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Abstract

The number of substitutions (of nucleotides, amino acids, etc.) that take place during the evolution of a sequence is a
stochastic variable of fundamental importance in the field of molecular evolution. Although the mean number of
substitutions during molecular evolution of a sequence can be estimated for a given substitution model, no simple
solution exists for the variance of this random variable. We show in this article that the computation of the variance is as
simple as that of the mean number of substitutions for both short and long times. Apart from its fundamental impor-
tance, this result can be used to investigate the dispersion index R, that is, the ratio of the variance to the mean
substitution number, which is of prime importance in the neutral theory of molecular evolution. By investigating large
classes of substitution models, we demonstrate that although R � 1, to obtain R significantly larger than unity neces-
sitates in general additional hypotheses on the structure of the substitution model.
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Introduction
Evolution at the molecular level is the process by which ran-
dom mutations change the content of some sites of a given
sequence (of nucleotides, amino acids, etc.) during time. The
number of substitutions n that occur during this time is of
prime importance in the field of molecular evolution and its
characterization is the first step in deciphering the history of
evolution and its many branching. The main observable in
molecular evolution, on comparing two sequences, is p̂, the
fraction of sites at which the two sequences are different. In
order to estimate the statistical moments of n, the usual
approach is to postulate a substitution model Q through
which p̂ can be related to the statistical moments of n. The
simplest and most widely used models assume that Q is site
independent, although this constraint can be relaxed (Graur
and Li 1999; Yang 2006).

Once a substitution model Q has been specified, it is
straightforward to deduce the mean number of substitutions
nh i and the process is detailed in many textbooks. However,

the mean is only the first step in the characterization of a
random variable and by itself is a rather poor indicator. The
next step in the investigation of a random variable is to obtain
its variance V. Surprisingly, no simple expression for V can be
found in the literature for arbitrary substitution model Q. The
first purpose of this article is to overcome this shortcoming.
We show that computing V is as simple as computing nh i,
both for short and long times.

We then apply this fundamental result to the investigation
of the dispersion index R, the ratio of the variance to the
mean number of substitutions. The neutral theory of

molecular evolution introduced by Kimura (1984) supposes
that the majority of mutations is neutral (i.e., have no effect
on the phenotypic fitness) and therefore substitutions in pro-
tein or DNA sequences accumulate at a “constant rate” dur-
ing evolution, a hypothesis that plays an important role in the
foundation of the “molecular clock” (Bromham and Penny
2003; Ho and Duchêne 2014). The original neutral theory
postulated that the substitution process is Poissonian, that
is, assuming R¼ 1. Since the earliest work on the index of
dispersion, it became evident however that R is usually much
larger than unity (Gillespie 1989; Ohta 1995; see Cutler [2000]
for a review of data). Many alternatives have been suggested
to reconcile the “overdispersion” observation with the neutral
theory (Cutler 2000). Among these various models, a prom-
ising alternative, that of fluctuating neutral space, was sug-
gested by Takahata (1991) which has been extensively studied
in various frameworks (Zheng 2001; Bastolla et al. 2002; Wilke
2004; Bloom et al. 2007; Raval 2007).

The fluctuating neutral space model states that the sub-
stitution rate mi

j from state i to state j is a function of both
i and j. States i and j can be nucleotides or amino acids, in
which case we recover the usual substitution models of
molecular evolution discussed above. The states can also
be nodes of a neutral graph used to study global protein
evolution (Huynen et al. 1996; Bornberg-Bauer and Chan
1999; van Nimwegen et al. 1999). For neutral networks
used in the study of protein evolution, Bloom et al. (2007)
devised an elegant procedure to estimate the substitution
rates. We will show in this article that in general R � 1 and
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the equality is reached only for the most trivial cases.
However, producing large R requires additional hypotheses
on the structure of substitution rates.

In summary, the problem we investigate in this article is to
find a simple and general solution for the variance and dis-
persion index of any substitution matrix of dimension K. A
substitution matrix Q collects the transition rates mi

j (i 6¼ j);
its diagonal elements qi

i ¼ �mi are set such that its columns
sum to zero (see below for notations) and designate the rate
of leaving state i. Because of this condition, Q is singular.

Zheng (2001) was the first to use Markov chains to inves-
tigate the variance of substitution number as a solution of a
set of differential equations. His investigation was further de-
veloped by Bloom et al. (2007) who gave the general solution
in terms of the spectral decomposition of the substitution
matrix; this solution was extended by Raval (2007) for a
specific class of matrices used for random walk on neutral
graphs. Minin and Suchard (2008) used the same spectral
method to derive an analytical form for the generating func-
tion of a binary process.

The first step to characterize the substitution number,
which as is well known, is to find the equilibrium probabilities
pi of being in a state i, which is obtained by solving the linear
system

P
i qi

jpi ¼ 0 with the additional condition ofP
i pi ¼ 1. Once pi are obtained, the mean substitution

number as a function of time is simply nh i ¼ �mt where
�m ¼

P
i mipi is the weighted average of the “leaving” rates.

We show here that finding the variance necessitates a
similar computation. Denoting the weighted deviation of
the diagonal elements of Q from the mean
hi ¼ ð�m�miÞpi, we have to find the solution of the linear
system

P
i qi

jri ¼ hj with the additional condition
P

ri ¼ 0.
For long times, the dispersion index is then simply

R ¼ 1þ 2

�m

XK

i¼1

miri: (1)

For short times, that is, when the mean number of substi-
tutions is small, the result is even simpler:

R ¼ 1þ vm

�m2
nh i; (2)

where

vm ¼
XK

i¼1

ð�m�miÞ2pi

in other words, vm is the variance of the diagonal elements of
the substitution matrix, weighted by the equilibrium
probabilities.

This article is organized as follows: The “Materials and
Methods” section contains the theoretical formulation of
the problem and its solution that leads to the simple results
(1) and (2). The validity of the method is confirmed by Monte
Carlo numerical simulations. Generalization to rate heteroge-
neity is also considered. The “Materials and Methods” section
also contains a “Numerical Method” subsection which de-
scribes verbally the numerical algorithm provided in supple
mentary file S1, Supplementary Material online.

In the “Results” section, the simplicity of expressions
(1) and (2) are used to study the dispersion index for specific
models of nucleotide substitutions widely used in the literature
and for general models. We investigate in particular the condi-
tions necessary to produce large R. The last section is devoted
to a general discussion of these results and to conclusions.
Technical details, such as the proof of R � 1 are given in the
appendices and in supplementary file S2, Supplementary
Material online (solution for general initial conditions).

Materials and Methods

Background and Definitions
The problem we investigate in this article is mainly that of
counting transitions of a random variable (fig. 1). Consider a
random variable X that can occupy K distinct states and let mi

j
(i 6¼ j; 1 � i; j � K) be the transition rate from state i to
state j. The probability density piðtÞ of being in state i at time t
is governed by the Master equation

dpi

dt
¼ �

X
j

mi
jpi þ

X
j

mj
ipj

¼ �mipi þ
X

j

mj
ipj;

where mi ¼
P

j mi
j is the “leaving” rate from state i. We can

collect the pi into a (column) vector jpi ¼ ðp1; . . . ; pKÞT and
write the above equations in matrix notation

d

dt
jpi ¼ ð�DþMÞjpi ¼ Qjpi; (3)

FIG. 1. The random variables X can switch between K states; the
counter N of the number of transitions is incremented at each tran-
sition of the variable X. The figure above shows one realization of
these random variables as a function of time.
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where D is the diagonal matrix of mi and M ¼ ðmi
jÞ collects

the detailed transition rates from state i to state j (i 6¼ j) and
has zero on its diagonal. In our notations, the upper (lower)
index designates the column (row) of a matrix. The matrix
Q ¼ �DþM is called the substitution matrix and its col-
umns sum to zero.

Before proceeding, we explain the notations used in this
article. As the matrix Q is not in general symmetric, a clear
distinction must be made between right (column) and left
(row) vectors. The Dirac notations are standard and useful
for handling this distinction: A column vector ðx1; . . . ; xKÞT
is denoted jxi whereas a row vector ðy1; . . . ; yKÞ is denoted
yjh and yjxh i ¼

P
i yixi is their scalar product. In some of

literature (see Yang 2006), the substitution matrix is the trans-
pose of the matrix used here and the master equation is then
written as d pj=dt ¼ pjQhh and therefore its rows sum to zero.

By construction, the matrix Q is singular and has one zero
eigenvalue whereas all others are negative. Therefore, as time
flows, jpðtÞi >! jpi where jpi ¼ ðp1; . . . ; pKÞ is the equi-
librium occupation probability and the zero-eigenvector of
the substitution matrix.

Qjpi ¼ 0;

1jph i ¼ 1;

where 1j ¼ ð1; . . . ; 1Þh , and the second condition expresses
that the sum of the probabilities must be 1. Note that by
definition, 1jQ ¼ 0h , and thus 1jh is a zero row eigenvector of
the substitution matrix.

Problem Formulation
To count the number of substitutions (fig. 1), we consider the
probability densities pn

i ðtÞ of being in state i after n substitu-
tions at time t. These probabilities are governed by the master
equation

dpn
i

dt
¼ �mipn

i þ
X

j

mj
ip

n�1
j n > 0 (4)

dp0
i

dt
¼ �mip0

i : (5)

We can combine the above equations by setting pn
i ðtÞ ¼ 0

if n< 0. Collecting the elements of ðpn
1; p

n
2; . . . ; pn

KÞ
T into

the vector jpni, the above equation can then be written as

d

dt
jpni ¼ �Djpni þMjpn�1i: (6)

The quantities of interest for the computation of the dis-
persion index are the mean and the variance of the number of
substitutions. The mean number of substitutions at time t is

nðtÞh i ¼
X

i;n

npn
i ðtÞ:

Let us define

niðtÞ ¼
X

n

npn
i ðtÞ

and collect the partial means ni into the vector jnðtÞi ¼
ðn1; . . . ; nKÞT. The mean is then defined simply as

nðtÞh i ¼
X

i

niðtÞ ¼ 1jnðtÞh i: (7)

By the same token, the second moment

n2ðtÞ
� �

¼
X

i;n

n2pn
i ðtÞ

can be written in terms of partial second moments n2
i

¼
P

n n2pn
i ðtÞ as

n2ðtÞ
� �

¼ 1jn2ðtÞ
� �

; (8)

where jn2ðtÞi ¼ ðn2
1; . . . ; n2

KÞ
T. It is straightforward to show

(see Appendix A), for the initial condition jpnð0Þi ¼ jpi, that
jnðtÞi and jn2ðtÞi obey a linear differential equation

d

dt
jni ¼ Qjni þ Djpi (9)

d

dt
jn2i ¼ Qjn2i þ 2Mjni þ Djpi: (10)

The choice of equilibrium initial condition simplifies the
computations and is used through the literature; it is, how-
ever, not a necessary requirement. We provide the solution
for general initial conditions in supplementary file S2,
Supplementary Material online.

Let us define the row vector

mj ¼ ðm1; . . . ;mKÞ
�

(11)

which collects the leaving rates. By definition,
1jM ¼ 1jD ¼ mjhhh . Multiplying equations (9) and (10)

by the row vector 1jh , and noting that 1jQ ¼ 0jhh , we get
a simple relation for the moments:

d

dt
nh i ¼ mjph i (12)

d

dt
n2
� �

¼ 2 mjnh i þ mjph i: (13)

We observe that the mean number of substitutions in-
volves only a trivial integration. Defining the weighted average
of the leaving rates as

�m ¼ mjph i ¼
X

i

mipi: (14)

The mean number of substitution is simply

nðtÞh i ¼ �mt: (15)

To compute the second moment of the substitution num-
ber on the other hand, we must solve for jni using equation
(9) and then perform one integration. The next subsection is
devoted to the efficient solution of this procedure.

Solution of the Equation for the Moments
One standard way of solving equation (9) would be to ex-
press the matrix Q in its eigenbasis; equation(9) is then
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diagonalized and can be formally solved. This is the method
used by Bloom et al. (2007) and further refined by Raval
(2007) for a specific class of substitution matrices where
mi

j ¼ 0 or 1. Bloom et al. (2007, eq. 9) give also a general
procedure for finding the variance which can be simplified
when an eigenbasis is available.

The problem with the eigenbasis approach is that even
when Q can be diagonalized, this is not the most efficient
procedure to find V, as it necessitates the computation of
all eigenvalues and row and column eigenvectors of Q and
then the cumbersome summation of their binomial
products.

The procedure we follow involves some straightfor-
ward, albeit cumbersome linear algebraic operations,
but the end result is quite simple. We note that the matrix
Q is singular and has exactly one zero eigenvalue, associ-
ated with the row 1jh and column jpi eigenvectors. The
method we use is to isolate the zero eigenvalue by making
a round-trip to a new basis. Thus, if we can find a new
basis in which the substitution matrix Q0 ¼ X�1QX takes
a lower block triangular form

(16)

we will have achieved our goal of isolating the zero eigenvalue.
The nonsingular matrix ~Q is of rank K � 1 and has the
nonzero and negative eigenvalues of Q. As 1jh is the known
row eigenvalue of Q, we can split the vector space into
B ¼ fjui j 1juh i ¼ 0g and the space padded by jpi. It is
then straightforward to find the above transfer matrices X
and X�1 for such a transformation:

X ¼

1 �1 �1 � � � �1

0 1 0 � � � 0

0 0 1 � � � 0

..

. . .
. ..

.

0 � � � 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

X�1 ¼

1 1 1 � � � 1

0 1 0 � � � 0

0 0 1 � � � 0

..

. . .
. ..

.

0 � � � 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (17)

Under such a transformation, a column vector jxi ¼
ðx1; x2; . . . ; xKÞT transforms into

jx0i ¼ X�1jxi ¼

X
i

xi

x2

..

.

xK

0
BBBBBBB@

1
CCCCCCCA
¼

P
i xi

j~xi

� �
; (18)

where the K � 1 dimensional vector j~xi ¼ ðx2; . . . ; xKÞT.
In general, we will designate by a ~ all vectors that belong
the K� 1 dimensional spaceB in which the linear application
~Q operates.

A row vector yj ¼ ðy1; y2; . . . ; yKÞh transforms into

y0j ¼ yjX ¼ ðy1; y2 � y1; . . . ; yK � y1Þ ¼ ðy1j ~yj Þ;h
��

where the K� 1 dimensional row vector ~yj ¼ ðy2 � y1; . . . ;h
yK � y1Þ.

Finally, ~Q
i

j ¼ Qi
j � Q1

j where the elements of ~Q have been
indexed from 2 to K.

Expressing now the equation (9) for the evolution of first
moments in the new basis, we find that

d

dt
nh i ¼ �m (19)

d

dt
j~ni ¼ ~Qj~ni þ nh ij~ai þ j~li; (20)

where j~ni ¼ ðn2; . . . ; nKÞT; j~li ¼ ðm2p2; . . . ;mKpKÞT;
and j~ai is given in relation (16). Equation (19) is the same
as equation (12) and implies that nh i ¼ �mt. As ~Q is nonsin-
gular (and negative definite), equations (19) and (20) can now
readily be solved. Noting that Qjpi ¼ 0 implies that
j~ai þ ~Q j~pi ¼ 0, the differential equation (20) integrates

j~ni ¼ I� e
~Q t

� �
~Q
�1j~hi þ nh ij~pi; (21)

where j~hi ¼ �mj~pi � j~li:
To compute the second moment (eq. 13) and the vari-

ance, we must integrate the above expression one more time.
We finally obtain

VarðnÞ ¼ n2h i � nh i2

¼ nh i þ 2 ~mj Itþ ~Q
�1ðI� e

~Q tÞ
� �

~Q
�1j~h

D E
:

(22)

The second term in the right-hand side of the above equa-
tion is the excess variance dV with respect to a Poisson process.

Long-Time Behavior
As all eigenvalues of ~Q are negative, for large times
expð~Q tÞ ! 0 and the leading term of the excess variance
is therefore

dV ¼ 2 ~mj~rh it; (23)
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where j~ri is the solution of the linear equation

~Q j~ri ¼ j~hi: (24)

Returning to the original basis, relation (23) becomes

dV ¼ 2 mjrh it; (25)

where mj ¼ ðm1;m2; . . . ;mKÞh is the row vector of the
leaving rates and jri is the solution of the linear equation

Qjri ¼ jhi; (26)

1jrh i ¼ 0: (27)

jhi ¼ ðh1; . . . ; hKÞT is the vector of weighted deviation from
�m of the leaving rates mi:

hi ¼ ð�m�miÞpi:

Finally, for large times, the dispersion index is

R ¼ 1þ 2
mjrh i
�m

; (28)

which is the relation (1) given in the introduction.
Figure 2 shows the agreement between the above theo-

retical results and stochastic numerical simulations.
Two important consequences should be noted. First, it is

not difficult to show that R � 1 for continuous time random
processes, which is called the overdispersion of the molecular
clock. A demonstration of this theorem for symmetric sub-
stitution matrices whose elements are 0 or 1 (adjacency ma-
trices) was given by Raval (2007). We give the general
demonstration for general time reversible (GTR) substitution
matrices in Appendix B. For arbitrary matrices, extensive nu-
merical results on 107 random matrices (fig. 4) have shown
R � 1 with no exception.

The second consequence of relation (28) is that if all
diagonal elements of the substitution matrix are equal
(i.e., mi ¼ mj 8i; j), then the dispersion index is exactly 1
and we recover the property of a normal Poisson process,
regardless of the fine structure of Q and the equilibrium
probabilities pi. This is a sufficient condition. We show
that the necessary condition for R¼ 1 is jhi ¼ j0i, which,
except for the trivial case where some pi ¼ 0, again
implies the equality of diagonal elements of Q (see
Appendix B).

Note that the expression (28) was obtained for the
initial condition jPð0Þi ¼ jpi. As mentioned before, the
solution for general initial condition is provided in
supplementary file S2, Supplementary Material online,
where it is shown that for long times, expression (28)
remains valid and does not depend on the choice of initial
conditions.

Short-Time Behavior
For short times, that is, when the mean number of substitu-
tion is small, we can expand dV given by expression (22) to
the second order in time:

dV ¼ �t2 ~mj~h
� �

þ Oðt3Þ (29)

¼ �t2
XK

i¼2

ðmi �m1Þð�m�miÞpi þ Oðt3Þ: (30)

Note that the above summation is over i ¼ 2; � � � ;K.
However, by definition,

XK

i¼1

ð�m�miÞpi ¼ 0

and hence the sum in relation (30) can be rearranged as

dV ¼ t2
XK

i¼1

ð�m�miÞ2pi: (31)

The sum, which we will denote by vm, represents the var-
iance of the diagonal elements of Q, weighted by the equi-
librium probabilities. It is more meaningful to express the
variance in terms of the mean substitution number. Using
relation (15), we therefore have

dV ¼ vm

�m2
nh i2: (32)

The dispersion index for short times is therefore

R ¼ 1þ vm

�m2
nh i:

We observe that for short times, the dispersion index in-
creases with the mean number of substitution. This is a ge-
neric feature of nontrivial substitution matrices (where
diagonal elements are not identical) and has been observed
by Ohta (1995).

The dispersion index for all times can also be computed,
and an example is given in Appendix C.

FIG. 2. Comparison between the theoretical result (28) and numerical
simulations. 3� 105 4 � 4 random (uniform(0, 1)) matrices were
generated. For each matrix, a Gillespie algorithm was used to generate
106 random paths as a function of time (tfinal¼ 1,000), from which the
dispersion index was computed. In the above figure, each dot corre-
sponds to one random matrix. The mean relative error ðRtheor � RsimÞ=
Rtheor is 1:3� 10�3.
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Rate Heterogeneity
The substitution models we have considered here can be
applied to sequences where the Q matrix is identical for all
sites. For nucleotide sequences, this can describe the evolu-
tion of noncoding sequences or synonymous substitutions.
On the other hand, for amino acid substitution, it is well
known that some sites are nearly constant or evolve at a
slower pace than other sites. A natural extension of the pre-
sent work would be to take into account substitution matri-
ces that vary among sites, drawing, for example, their scaling
factor from a Gamma distribution (Yang 2006). The formal-
ism we have developed in this article can be adapted to such
an extension.

Let us define nS as the substitution number for the
sequence:

nS ¼
XL

b¼1

nb;

where L is the sequence length and nb is the substitution
number at site b. If we suppose that sites are not correlated,
that is, a transition at one site does not modify the transition
rates at other sites, nb are independent random variables and
therefore

nSh i ¼
XL

b¼1

nb
� �

; (33)

VarðnSÞ ¼
XL

b¼1

VarðnbÞ: (34)

Consider the simplest case where only the scaling factor
varies across sites:

Qb ¼ kbQ;

where Q is a fixed substitution matrix and kb is drawn from a
given distribution fðkÞwith mean �k. The actual form of f is not
important for the discussion here. Recalling that (expressions
15 and 25) for large times, nb

� �
¼ kb �mt and VarðnbÞ ¼

kbð�mþ 2 mjrh iÞt, where �m; mjh , and jri are defined for
the matrix Q, expressions (33) and (34) are reduced to

nSh i ¼ �mt
XL

b¼1

kb � L�k�mt;

VarðnSÞ ¼ ð�mtþ 2 mjrh iÞ
XL

b¼1

kb � L�kð�mþ 2 mjrh iÞt;

where we have supposed the sequence length L to be large.
We observe that the dispersion index in this case is not sen-
sitive to rate variation among sites

RS ¼
VarðnSÞ

nSh i
¼ 1þ 2

mjrh i
�m

;

which is the same expression (28) we had before. Therefore, in
this simplest case, rate variation among sites cannot increase

the dispersion index compared with the homogeneous rate
case. For a more general case where all the coefficients of the
substitution matrix Qb are drawn at random from a given
distribution, statistical moments of nS have to be evaluated
from expressions (33) and (34) using the exact distribution
law fðqi

jÞ. A similar approach can be used to evaluate the
short-time behavior of the dispersion index.

The hypothesis that sites are independent is a simplifica-
tion and correlations between sites have been used to dis-
cover sectors, that is, functional domains inside a protein
sequence (Halabi et al. 2009). The method presented in this
article can in principle be used to study the more general case
by considering groups of correlated amino acids as the basic
units, which will significantly increase the dimensionality K of
the substitution matrix.

Numerical Methods
Numerical simulation of stochastic equations uses the
Gillespie (1977) algorithm and is written in Cþþ language.
To compute the dispersion index of a given matrix Q, we
generate 106 random paths over a time period of 1,000. To
compare the analytical solutions given in this article (fig. 2)
with stochastic simulations (fig. 2), we generated 3:6� 105

random matrices and numerically computed their disper-
sion index by the above method. This numerical simulation
took approximately 10 days on a 60 core cluster.

All linear algebra numerical computations and all data
processing were performed with the high-level Julia language
(Bezanson et al. 2014). Computing the analytical dispersion
index for the above 3:6� 105 random matrices took about
5 s on a desktop computer, using only one core.

To generate random GTR matrices, we use the factor-
ization Q ¼ SP�1 (see Appendix B) which allows for in-
dependent generation of the KðK � 1Þ=2 elements of
the symmetric matrix S and K – 1 elements of P. For
arbitrary matrices, we draw the KðK � 1Þ elements of
the matrix. All random generators used in this work are
uniform(0,1).

The supplementary file S1, Supplementary Material on-
line, contains the Julia code (15 lines) for computing the dis-
persion index as given in equation (1). The algorithm can be
described as

(1) Find the equilibrium column vector jpi ¼
ðp1; . . . ; pKÞT by solving the linear system Qjpi ¼ 0,
with the supplementary condition

P
i pi ¼ 1.

(2) Extract the row vector mj ¼ ðm1; . . . ;mKÞh from the
diagonal of the Q matrix: mi ¼ �Qi

i.
(3) Compute �m, the rate of variation of the mean substi-

tution number �m ¼
P

i mipi.
(4) Define the column vector jhi ¼ ðh1; . . . ; hKÞT whose

elements are given by hi ¼ ð�m�miÞpi.
(5) Find the column vector jri ¼ ðr1; . . . ; rKÞT by solving

the linear system Qjri ¼ jhi, with the supplementary
condition

P
i ri ¼ 0.

(6) Compute mjrh i ¼
P

i miri and the long-time disper-
sion index R ¼ 1þ 2 mjrh i=�m.
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Results

Application to Specific Nucleotides Substitution
Models
Nucleotide substitution models are widely used in molecular
evolution (Graur and Li 1999; Yang 2006), for example, to
deduce distances between sequences. Some of these models
have few parameters or have particular symmetries. For these
models, it is worthwhile to express relation (28) for large times
into an even more explicit form and compute the dispersion
number as an explicit function of the parameters. We provide
below such a computation for some of the most commonly
used models.

For the K80 model proposed by Kimura (1980), all diagonal
elements of the substitution matrix are equal; hence, relation
(28) implies that R¼ 1.

T92 Model
Tamura (1992) introduced a two-parameter model (T92) ex-
tending the K80 model to take into account biases in GþC
contents. Solving relation (28) explicitly for this model, we
find for the dispersion index

R ¼ 1þ 2k2

kþ 1

hð1� hÞð2h� 1Þ2

1þ 2khð1� hÞ : (35)

Here k ¼ a=b, where a and b are the two parameters of
the original T92 model. A similar expression was found by
Zheng (2001). For a given k, the maximum value of R is

R� ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
2þ k
p

�
ffiffiffi
2
p	 
2

kþ 1
:

And it is straightforward to show that in this case

R 2 ½1; 2	

although even reaching a maximum value for R¼ 1.5 will
necessitate strong asymmetries in the substitution rates
(such as k¼ 18.8 and h ¼ 0:063).

TN93 Model
Tamura and Nei (1993) proposed a generalization of the F81
(Felsenstein 1981) and HKY85 (Hasegawa et al. 1985) models
which allows for biases in the equilibrium probabilities,
different rates of transition versus transversion and for differ-
ent rates of transitions. The corresponding substitution ma-
trix is

QTN93 ¼ l

� k1p1 p1 p1

k1p2 � p2 p2

p3 p3 � k2p3

p4 p4 k2p4 �

0
BBBBB@

1
CCCCCA

a specific case of this model where k1 ¼ k2 corresponds
to the HKY85 model, whereas k1 ¼ k2 ¼ 1 corresponds to

that of F81 (also called “equal input”). Solving equation (28)
leads to

R ¼ 1þ 2

�m

X
i< j

Cijðmi �mjÞ2; (36)

where mi are the (negative of) diagonal elements of Q,
�m ¼

P
i mipi; Cij are defined as

C12 ¼ p1p2
1� ðk1 � 1Þðp3 þ p4Þ
1þ ðk1 � 1Þðp1 þ p2Þ

;

C34 ¼ p3p4
1� ðk2 � 1Þðp1 þ p2Þ
1þ ðk2 � 1Þðp3 þ p4Þ

;

Cij ¼ pipj for other i; j:

For the specific case k1 ¼ k2 ¼ 1 (equal input or F81
model), expression (36) takes a particularly simple form

R ¼ 1þ
X
i< j

pipjðpi � pjÞ2
 !

=
X
i< j

pipj

 !
(37)

¼ 1þ 2

X
i

p3
i �

X
i

p2
i

 !2

1�
X

i

p2
i

: (38)

One can deduce relation (37) from (38) by noting thatP
i pi ¼ 1. As every term of the first sum in relation (37) is

smaller than the corresponding term in the second sum:

RF81 2 ½1; 2	:

The lower bound is reached for jpi ¼ ð1=4Þð1; 1; 1; 1ÞT,
whereas the upper bound is reached when one of the pi

approaches 1. Zheng (2001) has also computed an expression
for the dispersion index for the F81 model; his solution how-
ever is rather complicated.

For the general TN93, relation R � 2 no longer holds.
For example, for jpi ¼ ð0:6� �; �; 0:2; 0:2Þ, the dispersion
index is

RTN ¼ 0:04þ 0:24k2 þ 6=ð6þ k2Þ þ Oð�Þ

and R can become arbitrarily large with appropriate values
of k2.

The simplicity of relation (36) allows for the comprehensive
exploration of the hyperplane

P
i pi ¼ 1; pi > 0. The results

are displayed in figure 3; to obtain large values for R such as
R> 1.5 necessitates high asymmetries in the transition rates
and/or strong biases in equilibrium probabilities of states.

Statistical Investigation of the Dispersion Index and
the Influence of Sparseness
The relation (28) can be solved explicitly for general substi-
tution matrices. However, a general substitution matrix of
dimension 4 has 11 free parameters (substitution matrices
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are defined up to a scaling parameter); explicit solution of (28)
as a function of substitution matrix parameters is rather cum-
bersome and does not provide insightful information.

An exchangeable (time reversible, GTR) substitution ma-
trix has the additional constraint (Tavaré 1986) mi

jpi ¼ mj
ipj.

GTR matrices are widely used in the literature as they are
convenient for computation and are diagonalizable (Yang
2006, Section 2.6).

Considering only exchangeable matrices reduces the num-
ber of free parameters to 9, but the parameter space is still too
large to be explored systematically.

We can however sample the parameter space by generat-
ing a statistically significant ensemble of substitution matrices
Q and get an estimate of the probability distribution of the
dispersion index R. The simplicity of relation (28) allows us to
generate 107 random matrices for each class and compute
their associated R in a few minutes with a usual normal com-
puter: Depending on the dimension of Q (from 4 to 20) this
computation takes between 2 and 10 min.

Figure 4a shows the cumulative probability P(R) for both
arbitrary (R) and GTR (G) matrices, computed from 107 ma-
trices in each case. We observe that arbitrary matrices pro-
duce statistically low dispersal indices: PðR > 1:5Þ ¼ 0:08
and PðR > 3Þ ¼ 2:7� 10�3. The GTR matrices have statis-
tically higher dispersion indices: PðR > 1:5Þ ¼ 0:495 and
PðR > 3Þ ¼ 0:048. Still, values larger than R¼ 5, as has
been reported in the literature (Cutler 2000), have a very

low probability (1:4� 10�4 for random matrices and 7
�10�3 for GTR matrices).

We observed in the preceding section that for each class of
matrices, high values of R are generally associated with large
biases in the equilibrium probabilities, that is, a given state
would have a very low equilibrium probability in order to
allow for large R. We can investigate how this observation
holds for general and GTR matrices. For each K�K matrix Q
that is generated, we quantify its relative eccentricity by

e ¼ K miniðpiÞ:

The relation between R and e is statistical: Matrices with
dispersion index in ½R; Rþ dR	 will have a range of e and we
display the average e for each small interval (fig. 4b). We
observe again that high values of the dispersion index in
each class of matrices require high bias in equilibrium prob-
abilities of states.

Another effect that can increase the dispersion index of
a matrix is its sparseness. This effect was investigated by

FIG. 3. Cumulative histogram of the dispersion index R of the
TN93 model and its specific cases. The three dimensional
space jpi ¼ ðp1;p2;p3; p4ÞT ,

P
i pi ¼ 1 is scanned by steps of

dp ¼ 0:025 (�11; 200 points). For each value of jpi, the dispersion
index of the corresponding substitution matrix QTN93 is computed
from relation (28). Black circles: the F81 model (k1 ¼ k2 ¼ 1Þ; red
diamonds and green left triangles correspond the HKY85 with, re-
spectively, k1 ¼ k2 ¼ 0:1 and 10; blue squares, cyan right triangles
and magenta up triangles correspond to TN93 model with
fk1; k2g ¼ f0:1; 1g; f1; 10g; f0:1; 10g, respectively. Permutations
of fk1; k2g lead to the same results and are not displayed. For each
substitution matrix, it has been checked that solution (36) and the
general solution (28) are identical.

(a)

(b)

FIG. 4. Statistical study of 4� 4 substitution matrices for 1) GTR
matrices (“G,” black curves), 2) arbitrary matrices (“R,” red curves),
and 3) sparse GTR matrices (“S,” blue curves). In each case, 107 ma-
trices are generated and for each matrix, its dispersion index R and its
eccentricity e ¼ minðpiÞ are computed, where pi is the equilibrium
probability of state i. In each case, the data are sorted by R value to
compute the cumulative histogram (a). (b) The relation between e
and R. To make visible the statistical relation between e and R, a
moving average of size 1,000 data points is applied to the 107 sorted
(R, e) data in each data set and the result ðRm; emÞ is displayed in the
lower plot (b).
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Raval (2007) for a random walk on neutral networks, which
we generalize here. Until now, we have examined fully con-
nected graphs, that is, substitution processes where the ran-
dom variable X can jump from any state i to any other state j.
For a four-state random variable, each node of the connec-
tivity graph is of degree 3 (dG¼ 3). This statement may how-
ever be too restrictive. Consider, for example, a 4� 4
nucleotide substitution matrix for synonymous substitutions.
Depending on the identity of the codon to which it belongs, a
nucleotide can only mutate to a subset of other nucleotides.
For example, for the third codon of tyrosine, only T$ C
transitions are allowed, whereas for the third codon of ala-
nine, all substitutions are synonymous. For a given protein
sequence, the mean nucleotide synonymous substitution
graph is therefore of degree smaller than 3. In general, the
degree of each state (node) i is given by the number (minus
one) of nonzero elements of the ith column in the associated
substitution matrix.

We can investigate the effect of sparseness of substitution
matrices on the dispersion index with the formalism devel-
oped above. Figure 4 shows the probability distribution of R
for GTR matrices with dG¼ 2. As it can be observed, the
dispersion index distribution for GTR matrices is shifted to
higher values and PðR > 5Þ increases 6-fold from 0.007 (for
dG ¼ 3Þ to 0.044 (for dG¼ 2).

A more insightful model would be 20� 20 GTR matrices
for amino acid substitutions. We compare the case of fully
connected graphs (F) where any amino acid can replace any
other one with the case where only amino acids one nucle-
otide mutation apart can replace each other (nonsynony-
mous substitution, NS). The average degree of the graph in
the latter case is �dG ¼ 7:5. As before, we generate 107 random
matrices in each class and compute their statistical properties.
We observe again (fig. 5) that the distribution of R is shifted to
the right for the NS graphs, where the median is RNS ¼ 2:48,
compared with RF ¼ 1:66 for fully connected graphs.

For specific amino acid substitution matrices used in the
literature such as WAG (Whelan and Goldman 2001), LG (Le
and Gascuel 2008) and IDR (Szalkowski and Anisimova 2011),
the index of dispersion is 1.253, 1.196 and 1.242, respectively.

Discussion and Conclusion
The substitution process (of nucleotides, amino acids, etc.)
and therefore the number of substitutions n that take place
during time t are stochastic. One of the most fundamental
tasks in molecular evolutionary investigation is to characterize
the random variable n from molecular data.

A given model for the substitution process in the form of a
substitution matrix Q enables us to estimate the mean num-
ber of substitution nh i that occurs during a time t. The mean
depends only on the diagonal elements of Q and the equi-
librium probabilities of states pi:

nðtÞh i ¼ �tQi
ipi ¼ �t trðQPÞ; (39)

where trðÞ designates the trace operator.
In molecular evolution, the main observable is the proba-

bility pdðtÞ that two different sequences are different at a

given site. Denoting UðtÞ ¼ expðtQÞ, and assuming that
both sequences are at equilibrium (Yang 2006),

pdðtÞ ¼ 1� Ui
ipi ¼ 1� trðUPÞ: (40)

One can estimate pdðtÞ from the fraction of observed dif-
ferences between two sequences p̂. By eliminating time in
relations (39) and (40), it is then possible to relate the esti-
mators d̂ (of nh i) and p̂

d̂ ¼ fðp̂Þ: (41)

For sequences of length L, p̂ is given by a binomial distri-
bution B(L, p) and the variance of the distance estimator d̂
can be deduced from relation (41). This quantity however is
very different from the intrinsic variance of the substitution
number.

The mean of substitution number, its estimator d̂, and the
variance of the estimator are only the first step in character-
izing a random variable. The next crucial step is to evaluate
the variance V of this number. What we have achieved in this
article is to find a simple expression for V. In particular, we
have shown that for both short and long time scales, the
variance V can be easily deduced from Q. For long times,
the procedure is similar to deriving the equilibrium probabil-
ities pi from Q, that is, we only need to solve a linear equation
associated with Q [relation (25)]. For short times, only
the diagonal elements of Q are required to compute V
[relation (31)].

A long standing debate in the neutral theory of evolution
concerns the value of dispersion index R ¼ V= nh i. On the
one hand, the exact solution of this paper is used to demon-
strate that in general, any substitution process given by a

FIG. 5. Cumulative probability of the dispersion index for fully con-
nected (black, F) and nonsynonymous (blue, NS) amino acid 20� 20
substitution matrix. For the fully connected matrix, any amino acid
can be replaced by any other. For the NS matrices, only amino acids
one nucleotide mutation apart can replace each other. For each case,
107 20� 20 GTR matrices are generated and their dispersion index R
is computed. For the NS matrices, transitions are weighted by the
number of nucleotide substitutions that can lead from one amino
acid to another: There are, for example, 6-nt mutations that trans-
form a phenylalanine into a leucine, but only one mutation that
transforms a lysine into an isoleucine.
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matrix Q is overdispersed, that is, R � 1, and the equality can
be observed only for trivial models where all diagonal ele-
ments of Q are equal. On the other hand, comprehensive
investigation of various substitution models (Results) shows
that models that produce R much larger than �2 generally
require strong biases in the equilibrium probabilities of states.
One possibility to produce a higher dispersion index is sparse
matrices, where the ensemble of possible transitions has been
reduced.

Supplementary Material
Supplementary files S1 and S2 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour
nals.org/).
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Appendix A: Mean and Variance Equation

Consider a stochastic system whose transition rates fromstate x to state y

are Wðx! yÞ. A master equation describes the change in the probability

density Pðx; tÞ as a balance between the incoming and outgoing flow:

d

dt
Pðx; tÞ ¼

X
y

Wðy! xÞPðy; tÞ �
X

y

Wðx! yÞPðx; tÞ:

In the case we study here, the state (n, i) can only be enriched from state

ðn� 1; jÞ with transition rate mj
i, as each time a transition occurs, the

substitution number is incremented by one unit. On the other hand, the

state ð0; iÞ cannot be enriched. The corresponding balance equations

are captured in equations (4) and (5).

Obtaining equations of the moments such as (12) and (13) from the

Master equation is a standard procedure of stochastic processes

(Gardiner 2004; Houchmandzadeh 2009). We give here the outline

of the derivation.

Consider the Master equation (6)

d

dt
jpni ¼ �Djpni þMjpn�1i; (42)

which is a system of K equations for the pn
i ðtÞ, written in vectorial form.

Multiplying each row by n and summing over all n leads, in vectorial

form, to

d

dt

X
n

jnpni ¼ �D
X

n

j npni þM
X

n

jnpn�1i:

The term
P

n jnpniwas defined as the vector of the partial means jni.
For the second term, we haveX

n

jnpn�1i ¼
X

n

jðnþ 1Þpni ¼ jni þ jpi; (43)

where the componentpi of jpi ¼
P

n jpni is theprobabilitydensity of the

random variable X being in state i, whose dynamics is given by relation

(3). For the initial condition jpð0Þi ¼ jpi, we have at all times

jpðtÞi ¼ jpi
so the moment equation is

d

dt
jni ¼ ð�DþMÞjni þMjpi

which is relation (9). Note that by definition, Mjpi ¼ Djpi.
The equation for the second moment (13) is obtained by the same

procedure where each row of equation (42) is multiplied by n2. Higher

moments and the probability generating function equations can be

obtained by similar computations.

Appendix B: Proof of Overdispersion for GTR
Substitution Matrices

As we have seen in relation (28), the dispersion index for long times is

R ¼ 1þ 2
mjrh i
�m

:

We must demonstrate that mjrh i � 0 to prove that R � 1. We give

here the proof for GTR matrices. These matrices can be factorized into

Q ¼ S:P�1; (44)

where P ¼ diagðp1; . . . ; pkÞ and S is a symmetric matrix of positive

nondiagonal elements whose columns (and rows) sum to zero.

Note that in the literature (Yang 2006), a slightly different factor-

ization is used in the form of Q ¼ P:F, where F is a symmetric

matrix (we stress again that in our notation, the substitution ma-

trix is the transpose of that used in most of the literature). The

advantage of the factorization (44) is that except for one zero ei-

genvalue, all other eigenvalues of S are negative. S can be therefore

be written as

S ¼
XK

i¼2

kijviihvij; (45)

where jvii and hvij are the column and row orthonormal

eigenvectors of S associated with the eigenvalue ki. The pseudoinverse

of S is defined as

~S
�1 ¼

XK

i¼2

k�1
i jviihvij (46)

and it is strictly negative definite.

The vector jri is the solution of the linear equation

Qjri ¼ jhi; (47)

1jrh i ¼ 0; (48)

where hi ¼ ð �m�miÞpi. The general solution of the undetermined

equation (47) is therefore

jri ¼ Cjpi þP~S
�1jhi;

where the constant C is determined from the condition (48). On the

other hand

hmj ¼ hmj � �mh1j þ �mh1j

¼ �hhjP�1 þ �mh1j:

Variance in Molecular Evolution . doi:10.1093/molbev/msw063 MBE

1867

Deleted Text: <italic>i.e.</italic>
Deleted Text:  section
Deleted Text: 5 
Deleted Text: m
Deleted Text: s
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw063/-/DC1
Deleted Text: contains the numerical code (in ``Julia'' language Bezanson <italic>et<?A3B2 show $146#?>al.</italic> (2014)) to compute the long time index of dispersion. Supplementary file #
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw063/-/DC1
Deleted Text: provides the expression for the variance for general initial conditions
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/
Deleted Text: 7.1 
Deleted Text: v
Deleted Text: e
Deleted Text: ,
Deleted Text: )
Deleted Text: 7.2 
Deleted Text:  d
Deleted Text: s
Deleted Text: m
Deleted Text: -
Deleted Text: -
Deleted Text:  


And thus

mjrh i ¼ � hjP�1jrh i þ �m 1jrh i

¼ � hj~S�1jh
D E

� C hj1h i

¼ � hj~S�1jh
D E

;

(49)

where we have used the fact that 1jrh i ¼ 1jhh i ¼ 0. As ~S
�1

is negative

definite,

mjrh i � 0:

Moreover, the equality is reached only when jhi ¼ j0i, that is, for

pi 6¼ 0, only when all diagonal elements of Q are equal. To see this, we

can expand relation (49)

mjrh i ¼ �
XK

i¼2

k�1
i vijhh i2:

The only way to obtain mjrh i ¼ 0 is to have vijhh i ¼ 0 for

i ¼ 2; . . . ;K. As on the other hand, v1jhh i ¼ 1jhh i ¼ 0 we must have

jhi ¼ j0i.

Appendix C: Dispersion Index for All Times

In “Solution of the Equation for the Moments” section, we gave the

long (eq. 28) and short (eq. 32) time solution of the variance. For all the

specific models used in the literature, the variance at all times can also

be determined explicitly through relation (22)

dV ¼ 2 ~mj Itþ ~Q
�1ðI� e

~Q tÞ
� �

~Q
�1j

D ���~hii: (50)

The procedure requires the computation of expðQtÞ and is analo-

gous to the determination of nh i from sequence dissimilarities (Zheng

2001; Yang 2006).

As an example, consider the equal input model (F81) which we

studied in the main text. For this model, the reduced matrix is simply

~Q ¼ �lI3;

where I3 is the 3�3 identity matrix and therefore expð~Q tÞ ¼
expð�ltÞI3. Relation (50) then becomes

dV ¼ � 2

l2
ð�1þ ltþ e�ltÞ ~mj~h

� �
:

We have previously shown (eq. 31) that generally

� ~mj~h
� �

¼
XK

i¼1

ð�m�miÞ2pi ¼ vm

and for the F81 model,

l�2vm ¼
XK

i¼1

p3
i �

XK

i¼1

p2
i

 !2

:

However, the time can be expressed as a function of mean the sub-

stitution number. Finally, for the F80 model, and setting l ¼1 without

loss of generality, the dispersion index for all times is

Rð nh iÞ ¼ 1þ 2
nh i
�m
þ e� nh i=�m � 1

� �
vm

nh i :
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