FFAs lead to an excess of electrons in
the electron transport chain during oxidative phosphorylation, resulting in their exit and
the generation of O2

− followed by the production of other ROS molecules [60]. Increased
β-oxidation also leads to an increased mitochondrial NADH/NAD+ ratio, resulting in
increased activation of protein kinase C (PKC). Activated PKC then contributes to ROS
production by increasing the activity of NADPH oxidase (NOX) [60].

Excessive production of mitochondrially derived ROS is also associated with exacerba-
tion of inflammation through the release of inflammatory cytokines and proinflammatory
transcription factors such as nuclear factor kappa B (NF-κB) and activator protein-1, which
in turn increases ROS production [61]. Moreover, activated PKC induces NF-κB and tumor
growth factor-beta activation, establishing a link between oxidative stress and inflamma-
tion. The phenomenon of increased proinflammatory response and oxidative stress in
obese states contributes significantly to the development of other metabolic complications
such as T2DM, cardiovascular disease, and certain types of cancer [62].

5. Antioxidant Activity of Bilirubin

Bilirubin is a potent endogenous antioxidant at its physiological concentrations. Biliru-
bin can scavenge reactive oxygen species by oxidizing itself to biliverdin. Then, biliverdin
is recycled back to bilirubin by biliverdin reductase [63]. This cycle enables nanomolar
concentrations of bilirubin to protect cells from the 10,000-fold molar excess of oxidants
when both substances are added exogenously to cell culture [64].

In addition to the direct ROS scavenging activity, bilirubin can further decrease oxida-
tive burden in the intracellular compartment by inhibiting NADPH oxidase complexes,
which are the major source of oxidative stress in adipocytes [65,66]. Moreover, activated
macrophages in hypertrophic adipose tissue express NADPH oxidase and further in-
crease oxidative stress. Altogether, the redox imbalance leads to adipocyte dysfunction
in obesity [56]. Importantly, bilirubin, via its antioxidant activity, can prevent adipocyte
hypertrophy via its hypothalamic effect and can improve the function of adipocytes that
have already hypertrophied [9,56].

Obesity and MetS also impair vascular endothelial function; however, bilirubin also
acts as an intracellular antioxidant in the endothelia of both arterial and venous systems,
with EC50 values in the nanomolar range [67].

6. Bilirubin as a Signaling Molecule Involved in Energy Homeostasis

In addition to bilirubin’s known role as an antioxidant and anti-inflammatory molecule,
it is now recognized that unconjugated bilirubin is also a potent endogenous activator of
several ligand-activated transcriptional factors crucially involved in metabolic homeostasis,
including peroxisome proliferator-activated receptor alpha (PPAR-α), aryl hydrocarbon
receptor, constitutive androsterone receptor (CAR), liver X receptors (LXRs), and pregnane
X receptor (PXR) [68].

PPARs, a class of nuclear receptors, function as fatty acid and eicosanoid sensors that
regulate multiple pathways involved in lipid and glucose metabolism, as well as overall
energy metabolism, playing an important role in the pathogenesis of obesity and other
metabolic diseases [69]. Interestingly, there are structural similarities between bilirubin
and known PPARα ligands [70]. Furthermore, bilirubin explicitly docks to the PPAR-α
ligand-binding domain to regulate transcriptional responses. PPAR-α is highly active
in the liver, adipose tissue, kidney, heart, and muscle tissue [71], where it regulates the
adaptive response to prolonged fasting by controling the process of ketogenesis, fatty
acid transport, fatty acid binding, fatty acid activation, and mitochondrial fatty acid-β
oxidation [72]. Genomic studies have shown that PPAR-α, as a master regulator of lipid
metabolism, has several target genes; classic genes include acyl-CoA oxidase, thiolase,
fatty acid transport protein, carnitine palmitoyltransferase I, and peroxisome proliferator-
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activated receptor-gamma coactivator 1-alpha [72]. Recent studies on bilirubin-induced
transcriptome responses showed that it selectively acts via PPAR-α, inducing gene tran-
scription that activates mitochondrial function and β-oxidation to utilize fats for energy
and reduces body weight [70,73–75]. In addition, hyperbilirubinemia in mice on a high-fat
diet increased the mitochondrial number and hyperphosphorylation of PPAR-α compared
to controls, thereby indicating that bilirubin is a metabolic hormone that controls white adi-
pose tissue expansion and reduces hypertrophy and glucose intolerance [76]. Furthermore,
bilirubin nanoparticles induce hepatic fat utilization, increase plasma ketones, and reduce
hepatic steatosis [77].

In addition to bilirubin’s direct action as a PPAR-α ligand, bilirubin acts via FABP1,
CAR, and LXRs [68]. CAR has recently been identified as a therapeutic target for obe-
sity and its associated metabolic disorders [78,79]. LXRs are sterol sensors that mainly
regulate cholesterol, fatty acids, and glucose homeostasis, and may inhibit the devel-
opment of atherosclerosis but promote lipogenesis in the liver [80]. Bilirubin acts as a
ligand transactivator of CAR and PXR to increase the expression of target genes respon-
sible for its disposal [81], and also to increase the expression of genes involved in energy
metabolism [82]. On the other hand, LXR is under negative control of bilirubin and systemic
bilirubin application was shown to attenuate dyslipidemia in diabetic rats [83].

Figure 1 illustrates the anti-inflammatory and antioxidant actions of bilirubin and its
properties as a signalling molecule in adipose tissue.

Antioxidants 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 
Figure 1. Pleiotropic effects of bilirubin on obesity. 

7. Potential Interventions to Modulate Serum Bilirubin Levels in Obesity 
Strategies to mildly increase serum bilirubin levels are important, especially in 

individuals most at risk. It is important to note that already mild elevation of bilirubin 
levels can have important clinical benefits. For example, each 0.1 mg/dL (1.7 μM) increase 
in serum bilirubin levels was associated with a 6% reduction in the risk of peripheral 
arterial disease [84]. Each micromolar increase in serum bilirubin was associated with an 
11% decrease in the odds of developing diabetes [85] and decreased systolic blood 
pressure by 0.13 mm Hg [86]. Both of these two conditions, diabetes mellitus and 
hypertension, are correlated with obesity. 

Low serum bilirubin levels (hypobilirubinemia) are harmful and can lead to various 
cardiovascular complications and possibly stroke [87]. Lower bilirubin levels contribute 
to increased low-density lipoprotein oxidation in obese children and adolescents, 
predisposing them to increased cardiovascular risk [88]. Indeed, serum bilirubin 
concentrations were significantly lower in patients with acute myocardial infarction [89]. 
Moreover, low serum bilirubin levels (<7 μM) are correlated with the significant increase 
in the relative risk of coronary heart disease [90] and with the risk of overall mortality [91]; 
therefore, strategies to increase serum bilirubin levels represent an important approach to 
ameliorate several obesity-mediated or obesity-correlated diseases. 

Figure 2 illustrates different interventions to modulate serum bilirubin levels in 
obesity. 

Figure 1. Pleiotropic effects of bilirubin on obesity.



Antioxidants 2021, 10, 1352 7 of 16

7. Potential Interventions to Modulate Serum Bilirubin Levels in Obesity

Strategies to mildly increase serum bilirubin levels are important, especially in indi-
viduals most at risk. It is important to note that already mild elevation of bilirubin levels
can have important clinical benefits. For example, each 0.1 mg/dL (1.7 µM) increase in
serum bilirubin levels was associated with a 6% reduction in the risk of peripheral arterial
disease [84]. Each micromolar increase in serum bilirubin was associated with an 11%
decrease in the odds of developing diabetes [85] and decreased systolic blood pressure by
0.13 mm Hg [86]. Both of these two conditions, diabetes mellitus and hypertension, are
correlated with obesity.

Low serum bilirubin levels (hypobilirubinemia) are harmful and can lead to various
cardiovascular complications and possibly stroke [87]. Lower bilirubin levels contribute to
increased low-density lipoprotein oxidation in obese children and adolescents, predispos-
ing them to increased cardiovascular risk [88]. Indeed, serum bilirubin concentrations were
significantly lower in patients with acute myocardial infarction [89]. Moreover, low serum
bilirubin levels (<7 µM) are correlated with the significant increase in the relative risk of
coronary heart disease [90] and with the risk of overall mortality [91]; therefore, strategies
to increase serum bilirubin levels represent an important approach to ameliorate several
obesity-mediated or obesity-correlated diseases.

Figure 2 illustrates different interventions to modulate serum bilirubin levels in obesity.
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7.1. Weight Loss

Weight loss is the most obvious approach for treating obesity, as well as in the modu-
lation of serum bilirubin levels. Low caloric intake in obese patients in the period between
one and two months increased serum bilirubin levels by 18–45% [92,93]. Similarly, short-
term weight loss effectively increased bilirubin levels with an increase in bilirubin as a
linear function of weight change [8]. The effect was higher in men than in women; namely,
each 1% increase in weight loss was associated with a 0.21 µM increase in serum bilirubin
levels in men and a 0.11 µM increase in women [8]. Additionally, there is a direct correlation
between BMI and serum bilirubin levels in asymptomatic overweight individuals [6], as
well as in obese patients [48].

In addition to weight loss, changes in body composition are also important. Body fat
percentage was inversely correlated with bilirubin in obese patients but not in controls [94].

7.2. Nutraceutical Interventions

Diet affects serum bilirubin levels. A higher intake of flavonoid-rich fruits and veg-
etables was significantly associated with higher total serum bilirubin [95], while a higher
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intake of fried and fast foods was significantly associated with lower bilirubin levels [96,97].
Indeed, we have previously shown that higher intake of total fatty acids is associated with
lower serum bilirubin, while higher intake levels of vitamin C and folic acid are associated
with higher bilirubin levels [6].

It has been shown that many natural compounds, including curcuminoids, flavonoids,
epigallocatechin-3-gallate, genistein, caffeic acid, resveratrol, and natural coumarins, can
induce the expression of heme oxygenase-1 (HO-1) [98–100]. Indeed, in our previous
work, we showed that consumption of buckwheat porridge rich in flavonoids for four
weeks resulted in higher serum bilirubin levels in subjects with MetS [101]. In addition
to polyphenols, other bioactive natural compounds also exert HO-1 inducing activity.
Our group recently showed that peroral application of lyophilized royal jelly significantly
increased serum bilirubin compared to placebo after 8 weeks in asymptomatic overweight
adults [102]. The bioactive compound was likely 4-hydroperoxy-2-decenoic acid ethyl
ester, a royal jelly fatty acid derivative that significantly induced HO-1 expression in cell
culture [103].

Moreover, the HO-1 enzyme combines the physiology of the bilirubin and adiponectin
axis responses. Oxidative stress and inflammation upregulate the level of inducible HO-1,
thereby increasing total bilirubin levels [104]. Furthermore, the HO-1 system is also in-
volved in enhancing adiponectin synthesis and release [105]. Interestingly, HO-1 induction
was reported to reduce visceral and subcutaneous obesity in diabetic and obese mice [106].
Likewise, increasing intracellular bilirubin levels via HO-1 induction in adipocytes im-
proved adipocyte function and adipose remodeling by increasing adiponectin levels [107].
In a similar study, HO-1 induction also altered the physical appearance of adipocytes from
a few large to many smaller adipocytes [108]. Additionally, the HO-1 induction was found
to be beneficial in obesity by inhibiting adipogenesis by preventing the creation of adipose
tissue from mesenchymal stem cells [109].

In addition to stimulatory effects on HO-1, many natural bioactive compounds, in-
cluding epigallocatechin gallate, flavonoids, silymarin, flavonolignans, and various herbal
supplements, exhibit inhibitory effects on UDP glucuronosyltransferase family 1 member
A1 (UGT1A1) [85,110,111], thereby leading to hyperbilirubinemia. On the other hand, a
bilirubin-lowering effect has been observed with the intake of citrus fruits, cruciferous veg-
etables, onions, garlic, and coffee, probably due to the UGT1A1-inducing activities [85,112].

Another potential dietary approach is to enhance the systemic pool of tetrapyrroles
with bilirubin-like substances. In vitro experiments on cell cultures using the edible blue
alga Spirulina platensis, which is rich in tetrapyrrolic compounds closely related to biliru-
bin, led to improved intracellular redox status and antiproliferative effects [113].

7.3. Physical Activity

One of the first reports showed that any type of exercise, either habitual or irregular,
increased total bilirubin levels compared with the group of individuals who do not exer-
cise [114]. Indeed, intensive regular exercise, as seen in athletes, is correlated with elevated
concentrations of total bilirubin [115]. Animal experiments showed that exercise stimulates
pathways that raise serum bilirubin levels through alterations in the levels of hepatic
enzymes; namely, increasing the expression of biliverdin reductase and consequently
increasing bilirubin synthesis, as well as decreasing the expression of UGT1A1, which
converts the biologically active unconjugated bilirubin into the non-active conjugated
form [116].

The intensity of the exercise is important in increasing the serum bilirubin levels.
An intervention study on previously sedentary postmenopausal women showed that
only a high dose of exercise training of at least 12 kilocalories per kilogram per week of
exercise training at an intensity of 50% of aerobic capacity resulted in a modest elevation
of serum bilirubin levels, whereas lower training loads had no effect [117]. Accordingly,
asymptomatic overweight and obese middle-aged individuals who had better measured
aerobic body capabilities had higher serum bilirubin levels [6].
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Some studies have shown no effects of exercise on the modulation of serum bilirubin
levels. A study on women with abdominal obesity doing endurance or endurance–strength
exercise for 60 min 3 times/week for 3 months did not alter total serum bilirubin levels [118].
Moreover, endurance–strength exercise even decreased indirect bilirubin [118]. Similarly,
another study showed that moderate-to-vigorous physical activity increased bilirubin
levels only in insulin-resistant individuals but not in insulin-sensitive individuals [119].

7.4. Pharmacological Approaches

Diverse pharmacological strategies can modulate serum bilirubin levels via the ap-
plication of drug compounds that bind to the selected molecular targets, affecting the
following bilirubin homeostasis processes: (i) the synthesis of bilirubin (HO-1, biliverdin
reductase); (ii) the metabolism of bilirubin UGT1A1, which converts the active unconju-
gated form of bilirubin into non-active conjugated bilirubin; (iii) the uptake of bilirubin
via membrane transporters (bilitranslocase, organic anionic transporter OATP1B1) into the
hepatic and other cells; (iv) the distribution of bilirubin throughout the body via serum
albumin binding.

To increase the synthesis of bilirubin, several potential drug compounds can increase
the level of HO-1, thereby leading to either increases in intracellular and serum bilirubin
levels [120], namely nonsteroidal anti-inflammatory drugs such as acetylsalicylic acid
and coxibs and hypolipidemic drugs such as statins, fibrates, and niacin [121]. In mouse
experiments, atorvastatin and rosuvastatin increased expression of HO-1, consequently
increasing serum bilirubin levels and total antioxidant status [122]. Importantly, 60–70%
of patients with obesity are dyslipidemic, with statins representing the cornerstone of
dyslipidemia treatments [123].

Another approach to mildly elevated bilirubin levels is to reduce bilirubin metabolism
by inhibition of UGT1A1. Atazanavir is a drug compound used clinically for treating
HIV-infected patients; however, it is also a well-established inhibitor of UGT1A1 leading
to increased unconjugated bilirubin levels [124]. Indeed, patients on atazanavir therapy
have less myocardial infarction compared with other pharmacotherapy strategies [125].
Atazanavir treatment for 3 days in non-HIV patients with T2DM increased average serum
bilirubin levels from 7 to 64 µM, increased total plasma antioxidant capacity, and improved
endothelium-dependent vasodilation [126]. Other drugs known to inhibit UGT1A1 are
cancer treatment drugs, such as kinase inhibitors and topoisomerase I inhibitors, among
others [121]; however, these latter drugs are less suitable for modulating serum bilirubin
levels in obese patients due to their serious adverse effects.

There is also a large group of drugs that inhibit the uptake of bilirubin into the liver
and other cells. Inhibition of entry into liver cells will decrease bilirubin metabolism,
thereby increasing unconjugated bilirubin, which is also the bioactive form. Some drug
compounds can act as inhibitors of bilitranslocase, a membrane protein that acts as a
transporter of bilirubin from blood to liver cells [127]. Some promising candidate drugs
are the antihypertensive drug hydrochlorothiazide and the nonsteroidal anti-inflammatory
drug sulindac [127]. In addition to the bilitranslocase, bilirubin can enter cells using
OATP1B1 transporter, which interacts with more than 700 drug compounds; some reported
candidate drugs are statins, nonsteroidal anti-inflammatory drugs, β-blockers, cyclosporin
A, antivirals, sartans, glitazones, and many others [121].

Lastly, several drug compounds compete with bilirubin for albumin binding, dis-
placing unconjugated bilirubin from the binding site on albumin, leading to transient
hyperbilirubinemia [128]. For example, ibuprofen replaces bilirubin from albumin and is
also widely prescribed with a good safety profile [129].

8. Prospective Practice of Bilirubin Regulation in Obesity Treatment

There are several considerations in the prospective use of therapeutic approaches
to modulate serum bilirubin levels in obese patients. First, it remains an open question
whether the serum bilirubin level is a causal therapeutic target for obesity and CVDs,
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or rather a phenomenon driven by unmeasured confounding or reverse causation [130].
In this regard, large amounts of data have been obtained from several observational
epidemiological studies, whereas there is a lack of controlled clinical trials offering the
highest clinical evidence. Second, a recent large retrospective cross-sectional study on
severely obese children showed that bilirubin is inversely associated only with some
components of MetS, such as high blood pressure, high triglycerides, waist circumference,
waist–height ratio, CRP levels, and HOMA-IR index; interestingly, no association between
serum bilirubin and MetS or fatty liver was found [131]. This study showed that bilirubin
is not protective in the presence of severe obesity (BMI > 95th percentile), whereas there is
a greater number of published studies focused on the whole spectrum of individuals from
overweight to obese. This raises the question of whether the role of bilirubin in obesity is
more of a preventive nature or can also be therapeutic.

In contrast to most published studies, one study also reported that serum bilirubin
concentrations were not negatively associated with inflammatory biomarkers or a pro-
tective lipid profile when conducting retrospective epidemiological investigations [132];
however, this study was conducted on all adults referred for routine medical check-ups,
and most of the participants were indeed healthy with low CRP values and normal lipid
profiles; thus, the protective effects of mildly increased serum bilirubin levels in overweight
and obese individuals could have been masked.

The idea of using mildly elevated serum bilirubin levels in obesity treatment would
require controlled clinical trials; however, since several drug candidates are already regis-
tered, this approach would involve drug repurposing with a known drug safety profile
and potential adverse effects, whereas nutraceutical, diet, and physical activity approaches
involve even more straightforward research processes. Moreover, it is important to mention
that such interventions would be long term and must be individually tailored considering
the severity of obesity and other CVD-related parameters.

Importantly, strong caution is required when using intervention approaches to increase
bilirubin levels to prevent markedly elevated bilirubin levels, which might be toxic; thus,
continuous monitoring of bilirubin levels in each individual must be employed, since the
bilirubin levels largely depend on the individual genotype.

Our review article assesses the role of the serum bilirubin level as an additional clinical
target that can be both modified and routinely measured, while considering that obesity
is a multifactorial and complex disease with no single-hit druggable target; however,
there is also a simple logic in the suggested approach. In obesity, chronic inflammation,
increased oxidative stress, altered adipose tissue, and altered adipocyte metabolism occur;
importantly, bilirubin is a strong endogenous antioxidant molecule with anti-inflammatory
and adipocyte-modifying properties.

9. Conclusions

Overweight and obese adults have lower serum bilirubin values compared to normal-
weight individuals. Since bilirubin is an endogenous molecule with antioxidant, anti-
inflammatory, antithrombogenic, endocrine, and many other activities, the modulation of
serum bilirubin levels represents a novel therapeutic approach. Mildly increased serum
bilirubin levels will protect other organs and directly affect the adipose tissue and its
adipokine secretion pattern. In our opinion, the modulation of serum bilirubin levels will
be an effective adjunctive therapy for obesity that can improve several obesity-induced
pathological conditions.
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