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Abstract
As a new production factor, digitalization plays a vital role in society, economy, and the environment. Based on the expanded
STIRPAT model, this paper empirically tests the impact of energy structure and digital economy on carbon emissions by panel
data from 2011 to 2017 in 30 provinces of China. The results show that the energy structure mainly based on coal has a significant
driving effect on carbon emissions. Compared with non-resource-based provinces, the increase of energy structure dominated by
coal has a greater effect on carbon emission in resource-based provinces. It is worth noting that this kind of influence has a greater
impact on the central region of China, followed by the western region and the eastern region. Besides, the digital economy has a
significant moderating effect. With the development of digital economy, the impact of coal-based energy structure on carbon
emissions is gradually decreasing. This effect is more significant in non-resource-based provinces and eastern China, but not
significant in resource-based cities and central and western China.
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Introduction

In the past 40 years, China has not only experienced rapid
economic growth, but also experienced a sharp rise in energy
consumption and carbon emissions (Irfan et al. 2021). China
has become the largest carbon emitter in the world (Wang

et al. 2021). To actively tackle global climate change, the
Chinese government has set a series of emission reduction
targets. In 2015, when China submitted its Nationally
Determined Contribution Document (INDC) to the United
Nations to fight climate change, it announced: China would
peak carbon dioxide emissions before 2030 and reduce its
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2030, its carbon intensity would be reduced bymore than 65%
comparedwith 20052. To achieve these goals, China has taken
a series of emission reduction measures but still faces great
pressure on carbon emission reduction. At present, China’s
economic development is still highly related to coal consump-
tion. According to China Energy Development Report 2018,
China’s total energy consumption has reached 4.64 billion
tons of standard coal, 8.12 times of 1978. Among them, the
proportion of coal consumption with high-carbon emission is
as high as 59%, far exceeding the world average consumption
level of 30%, while the proportion of energy consumption
with low-carbon emission is far lower than the average level
of developed countries (Yang and Wei 2018). According to
the data of the National Bureau of Statistics, the change trend
of energy consumption structure dominated by coal and car-
bon emissions from 2004 to 2017 is basically consistent (see
Fig. 1); unreasonable energy structure will bring great harm to
the ecological environment and people’s physical and mental
health, and pose a potential threat to the sustainable develop-
ment of China’s economy. In the critical period of economic
transformation from high-speed growth to high-quality
ment, the optimization and adjustment of energy structure are
important forces to promote “carbon peak and carbon emission
reduction” (Yong andYing 2019). Deeply exploring
ences in China’s regional energy structure and clar
ternal driving factors can provide a theoretical
tific formulationof differentiated emission
It is of great significance for China to
nomic development and effectively deal with climate change.

In the new round of global technological and industrial
change, the popularization of information technology has an
important marginal utility (Vu 2011; Anser et al. 2021). The
digital economy is taking information technology as the core
to provide new impetus for the intelligent management of the
environment (Kjaer et al. 2018; Usman et al. 2021). The gen-
eralized penetration and popularization of the digital economy
in the fields of energy consumption and environmental pro-
tection are conducive to solving problems such as the decline
in environmental carrying capacity and scarcity (Junior et al.
2018; Rehman et al. 2021a), and it has great potential for
improving the ecological environment (Kjaer et al. 2018;
Alam and Murad 2020). According to China Energy
Statistical Yearbook, in 2017, China’s per capita energy con-
sumption and per capita electricity consumption were 32.79%
and 37.17% of those of the USA, respectively. It is foreseeable
that China’s economy will continue to grow steadily.
Economic growth means the increase of energy demand and
China’s energy consumption will continue to grow. China’s

carbon emission reduction target is undoubtedly facing signif-
icant pressure and challenges. At the same time, global
warming caused by carbon emissions will pose a considerable
threat to public health and welfare in all countries (Watts et al.
2021; Shuai et al. 2017). As the digital economy has become
an important starting point for high-quality economic devel-
opment and the urgent requirements for climate change to take
action, exploring the contribution of digital technology to en-
ergy conservation and emission reduction and the causes of
regional differentiation can provide theoretical support for
reasonably expanding the development level of digital econ-
omy, narrowing the development gap between regions, im-
proving the emission reduction capacity of digital economy,
and realizing the win-win development of “economic
development-environmental optimization” for all countries..

In summary, the contribution of this paper has three as-
pects. First of all, in terms of digital economy indicators, on
the basis of accurately understanding the connotation of dig-
ital economy, from a multi-dimensional and multi-level per-
spective, taking the Internet as the core, this paper uses entro-
py method to build a comprehensive digital economy index to
comprehensively and systematically measure the develop-
ment level of digital economy in each province from 2011 to
2017. Secondly, considering the great differences of economic
development level and resource endowment among provinces
in China, this paper explores the regional heterogeneity char-
acteristics of the impact of energy structure on carbon emis-
sions based on the above perspectives and analyzes the rea-
sons for the heterogeneity. According to the characteristics of
factor resource endowment of each region, we put forward
targeted policy recommendations. In addition, combined with
the background of the rapid development of the new genera-
tion of information technology revolution, this paper puts the
digital economy, energy structure, and carbon emissions into a
unified analysis framework, which provides a new perspective
for reducing regional carbon emissions.

The rest of this paper is organized as follows: Sect. 2 sum-
marizes the literatures and puts forward the research hypoth-
eses; Sect. 3 briefly introduces the models and data used in this
study; Sect. 4 provides empirical results of the study; in Sect.
5, results have been reported; Sect. 6 elaborates the conclu-
sions and policy recommendations of this study.

Literature review and research hypotheses

Energy structure and carbon emissions

At present, there is a vast literature on the influencing factors
of carbon emissions, but this paper is mostly concerned about
the literature related to energy structure and carbon emissions
(Ozturk and Acaravci 2010). Based on the data of OECD
countries from 1980 to 2011, Shafiei and Salim (2014) found

1 See more details: www.gov.cn/guowuyuan/2015-06/30/content_2887287.
htm.
2 See more details: www.gov.cn/xinwen/2020-12/22/content_5572019.htm.
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that the consumption of non-renewable energy increased car-
bon dioxide emissions, while the consumption of renewable
energy reduced carbon dioxide emissions. The research of
Dogan and Seker (2016) also reached the same result as theirs.
Furthermore, Dogan and Seker (2016) believed that there was
a two-way causality between renewable energy and carbon
dioxide emissions. Then, whether the domestic energy con-
sumption structure and carbon emissions also exist the above-
mentioned relationship. Most domestic scholars believe that
the energy consumption structure is an important leading and
restrictive factor affecting regional carbon emissions (Yu et al.
2018; Rehman et al. 2020), and the change direction of the
energy structure varies from province to province, resulting in
a “high-carbon” situation and a “low-carbon” situation
(Guozhi et al. 2011). Energy structure transformation and en-
ergy efficiency improvement are effective ways to reduce car-
bon emissions (Palencia et al. 2013; Ahmad et al. 2021),
which can promote China’s clean and low-carbon develop-
ment (Wu et al., 2021). However, Xu et al. (2019) believe that
the carbon emission reduction of clean energy will be offset
because the scale of domestic clean energy consumption is far
smaller than that of traditional fossil energy consumption,
resulting in that the development of clean energy does not
significantly reduce carbon dioxide emissions; further region-
al heterogeneity analysis shows that clean energy and carbon
dioxide emissions in eastern China are “M-type”, while clean
energy and carbon dioxide emissions in central and western
China are “U-type”. Narayan and Doytch (2017) showed that
the exogenous negative effect of low-carbon clean energy on
economic growth might be more significant than its endoge-
nous positive effect (Nguyen and Kakinaka 2019). Chen et al.
(2020) further show that the promotion of renewable energy
on economic growth is only established when the use of re-
newable energy exceeds a certain threshold.

Because China has a large geographical range from east to
west, and its population characteristics, technological devel-
opment level, and natural resources are different (Ahmad et al.

2019; Feng et al. 2021a), we cannot help thinking whether
there are regional characteristics of carbon emissions in
China. Therefore, according to the 2004–2017 China Energy
Statistical Yearbook, we calculated the average carbon emis-
sions and the overall carbon emission growth rate of nine
major energy sources in 30 provinces of China. As shown in
Table 1, from the average carbon emissions of 30 provinces
(cities and autonomous regions), it can be seen that among the
top ten provinces with the highest carbon emissions, the
eastern provinces account for six, which are Shandong,
Jiangsu, Guangdong, Hebei, Liaoning, and Zhejiang.
The central provinces are Henan, Shanxi, and Hubei.
Only Inner Mongolia is in the west. It can be seen that
carbon emissions are unevenly distributed among re-
gions. From the perspective of carbon sources that
cause carbon emissions, coal and electricity consump-
tion contribute the most to carbon emissions, indicating
that China needs to transform its energy consumption
structure. Besides, these ten provinces are basically
China’s major industrial provinces and resource-rich
provinces, indicating carbon emissions endogenous to
the current economic development model and resource
endowment, the existence of differences in the level of
economic development, and resource endowment has al-
so caused the alienation of carbon emissions.

It is worth noting that from the perspective of the average
growth rate of carbon emissions, the average growth rate of
Hainan, Xinjiang, Guangxi, Ningxia, and Inner Mongolia all
exceeded 10% from 2004 to 2017, and the average GDP
growth rates of the other four provinces except Inner
Mongolia were less than that of carbon emissions.
Therefore, the quality of economic development at the ex-
pense of the environment is not high. On the contrary, the
average carbon emission growth rate of Beijing, Guizhou,
and Shanghai is less than 3%, which is much lower than their
average GDP growth rate, which has achieved a relative
decoupling of economic development and carbon emissions.
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Fig. 1 Changes in energy
structure and carbon emissions
from 2004 to 2017. Note: Data
collected from China Energy
Statistical Yearbook from 2005 to
2018, The dotted line is the trend
line of the energy structure during
the study period, reflecting the
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It implies that there are still some provinces with low energy
efficiency in China.

Based on the above analysis, this paper proposes the first
and second hypotheses as:

H1: The impact of energy structure on carbon emissions is
regional heterogeneity due to different local development
levels.

H2: The impact of energy structure on carbon emissions is
regional heterogeneity due to the resource endowment gap.

Energy structure, digital economy, and carbon
emissions

According to the estimation of the State Internet Information
Office, the added value of China’s digital economy accounts

for 36.2% of GDP. There is no doubt that the digital economy
is having an important impact on all aspects of our lives. Due
to the short development time of digital economy, there are
few literatures on digital economy and energy structure,
digital economy, and carbon emissions. Miller and Wilsdon
(2001) pointed out that digital economy represents a techno-
logical revolution and is the decisive factor of technological
innovation. Digital technology has played a fundamental busi-
ness change in the value chain of almost all industries
(Yuan et al. 2021). The solutions of digital technology
in energy, manufacturing, agriculture and land use, con-
struction, services, transportation, and other fields can
help reduce global carbon emissions by 15% (The
Exponential Roadmap 2020). Among all industries, the
energy sector is one of the fields with the largest

Table 1 China’s average energy carbon emissions and average growth rate of carbon emissions from 2004 to 2017

Unit: 10,000 tons

Region Coal Coke Crude oil Fuel oil Gasoline Kerosene Diesel Natural gas Electric power Average growth rate

Beijing 1182.08 17.95 804.75 33.99 301.52 198.07 167.53 511.92 2189.35 2.02%

Tianjin 2344.15 80.61 1066.11 86.74 160.94 18.88 270.23 197.79 1783.20 4.26%

Hebei 14,112.06 743.69 1152.49 42.93 251.04 5.69 557.25 225.53 6995.37 5.26%

Shanxi 17,183.22 262.38 0.00 6.23 159.04 8.60 376.79 188.22 4018.32 5.34%

Inner Mongolia 15,026.41 148.97 198.24 13.07 221.49 8.27 514.33 202.01 4565.00 10.35%

Liaoning 8611.53 294.93 5230.38 273.02 468.21 15.06 750.54 231.12 4533.03 3.80%

Jilin 4746.50 58.21 806.65 33.03 133.18 3.07 282.52 99.86 1545.99 3.95%

Heilongjiang 6301.12 24.95 1686.10 71.06 280.02 18.35 415.85 187.53 2033.23 4.19%

Shanghai 2815.49 72.18 1795.10 600.71 358.34 193.77 414.71 296.17 3350.24 2.63%

Jiangsu 12,437.18 291.32 2491.73 170.62 597.48 24.04 605.55 564.15 10,610.31 7.11%

Zhejiang 6936.05 41.56 2114.52 274.76 475.89 37.87 764.42 256.18 7647.70 5.83%

Anhui 6861.57 99.52 421.99 14.02 196.38 5.72 372.00 111.54 3175.25 7.13%

Fujian 3670.14 57.92 901.28 145.72 278.37 35.41 387.43 153.35 3802.84 7.83%

Jiangxi 3296.34 78.82 407.37 22.04 134.55 3.06 341.80 49.77 2088.53 6.83%

Shandong 18,683.73 325.13 5107.87 1471.83 527.03 23.66 1122.66 328.87 9639.28 8.26%

Henan 14,300.04 210.10 660.92 45.71 322.80 19.68 521.42 338.58 6720.66 7.31%

Hubei 7539.79 106.03 861.68 102.88 454.48 26.49 596.78 141.90 3841.73 7.95%

Hunan 5688.84 103.74 614.77 56.36 287.74 16.72 425.52 86.84 3434.94 6.00%

Guangdong 7252.41 56.36 3293.54 740.83 847.91 109.14 1291.67 557.65 11,317.25 5.14%

Guangxi 4197.74 81.62 625.85 24.00 196.41 11.74 374.23 26.19 2662.23 11.78%

Hainan 998.19 0.62 623.82 23.08 49.60 41.51 90.02 209.72 486.26 17.56%

Chongqing 2417.10 36.45 0.40 8.22 109.73 22.90 298.41 367.75 1746.48 3.45%

Sichuan 5106.13 150.29 376.56 58.45 475.27 95.49 491.27 839.83 4349.72 3.74%

Guizhou 5501.45 40.12 0.00 8.05 140.35 8.04 256.17 47.17 2456.13 2.55%

Yunnan 5015.16 128.99 0.04 3.41 188.02 28.39 419.94 32.94 2867.72 7.31%

Shaanxi 6850.30 72.17 1537.92 8.96 194.40 12.05 360.31 357.39 2541.31 9.52%

Gansu 2884.52 60.70 1181.58 8.97 83.15 2.84 196.80 105.47 2252.96 4.97%

Qinghai 777.10 18.21 105.04 0.22 24.86 0.11 74.44 188.41 1272.90 8.56%

Ningxia 3452.07 31.49 252.96 24.68 19.93 1.38 87.81 89.62 1674.07 10.54%

Xinjiang 5602.51 69.58 1835.03 11.17 137.32 15.22 376.62 578.97 3004.25 12.80%

Data collected from China Energy Statistical Yearbook from 2005 to 2018
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emission reduction effect after the application of digital
technology.

The impact of digital economy on the energy system is
reflected in both supply and demand. On the supply side,
digital technology monitors the data of the energy production
link, prevents and warns production risks in advance, and
improves the production efficiency of the traditional fossil
energy industry. Thus, digital technology ensures the safe
and efficient operation of the energy system (Chen 2020)
and reduces the degree of damage to the environment
(Soares and Tolmasquim 2000; Rademaeker et al. 2014).
Alam and Murad (2020) found that improving the level of
technology utilization can promote the development and uti-
lization of renewable energy. Digital technology shortens the
R&D cycle of clean energy and improves R&D efficiency
through accurate 3D modeling of natural and geographical
conditions (Allam and Jones 2021). Similar to traditional fos-
sil energy, digital technology has been applied in the field of
new energy. Such applications enable staff to perceive data
more accurately, predict meteorological changes, and improve
the utilization of clean energy. In addition, digital technology
helps the government to control the total amount of energy
supply through pricing and cross-subsidies (Bhattacharya
et al. 2015), which in turn promotes the transformation of
energy consumption structure and ultimately achieves effec-
tive carbon emission control. On the demand side, the appli-
cation of digital technology in areas with self-diagnosis, sat-
ellite navigation, entertainment systems, and key infrastruc-
ture and transportation systems can improve the efficiency of
energy sales and consumption in the whole society. The ap-
plication of digital transportation platform in the fields of
smart cars, housing, electrical appliances, and so on brings
great significance to energy conservation (Aydin et al.
2018). The digital economy reduces the demand for energy
and raw materials through the dematerialization of human
activities and communication (Heiskanen et al. 2005). For
example, during the COVID-19 outbreak, online office re-
duced public travel, and therefore, energy consumption re-
duced. Generally speaking, the digital economy “empower-
ment” effect is significant, and the information integration
effect can weaken the information asymmetry between the
supply and demand sides. The integration and penetration of
the digital economy in the field of energy consumption will
help to achieve the synchronous improvement of energy use
efficiency between supply and demand, transform the con-
sumption pattern, and effectively promote the development
of a low-carbon economy.

Based on the above analysis, this paper proposes the third
and fourth hypotheses as:

H3: Digital economy can weaken the negative effect of
energy structure on carbon emissions.

H4: The impact of the digital economy on the energy struc-
ture and carbon dioxide emissions is heterogeneous.

Although many scholars have conducted a large number of
normative and empirical studies on energy structure and car-
bon emissions, there are still some limitations to the research
in this field. There is a growing body of relevant studies, but
the latest data analysis of the relationship between the two is
lacking. In addition, previous studies generally directly stud-
ied the relationship between energy structure and carbon emis-
sions. Unfortunately, there is a lack of discussion on the rela-
tionship between energy structure and carbon emissions in the
context of the digital economy. Obviously, the development
of the digital economy will have a significant impact on the
relationship between the two. What is more, although some
literature has discussed the heterogeneity caused by regional
development gaps, insufficient attention has been paid to the
impact of resource endowment differences on the research
results. Finally, the previous literature on energy structure
and carbon emissions has carried out a linear analysis as a
whole. The empirical results using the proportion of coal con-
sumption as the proxy variable of the energy structure basi-
cally show that there is a positive correlation between the
energy structure and carbon emissions, but in this paper,
the empirical results show that the actual relationship
between energy structure and carbon emissions may be
nonlinear (Fig. 2).

Model construction and variable selection

Model construction

Benchmark model

Ehrlich and Holdren (1971) first proposed IPAT model as a
framework to study the impact of population growth on the
environment, and the specific model settings are as follows:

C ¼ P � A � T ð1Þ

where,C denotes carbon emissions, Pmeans population, A
means affluence, and T means technology. However, the
IPAT equation does not take into account the differences in
the sensitivity of the dependent variables to the influencing
factors and cannot observe the impact of factors other than
population, affluence, and technology on environmental pres-
sure. In order to overcome the limitations of this model, Dietz
and Rosa (1994) established the stochastic form of IPAT—
STIRPATmodel. In order to study the impact of energy struc-
ture on carbon emissions, following Ren et al. (2021) and
adding energy structure (E) into model (1) to analyze the im-
pact of energy structure on carbon emissions, the following
model can be obtained:

Carbon emissions ¼ Pit � Ait � Tit � Eit: ð2Þ

64610 Environ Sci Pollut Res  (2021) 28:64606–64629



In addition, according to previous studies, carbon emis-
sions are also affected by other variables. Therefore, this paper
appropriately extends the STIRPAT model:

C ¼ Pit � Ait � Tit � Eit � other variablesit: ð3Þ

From the perspective of model and data processing, taking
logarithm will not change the nature and correlation of the
data but will compress the variable scale, make the data more
stable, and weaken the collinearity and heteroscedasticity of
the model. From the perspective of the research problem itself,
we need to understand the impact of each unit change of
influencing factors on carbon emissions. By taking logarithm,
we can convert the multiplication in the model into addition.
At this time, the regression coefficient can be explained by the
concept of “elasticity” in economics, which is convenient for
us to analyze the impact of various influencing factors on
carbon emissions. Therefore, we take logarithm on both sides
of model (3); the following equation can be obtained:

lnCit ¼ α0 þ α1lnPit þ α2lnAit þ α3lnT it þ α4lnEit

þ α5lnX it þ εit: ð4Þ

In the specific analysis, total carbon emissions (TC), the
carbon intensity (CI), and per capita carbon emissions (CP)
are taken as the proxy variables of carbon emissions, and
population size, per capita GDP, and energy intensity
were taken as the proxy variables of population, afflu-
ence, and technology.

Because the early carbon emissions may have an impact on
the current and future carbon emissions, and considering that
the lag term is easily related to the residual term of the model,
this paper introduces the lag term of carbon emissions into the
model to build a dynamic panel model. The lagged term of
carbon emissions included in the explanatory variables is

often correlated with the unobservable cross-sectional hetero-
geneity effect. Due to the limited number of control variables
added in the model, the important explanatory variables may
be omitted, which will lead to the correlation between explan-
atory variables and error terms, resulting in the endogeneity of
the model (Hsiao 1986)3. We use System GMM to estimate
the model and Arellano bond test and Hansen test to verify the
model.

Moderation effect

In order to test the moderating role of the digital economy in
the impact of energy structure on carbon emissions, the fol-
lowing model is constructed, where D is the digital economy:

lnCit ¼ α0 þ α1lnPit þ α2lnAit þ α3lnTit þ α4lnEit

þ α5lnDit þ α6lnEit � lnDit þ α7lnX it þ εit: ð5Þ

The significance of the interaction coefficient can test
whether the digital economy has a moderating effect on the
impact of the energy structure on carbon emissions. When the
interaction term between the energy structure and the digital
economy and the original frequency term exists at the same
time, the model regression results may be biased due to the

3 In this regard, the current mainstream idea is to use dynamic GMMmethod.
The dynamic GMM method is divided into System GMM and Difference
GMM, and the Difference GMM destroys the integrity of sample information
while removing the fixed effect, which leads to the problem of weak instru-
mental variables (Arellano and Bond 1991). The characteristic of System
GMM is to estimate the horizontal equation and the difference equation at
the same time. It can improve the real efficiency by adding the lag difference
variable as the tool variable of the model and ensure the integrity of the sample
information (Blundell and Bond 1998). Before using GMMmodel of dynamic
panel system, two conditions should be satisfied: there is no sequence corre-
lation in random error term, and there is no weak instrumental variable.

Fig. 2 Mechanism analysis
diagram
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existence of collinearity problems. Therefore, the interaction
items in model (5) are centralized.

Threshold effect

According to the regression results of the moderating effect of
the digital economy in the impact of energy structure on car-
bon emissions, it can be found that the moderating effect
varies in different regions. Therefore, this paper conjectures
that the moderating effect of the digital economy may have
some nonlinear influence; that is, with the development level
of the digital economy, the energy structure and carbon emis-
sions show an inconsistent change. Referring to Li et al.
(2021a), this paper constructs model (6):

lnCit ¼ α0 þ α1lnPit þ α2lnAit þ α3lnT it þ α4lnEit

� F lnDit ≤qð Þ þ α5lnEit � F lnDit ≥qð Þ þ α6lnX it

þ μi þ εit ð6Þ

where: F(∗) is the indicator function, q is the threshold
value, and the other variables are consistent with the above.

Variable selection

Due to the serious lack of data of some three-level indicators
of digital economy before 2011, in view of the availability and
integrity of data of digital economy indicators, this paper only
uses the data from 2004 to 2017 to make a preliminary anal-
ysis of the relationship between energy structure and carbon
emissions. The empirical analysis uses the panel data of 30
provinces (excluding Tibet, Hong Kong, Macao, and Taiwan)
from 2011 to 2017 according to the actual situation. The se-
lection of variables and relevant data sources are as follows:

(1) Total carbon emissions. This paper draws on the ideas
of Liu et al. (2021); the material balance algorithm is
adopted to calculate the total carbon emissions according
to formula (7):

TCit ¼ ∑
9

m¼1
Eitm � Hm � Dm; mϵ 1; 9f g ð7Þ

where, i is the province, t is the year, and M is the energy
type. Energy consumption is represented by E, and the energy
conversion coefficient and energy carbon emission coefficient
are denoted by H and D, respectively (see Table 2).

(2) The carbon emission intensity. The intensity of carbon
dioxide emissions is the amount of CO2 emissions per unit of
GDP, and the calculation formula is total carbon dioxide
emissions/GDP (Liu et al. 2021).

(3) Per capita carbon emissions. Referring to Li et al.
(2021a, 2021b), per capita carbon emissions are measured
by the ratio of total carbon dioxide emissions to the total
population. As we have analyzed, the regional heterogeneity
characteristics of energy structure on carbon emissions in
Sect. 2.1. In Sect. 3.2, we show the heterogeneity characteris-
tics of carbon emissions and the current situation of energy
structure more intuitively and vividly in the form of graphs
(Figs. 3 and 4).

(4) Energy structure. As coal is the main source of energy
consumption in China, compared with oil, natural gas, electric
power, and other energy sources, coal contributes the most to
China’s economic growth (Bhattacharya et al. 2015).
Therefore, the proportion of coal consumption in energy con-
sumption is used to express the energy structure.

(5) Digital economy. A single index cannot comprehen-
sively and accurately measure the real development level of
the digital economy. Drawing on the ideas of Liu et al. (2020)
, this paper uses the entropy method to construct the digital
economy index with the internet as the core (Cao et al. 2021).
The development level of digital economy of 30 provinces in
2011 and 2017 are shown in Fig. 5. By comparison, we can
clearly see that the development speed of digital economy in
eastern coastal areas is faster (Table 3).

(6) Control variables.
① Population. Population factor will affect greenhouse gas

emissions through “total amount” and “speed” (Birdsall
1992). Knapp and Mookerjee (1996) believe that population
is the reason for the growth of global CO2 emissions. As the
number of permanent residents reflects the actual population
of the region, we follow the method of Liu et al. (2021); the
population is measured by the total resident population.

② Affluence. As a comprehensive measure of the produc-
tion capacity of products and services within the region, GDP

Table 2 Energy conversion coefficient and energy carbon emission coefficient

Energy types Coal Coke Crude oil Fuel oil Gasoline Kerosene Diesel Natural gas Electric power

Hm 0.7143 0.9714 1.4286 1.4286 1.4714 1.4714 1.4571 13.3 0.1229 kg standard coal/kWh

Dm 0.7476 0.1128 0.5854 0.6176 0.5532 0.3416 0.5913 0.4479 2.2132

Source: Hm data from China Energy Statistical Yearbook 2018, Dm data from IPCC 2006

According to China Energy Statistics Yearbook, nine kinds of energy include coal, coke, crude oil, fuel oil, gasoline, kerosene, diesel oil, natural gas, and
electric power.
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per capita can well reflect the economic development stage
and the material life prosperity of residents. Because the index
has the characteristics of comparability, comprehensiveness,
and ease of access, it can meet the research needs of this paper.
Thus, the per capita GDP is regarded as the indicator of pros-
perity (Rehman et al. 2019).

③ Technology. As a proxy variable of technology, energy
intensity is a measure of energy efficiency. The higher the
energy efficiency, the lower the energy intensity and the lower
the carbon emissions (Cansino et al. 2015). Energy intensity is
expressed as the proportion of total energy consumption in
GDP (Liu et al. 2015).

④ Research and development level. The increase in R&D
expenditure can improve the level of energy utilization, which
is an important driving force of carbon emissions reduction
(Petrović and Lobanov 2020). This paper uses R&D spending
as a share of GDP to represent R&D levels.

⑤ Human capital level. The improvement of the human
capital level is conducive to carbon emission reduction
(Huang et al. 2021). The level of human capital is measured
by urban per capita expenditure on education.

⑥ Foreign direct investment. The impact of foreign direct
investment on China’s environmental pollution has always
been two opposing hypotheses: “pollution paradise” and “pol-
lution halo”. This article draws on the selection of actual for-
eign direct investment as a percentage of GDP (Hao et al.
2021a; Su et al. 2021).

⑦ Trade structure. Under the background of globalization,
carbon emissions are transferred globally along with goods
and services. The carbon emissions caused by global interna-
tional trade have jumped from less than 20% in 1990 to more
than 30% in 2010 in 20 years (Yan et al. 2020). Trade open-
ness is measured by the ratio of total imports and exports to
GDP (Ertugrul et al. 2016).

Carbon emission intensity in 2017    Carbon emissions per capita in 2017

Fig. 3 Carbon emissions and carbon emission intensity in China

Energy structure in 2011 Energy structure in 2017

Fig. 4 Energy structure in China
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⑧ Industrial structure. Industrial development will
cause environmental pollution and degradation (Antoci
et al. 2018), and the rapid development of industrializa-
tion will bring great harm to the urban environment
(Mahmood et al. 2020). Industrial structure is expressed
as the proportion of industrial added value in GDP
(Feng et al. 2021b).

⑨ Social structure. Urban expansion derives a large
amount of energy consumption demand and leads to a corre-
sponding increase in pollutant emissions (Maheshwari et al.
2020; Zhang and Lin 2012). Referring to Gan et al. (2020), the
proportion of the urban population in the total population of
each region in each year is used as the proxy variable of
urbanization level.

All variables in this paper were logarithmically processed,
and the data came from China Statistical Yearbook and China
Energy Statistical Yearbook (Table 4).

Research results

Direct effects of energy structure on carbon emissions

The Hausman test is performed on the extended STIRPAT
model. The results show that the model should not ignore
the province effect and time effect on carbon emissions.
Therefore, the province effect and time effect are controlled
in this paper. As can be seen from the regression results

Table 3 Comprehensive index system of digital economy development level

Main indicator First level indicator Secondary indicator Third level indicator Indicator
unit

Digital economy
index

Informatization development index Information foundation Optical cable density %

Density of mobile phone base station %

Proportion of informatization employee %

Impact of informatization Total telecom services %

Software business revenue %

Internet development indicator Fixed end Internet foundation Internet access port density %

Mobile Internet foundation Mobile phone penetration %

Impact of fixed end Internet Proportion of broadband Internet user %

Impact of mobile Internet Proportion of mobile Internet user %

Digital transaction development
indicator

Fundamentals of digital
trading

Proportion of enterprise website %

Proportion of computers used by
enterprise

%

Proportion of e-commerce %

Impact of digital transactions E-commerce sale %

Online retail sale %

Digital economy in 2011                   Digital economy in 2017

Fig. 5 Digital economy in China
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Table 4 Descriptive statistics
Variable Variable Obs Mean Std. dev. Min Max

Total carbon emissions C 210 15,934.12 10,176.96 2246.95 52,335.68

Carbon emission intensity CI 210 0.91 0.57 0.20 3.13

Carbon emissions per capita CP 210 4.09 2.42 1.37 13.47

The energy structure E 210 0.72 0.37 0.05 2.32

The digital economy D 210 41.53 28.60 11.01 175.01

Population P 210 4534.60 2711.61 568.00 11,169.00

Affluence A 210 5.07 2.34 1.64 12.90

Technology T 210 0.82 0.42 0.25 2.05

R&d spending rd 210 0.02 0.01 0.00 0.06

Human capital rlzb 210 2218.72 721.44 967.90 5087.20

Foreign direct investment fdi 210 0.33 0.33 0.05 1.76

The trade structure mykf 210 0.28 0.32 0.02 1.55

The industrial structure ind 210 0.45 0.08 0.19 0.59

The social structure csh 210 0.57 0.12 0.35 0.90

Table 5 Benchmark regression results

Explanatory variables Static panel model (OLS) Dynamic panel model (SYS-GMM)

TC CI CP TC CI CP TC CI CP

lnE 0.352*** 0.386*** 0.356*** 0.342*** 0.342*** 0.342*** 0.432*** 0.412*** 0.153**

(22.94) (22.09) (24.59) (30.58) (30.58) (30.58) (25.79) (15.35) (2.55)
lnP 1.254*** 0.254 0.254 1.001*** −0.001 −0.043

(4.30) (0.87) (0.87) (21.93) (−0.05) (−0.82)
lnA 0.959*** −0.041 0.959*** 1.119*** 0.498*** 0.651**

(10.30) (−0.44) (10.30) (7.13) (4.14) (2.18)
lnT 0.784*** 0.784*** 0.784*** 0.974*** 0.949*** 0.492***

(11.38) (11.38) (11.38) (8.30) (15.68) (3.67)
lnrd 0.002 0.002 0.002 −0.088 −0.175* 0.184

(0.04) (0.04) (0.04) (−1.01) (−1.65) (0.99)
lnrlzb −0.097** −0.097** −0.097** −0.058 −0.124*** −0.095

(−2.54) (−2.54) (−2.54) (−1.51) (−4.09) (−1.28)
lnfdi −0.006 −0.006 −0.006 −0.026 −0.014 −0.012

(−0.35) (−0.35) (−0.35) (−0.78) (−0.63) (−0.37)
lnmykf 0.014 0.014 0.014 0.141*** 0.051** 0.054

(0.93) (0.93) (0.93) (3.37) (2.22) (1.42)
lnind −0.036 −0.036 −0.036 −0.636*** −0.307*** −0.563**

(−0.42) (−0.42) (−0.42) (−3.04) (−2.58) (−2.20)
lncsh −0.353** −0.353 * * −0.353** −0.119 −0.453 −0.975

(−2.03) (−2.03) (−2.03) (−0.21) (−1.40) (−1.54)
L.lnC 0.037**

(2.44)
L.lnCI 0.056***

(2.77)
L.lnCP 0.649***

(5.33)
Constant 9.533*** 0.077*** 1.356*** −1.393 −1.393 −1.393 −0.628 −0.762 0.605

(714.00) (5.09) (107.91) (−0.58) (−0.58) (−0.58) (−0.90) (−1.30) (0.63)
F-value/AR(2) 95.78***

[0.000]
129.96***

[0.000]
99.67***

[0.000]
107.18***

[0.000]
185.16***

[0.000]
97.20***

[0.000]
0.44
[0.660]

1.21
[0.225]

−1.19
[0.235]

R2/Hansen test 0.795 0.840 0.801 0.913 0.948 0.905 16.77/[0.539] 17.35/[0.431] 10.49/[0.487]
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes No No No
Observations 210 210 210 210 210 210 180 180 180

The values in brackets are T values, and the values in [] are P values

* represents P < 0.1; ** represents P < 0.05; *** represents P < 0.01

64615Environ Sci Pollut Res  (2021) 28:64606–64629



(Table 5), the elastic coefficients of energy structure on carbon
emissions are all around 0.35, which are significant at the 1%
significance level. Carbon emissions are positively cor-
related with the proportion of coal consumption. Every
1% increase in the proportion of coal consumption will
lead to an increase of carbon emissions of about 0.35%.
This is closely related to China’s coal-rich energy struc-
ture, which indicates that China is still in the stage of
economic development dominated by traditional fossil
energy. In contrast, clean energy consumption accounts
for only a small proportion. Increasing coal consump-
tion will aggravate carbon dioxide emissions. In this
case, it is imperative to change the channel of energy
use and gradually minimize the dependence of economic
development on coal.

The number of permanent residents, per capita GDP, and
energy intensity are significantly positively correlated with
carbon emissions, and the previous level of carbon emissions
is an important factor affecting the current level of carbon
emissions (see Table 5). It means that the increase of popula-
tion, economic development level, energy intensity, and car-
bon emission level in the early stage will lead to the increase
of carbon emissions. With the increase of population and the
expansion of urban scale, people’s demand for food, clothing,
housing, transportation, and other aspects of life increases
correspondingly, and energy consumption increases accord-
ingly (Ahmad et al. 2020). In addition, the increase of energy
intensity indicates that economic growth depends on en-
ergy consumption, and the level of economic growth is
not high. Moreover, the growth of social wealth means
the improvement of people’s living standards and the
improvement of people’s demand for quality life such
as transportation, household appliances, and heating,
which further induces the supply of high-carbon emis-
sion products. Finally, because it takes some time to
break technical barriers, form environmental awareness,
build policies and systems, and update fixed assets, it is
difficult to change greatly in a short time. The current
carbon emission level will be significantly affected by
the previous period and eventually lead to the rise of
energy consumption and carbon emission level.

Regional heterogeneity

Heterogeneity of regional development level

Taking into account the level of economic development and
the industrial level in various parts of China, the division of
the three major regions of the east, the middle, and the west
basically reflects the regional characteristics and closely ad-
heres to the strategic deployment of China’s regional devel-
opment (Yang et al. 2021a;Wu et al. 2021a). In order to verify
whether the energy structure has different impacts on carbon

emissions in different regions due to the existence of regional
differences, the impact of energy structure on carbon emission
in eastern, central, and western regions is regressed
respectively.4

If i∈eastern region, dummy 1 = 1; if i∈central region or
western region, dummy 1 = 0. If i∈central region, dummy 2
= 1; if i∈eastern region or western region, dummy 2 = 0. If
i∈western region, dummy 3 = 1; if i∈eastern region or central
region, dummy 3 = 0.

It can be seen fromTable 6 that considering the total carbon
emissions, the carbon intensity, and per capita carbon emis-
sions, the impact of energy structure on carbon emissions is
statistically significant. However, the influence coefficient of
coal consumption ratio on carbon emissions in different re-
gions is different. We can easily find that the central region >
western region > eastern region. Therefore, hypothesis 1 is
proved.

Heterogeneity of regional resource endowment

In addition, because resource-based provinces have com-
parative advantages in resource factor input, they tend
to attract resource-based industrial agglomeration and
increase carbon emissions. Therefore, it is necessary to
subdivide the overall sample into resource-based prov-
inces and non-resource-based provinces to explore the
heterogeneity of the impact of energy structure on car-
bon emissions. Specifically, this paper refers to the def-
inition of resource-based areas by Yu et al. (2019) and
comprehensively considers the output value of resource-
based industries and the proportion of employees. Nine
typical resource-based provinces, namely Shanxi, Inner
Mongolia, Heilongjiang, Guizhou, Yunnan, Shaanxi,
Qinghai, Ningxia, and Xinjiang, are selected as the re-
search objects5. If i∈ resource-based provinces, dummy
4 = 1; if i∈ non-resource-based provinces, dummy 4 =
0. If i∈non-resource-based provinces, dummy 5 = 1;
if i∈ resource-based provinces, dummy 5 = 0.

The regression results in Table 7 show that for every 1%
increase in the proportion of coal consumption, the total

4 According to the division method of the National Bureau of statistics for the
eastern, central, and western regions, the eastern region includes 11 provinces
(cities) including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan; the central region in-
cludes Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, and Hainan. The
western region includes 11 provinces (cities) including Inner Mongolia,
Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, and Xinjiang.
5 According to the data of the National Bureau of statistics, Shanxi, Inner
Mongolia, Shaanxi, Guizhou, and Xinjiang are the top five provinces with
coal reserves of more than 10 billion tons, accounting for about 74% of the
total reserves in China. Heilongjiang, Shaanxi, and Xinjiang have oil reserves
of more than 100 million tons, accounting for about 50% of the total oil
reserves in China. Yunnan is known as China’s “Kingdom of nonferrous
metals” for its large mineral reserves and complete varieties.
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carbon emissions of resource-based provinces will increase by
0.395% on average, while that of non-resource-based

provinces will increase by 0.310% on average, which
is significant at the 1% statistical level. It shows that

Table 6 Direct effect results based on heterogeneity of economic level

Explanatory variables Total carbon emissions The carbon intensity Per capita carbon emissions

Eastern Midland Western Eastern Midland Western Eastern Midland Western

L.lnC/L.lnC/L.lnCP 0.217*** 0.317*** 0.160** 0.725*** 0.722*** 0.220*** 0.541*** 0.546*** 0.173***

(2.90) (6.31) (2.39) (3.94) (3.51) (7.40) (3.45) (9.69) (4.06)

lnE×dummy1 0.241*** 0.284** 0.242*

(2.94) (2.02) (1.83)

lnE×dummy2 0.443** 0.735** 0.721**

(2.56) (2.56) (2.49)

lnE×dummy3 0.344*** 0.418*** 0.469***

(3.65) (5.28) (3.72)

lnP 0.589*** 0.492** 1.045*** −0.013 0.118 0.113 −0.431 0.292* 0.149

(7.31) (2.19) (8.34) (−0.15) (1.19) (1.01) (−1.48) (1.86) (1.01)

lnA 0.585*** 0.293 1.490*** 0.320 −0.335 0.456*** 0.994*** 1.603*** 1.786***

(3.45) (1.30) (9.02) (1.41) (−1.18) (3.10) (2.95) (5.92) (6.80)

lnT 0.492*** 0.306*** 1.427*** 0.355* −0.164 0.930*** 0.629** 1.295*** 1.181***

(5.37) (2.67) (9.33) (1.78) (−1.01) (14.24) (2.54) (6.10) (10.74)

lnrd −0.515*** −0.604*** −0.058 −0.039 −0.932*** −0.425*** −0.053 −0.215 −0.383***

(−3.44) (−3.36) (−0.42) (−0.26) (−2.79) (−7.55) (−0.37) (−1.27) (−3.07)
lnrlzb 0.150*** 0.063 −0.032 −0.157*** −0.249*** 0.041 0.029 −0.424*** −0.236**

(3.17) (0.78) (−0.29) (−2.63) (−2.66) (0.83) (0.32) (−3.34) (−2.27)
lnfdi 0.057 0.018 −0.083 −0.025 0.065 −0.155*** 0.003 −0.077 −0.045

(0.79) (0.21) (−1.17) (−0.36) (0.67) (−3.61) (0.06) (−1.34) (−1.08)
lnmykf 0.024 0.049 0.166* 0.055* 0.063 * −0.038*** 0.013 0.304*** 0.036

(0.50) (1.12) (1.76) (1.90) (1.76) (−3.16) (0.28) (5.53) (0.79)

lnind 0.020 0.176 −1.253*** −0.496** 0.234 −0.205 −0.135 −1.623*** −0.496**

(0.09) (0.97) (−2.80) (−2.24) (0.70) (−1.30) (−0.70) (−4.20) (−2.13)
lncsh 0.391 1.421** −1.442** −0.550 1.844*** 0.415 −1.217** −1.255 −0.900

(0.82) (2.02) (−2.29) (−0.50) (2.81) (1.10) (−2.11) (−1.33) (−1.30)
dummy1 0.409* 0.310 0.885**

(1.77) (1.10) (2.27)

dummy2 0.255 −0.270 0.692***

(0.88) (−0.83) (3.47)

dummy3 −0.370 −0.367* −0.280
(−1.58) (−1.67) (−1.20)

Constant −1.278 0.071 −3.917** −0.070 −1.123 −3.781*** 1.273 −3.307*** −3.164**

(−1.19) (0.03) (−2.53) (−0.09) (−1.12) (−5.34) (0.45) (−2.59) (−2.34)
F-value/AR(2) −0.94

[0.349]
−0.83
[0.406]

−0.32
[0.752]

−0.12
[0.907]

−0.52
[0.605]

−0.86
[0.390]

−0.70
[0.485]

−1.25
[0.210]

0.53
[0.598]

Hansen test 12.62 13.07 18.69 3.59 9.11 17.86 4.20 17.87 17.15

[0.761] [0.668] [0.347] [0.990] [0.612] [0.398] [0.898] [0.397] [0.444]

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Province FE No No No No No No No No No

Observations 180 180 180 180 180 180 180 180 180

The values in brackets are T values, and the values in [] are P values

* represents P < 0.1; ** represents P < 0.05; *** represents P < 0.01
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the “contribution” of the energy structure to carbon
emissions of resource-based provinces is greater than
that of non-resource-based provinces. The regression re-
sults of the carbon intensity and per capita carbon emis-
sions as explained variables also support this conclu-
sion, thus verifying hypothesis 2.

Moderating effect of the digital economy on the
relationship between energy structure and carbon
emission

Judging from the regression results at the national level
(Table 8), the regression coefficients of the interaction terms

Table 7 Direct effect results based on the heterogeneity of resource endowment

Explanatory variables Total carbon emissions The carbon intensity Per capita carbon emissions

Resource Non-resource Resource Non-resource Resource Non-resource

L.lnC / L.lnCI/ L.lnCP 0.221** 0.129*** 0.570*** 0.493*** 0.333*** 0.105***

(2.45) (5.36) (7.29) (3.03) (6.08) (3.86)

lnE×dummy4 0.395*** 0.367** 0.348**

(2.62) (2.17) (2.12)

lnE×dummy5 0.310*** 0.246*** 0.286***

(11.05) (2.87) (7.88)

lnP 0.689*** 0.990*** 0.229* 0.124 0.170 0.159***

(6.47) (28.93) (1.75) (0.94) (1.39) (2.70)

lnA 0.105 1.167*** 0.361* 0.373 0.399 1.302***

(0.31) (6.56) (1.96) (1.55) (0.93) (7.75)

lnT 0.058 1.093*** 0.995*** 0.572** 0.874** 1.376***

(0.34) (10.65) (6.54) (2.06) (2.42) (10.66)

lnrd −0.696*** −0.180 −0.393*** −0.054 −0.320 −0.259
(−4.91) (−1.14) (−5.26) (−0.53) (−1.38) (−1.57)

lnrlzb 0.160* −0.101 0.169* −0.159** −0.251 −0.183**

(1.96) (−1.54) (1.80) (−2.14) (−1.21) (−1.97)
lnfdi 0.146 −0.019 −0.091 −0.015 −0.060 0.007

(1.51) (−0.41) (−1.53) (−0.26) (−0.54) (0.11)

lnmykf −0.019 0.256*** 0.221*** −0.002 0.148 0.303***

(−0.54) (7.09) (4.57) (−0.06) (1.22) (5.45)

lnind 0.450* −0.969*** −1.039*** −0.349** −1.141** −1.205***

(1.91) (−7.70) (−4.39) (−2.55) (−2.18) (−5.48)
lncsh 0.970 −0.436 −0.240 −0.338 1.341 −0.437

(1.02) (−0.99) (−0.42) (−0.49) (1.21) (−0.75)
dummy4 0.309* −0.349 0.051

(1.73) (−1.33) (0.18)

dummy5 −0.062 0.086 0.058

(−0.33) (0.43) (0.28)

Constant −1.588 −1.746* −5.897*** −1.059 −0.299 −2.067**

(−1.06) (−1.81) (−4.12) (−0.72) (−0.15) (−2.36)
F-value/AR(2) 0.95

[0.342]
−1.57
[0.115]

−1.06
[0.291]

0.14
[0.886]

−0.85
[0.394]

−1.09
[0.278]

Hansen test 9.99 22.81 22.36 8.95 10.70 24.20

[0.867] [0.155] [0.267] [0.627] [0.828] [0.114]

Year FE Yes Yes Yes Yes Yes Yes

Province FE No No No No No No

Observations 180 180 180 180 180 180

The values in brackets are T values, and the values in [] are P values

* represents P < 0.1; ** represents P < 0.05; *** represents P < 0.01
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between the energy structure and the digital economy are both
significantly negative. It shows that the digital economy has a
significant moderating effect on the impact of the energy
structure on carbon emissions. The improvement of the devel-
opment level of the digital economy will reduce the adverse
impact of the energy structure on carbon emissions, thereby
reducing carbon emissions. Therefore, hypothesis 3 is proved.

Moderating effect (heterogeneity of regional development
level)

The regression results show that the interactive coefficients of
energy structure and digital economy in the eastern region are
more than 5%, which is significantly negative, but the inter-
active coefficients of energy structure and digital economy in
the central and western regions are not significant. It shows
that the digital economy in the eastern region has a significant
moderating effect on the impact of energy structure on carbon
emissions, while there is no moderating effect of the digital
economy in the central and western regions. The improvement
of the development level of the digital economy can only
reduce the negative impact of the eastern region’s energy
structure on carbon emissions, thereby reducing carbon emis-
sions, and has no impact on the central and western regions
(Table 9).

Moderating effect (heterogeneity of regional resource
endowment)

Regional resources endowment heterogeneity results show
that the interaction coefficients of the digital economy and
energy structure of resource-based provinces are negative
but not significant. However, the interaction coefficients of
the digital economy and energy structure of non-resource-
based provinces are both negative and significant at the 5%
statistical level, which show that the regulation effect of the
digital economy is not significant in resource-based provinces,
but significant in non-resource-based provinces. Improving
the level of the digital economy can reduce the negative im-
pact of the energy structure of non-resource provinces on car-
bon emissions and reduce carbon emissions. Therefore, hy-
pothesis 4 is proved in this paper (Table 10).

Threshold effect

Test of threshold effect

Tables 11, 12, 13 show that the single threshold test shows the
threshold value of the digital economy is significant at the
statistical level of 1%. The double threshold test shows that
the threshold value of the digital economy is significant at the
statistical level of 5%. The triple threshold test failed to pass
the significance level of 10%. In summary, the energy

structure has a significant dual-threshold feature of the digital
economy when it affects carbon emissions. It is worth noting
that whether or not control variables are added to the model,
the panel threshold model rejects the zero hypothesis that there
is no threshold effect, which indicates that the threshold effect
of energy structure on carbon emissions exists. The impact of
energy structure on carbon emissions depends on the regional
digital economy. It is necessary to introduce the panel thresh-
old model.

Threshold effect regression structure

When the digital economy is below the threshold of 3.7180,
the influence coefficient of energy structure on carbon emis-
sions is 0.425, which is significant at the statistical level of
1%. When the digital economy crosses the threshold of
3.7180, the impact coefficient of energy structure on carbon
emissions decreases to 0.349, which is significant at the sta-
tistical level of 1%. When the digital economy crosses the
threshold value of 4.7529, the impact coefficient of energy
structure on carbon emissions is only 0.255, and it is signifi-
cant at the level of 1%. It shows that the impact of energy
structure on carbon emissions has nonlinear characteris-
tics. The higher the level of the digital economy, the
smaller the adverse impact of energy structure on car-
bon emissions (Table 14).

Overall, the proportion of coal consumption has a positive
impact on carbon emissions. Under the influence of different
levels of the digital economy, the aggravating effect of energy
structure on carbon emissions will be reduced to varying de-
grees. According to the estimated threshold variables, the
whole sample is divided into high/medium/low digital econo-
my regions. Due to space constraints, the results of each prov-
ince in 2017 are shown in Table 15. It can be seen that the
digital economy level ranking top 10 provinces are Beijing
(5.0693), Fujian (5.0580), Guangdong (4.7529), Zhejiang
(4.7060), Jiangsu (4.6791), Shandong(4.4431), Shanghai
(4.4293), Sichuan (4.2014), Hebei (4.0411), and Liaoning
(4.0187), and they mainly distribute in the eastern region
and non-resource-based provinces.

The development levels of the digital economy in Beijing
(5.0693), Fujian (5.0580), and Guangdong (4.7529) are higher
than the threshold of 4.7529. Tianjin (3.3501), Qinghai
(3.4590), Ningxia (3.4665), Jilin (3.4973), Gansu (3.5227),
Heilongjiang (3.6198), Xinjiang (3.6794), Shanxi (3.7078),
Guizhou (3.7180), and Jiangxi (3.7628) are the ten provinces
with the lowest level of digital economic development, and
they mainly distribute in the central and western regions and
resource-based provinces. Interestingly, these results reflect
that in the eastern region and non-resource-based provinces
with higher economic development levels, the development
level of the digital economy is higher than that in the central
and western regions and resource-based provinces.
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Table 8 Regression results of moderating effect

Explanatory variables Static panel model (OLS) Dynamic panel model (SYS-GMM)

TC CI CP TC CI CP TC CI CP

lnE 0.393*** 0.417*** 0.392*** 0.379*** 0.379*** 0.379*** 0.394*** 0.270*** 0.326***

(24.05) (21.96) (25.38) (37.61) (37.61) (37.61) (3.83) (4.31) (4.21)

lnD 0.018 −0.137*** 0.014 −0.039 −0.039 −0.039 0.048 0.182*** 0.066

(0.46) (3.09) (0.39) (1.61) (1.61) (1.61) (0.98) (4.46) (1.39)

lnE×lnD −0.086*** −0.073*** −0.078*** −0.112*** −0.112*** −0.112*** −0.121** −0.112*** −0.149***

(−5.03) (−3.66) (−4.84) (−8.98) (−8.98) (−8.98) (−2.57) (−3.94) (−3.45)
lnP 0.953*** −0.047 −0.047 0.438 −0.003 −0.064

(3.94) (−0.19) (−0.19) (1.63) (−0.04) (−1.42)
lnA 0.855*** −0.145* 0.855*** 0.806** −0.376* 0.780**

(10.73) (−1.82) (10.73) (2.12) (−1.86) (2.46)

lnT 0.847*** 0.847*** 0.847*** 0.800*** 0.383*** 0.586***

(14.85) (14.85) (14.85) (3.03) (2.97) (3.53)

lnrd 0.016 0.016 0.016 0.373** −0.052 −0.059
(0.41) (0.41) (0.41) (2.12) (−0.33) (−1.16)

lnrlzb −0.080** −0.080** −0.080** −0.049 −0.031 −0.005
(−2.56) (−2.56) (−2.56) (−0.96) (−0.60) (−0.09)

lnfdi −0.023 −0.023 −0.023 −0.094* −0.089** 0.010

(−1.50) (−1.50) (−1.50) (−1.87) (−2.05) (0.32)

lnmykf 0.027** 0.027** 0.027** 0.078 0.032 0.064*

(2.27) (2.27) (2.27) (1.34) (1.35) (1.71)

lnind 0.036 0.036 0.036 −0.356 0.006 0.028

(0.50) (0.50) (0.50) (−1.36) (0.04) (0.17)

lncsh 0.223 0.223 0.223 −0.454 0.982** −0.429
(1.42) (1.42) (1.42) (−0.52) (2.06) (−0.83)

L.lnC 0.517***

(2.78)

L.lnCI 0.593***

(5.23)

L.lnCP 0.430***

(2.92)

Constant 9.487*** 0.503*** 1.321*** 1.697 1.697 1.697 1.437 0.570 −0.170
(80.78) (3.68) (11.88) (0.85) (0.85) (0.85) (0.70) (0.41) (−0.29)

F-value/AR(2) 88.57
[0.000]

113.25
[0.000]

90.79
[0.000]

145.51
[0.000]

248.11
[0.000]

132.37
[0.000]

−1.32
[0.186]

−0.65
[0.516]

−0.51
[0.607]

R2/Hansen test 0.823 0.856 0.827 0.942 0.965 0.936 7.84 / [0.449] 9.98 / [0.442] 14.03 / [0.172]

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes No No No

Observations 210 210 210 210 210 210 180 180 180

The values in brackets are T values, and the values in [] are P values

* represents P < 0.1; ** represents P < 0.05; *** represents P < 0.01
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Table 9 Regression results of regulatory effect based on heterogeneity of local economic level

Explanatory variables Total carbon emissions The carbon intensity Per capita carbon emissions

Eastern Midland Western Eastern Midland Western Eastern Midland Western

lnE 0.280*** 0.424*** 0.187** 0.372*** 0.443*** 0.483*** 0.202*** 0.168*** 0.331***

(2.91) (11.13) (2.37) (5.40) (5.06) (4.89) (3.24) (2.81) (3.67)

lnD 0.060 −0.033 0.061 0.146*** 0.165 0.145** 0.060 −0.097 0.036

(0.96) (−0.74) (1.21) (3.51) (1.11) (2.40) (1.57) (−1.15) (0.68)

lnE×lnD×dummy1 −0.166** −0.122*** −0.109**

(−2.18) (−2.90) (−2.09)
lnE×lnD×dummy2 0.509 −0.102 0.632

(1.59) (−0.09) (1.47)

lnE×lnD×dummy3 −0.159 −0.082 −0.187
(−1.30) (−0.65) (−1.01)

lnP 0.512*** 1.032*** 0.212 0.006 0.228 0.270 −0.068* 0.007 0.190

(2.65) (9.97) (1.23) (0.06) (1.25) (1.03) (−1.86) (0.08) (0.36)

lnA 0.855*** 1.127*** 0.244 0.016 0.264 0.362 0.381** 0.804*** 1.036*

(3.30) (5.13) (0.97) (0.09) (0.70) (0.81) (2.13) (3.14) (1.84)

lnT 0.660*** 0.931*** 0.212* 0.735*** 0.585** 0.647** 0.394*** 0.366*** 0.753*

(3.07) (5.89) (1.68) (4.51) (2.36) (1.98) (2.77) (2.92) (1.93)

lnrd 0.117 −0.210 0.041 −0.025 0.490 0.565 −0.053 −0.093 −0.004
(1.25) (−1.12) (0.57) (−0.26) (1.29) (1.53) (−1.58) (−0.51) (−0.01)

lnrlzb 0.015 −0.150*** −0.080 0.037 0.012 0.078 0.027 −0.122* 0.113

(0.31) (−3.37) (−1.46) (0.89) (0.10) (0.67) (0.46) (−1.71) (1.04)

lnfdi −0.100** −0.047 0.030 −0.124*** −0.264** −0.342** −0.039 0.024 −0.025
(−2.42) (−1.21) (1.15) (−3.02) (−2.01) (−2.10) (−1.44) (0.83) (−0.48)

lnmykf −0.073 0.083*** 0.008 0.009 0.011 0.046 0.047 −0.008 −0.035
(−1.14) (2.73) (0.18) (0.34) (0.32) (1.21) (1.17) (−0.24) (−0.51)

lnind −0.001 −0.459* 0.017 −0.119 −0.429 −0.590 0.014 −0.165 −0.079
(−0.01) (−1.84) (0.12) (−0.69) (−0.91) (−1.23) (0.10) (−0.80) (−0.23)

lncsh −0.998* 0.437 −0.063 −0.134 −0.592 −0.360 −0.110 −0.498 −1.259
(−1.93) (0.57) (−0.12) (−0.21) (−0.67) (−0.26) (−0.47) (−1.01) (−1.07)

dummy1 0.413* 0.314 0.099

(1.80) (1.63) (1.35)

dummy2 −0.100 −0.326 −0.147
(−0.93) (−1.02) (−0.87)

dummy3 0.054 0.171 −0.173
(0.51) (0.42) (−0.59)

L.lnC/ L.lnCI/ L.lnCP 0.477*** 0.037*** 0.679*** 0.309** 0.639*** 0.648** 0.579*** 0.550*** 0.335**

(3.49) (2.70) (4.68) (2.20) (4.38) (2.43) (4.58) (4.30) (2.53)

Constant −1.072 −0.226 1.674* −1.255 −1.572 −2.331 0.012 0.010 −3.752
(−0.64) (−0.29) (1.72) (−1.00) (−0.66) (−0.79) (0.02) (0.01) (−0.59)

F-value/AR(2) −1.14
[0.253]

0.97
[0.333]

−0.48
[0.628]

−0.57
[0.571]

0.08
[0.937]

0.18
[0.860]

−0.97
[0.330]

−0.11
[0.909]

−0.10
[0.920]

Hansen test 4.15 11.91 13.67 3.75 2.63 1.94 13.73 11.45 10.65

[0.843] [0.613] [0.134] [0.927] [0.955] [0.983] [0.318] [0.246] [0.155]

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Province FE No No No No No No No No No

Observations 180 180 180 180 180 180 180 180 180

The values in brackets are T values, and the values in [] are P values

* represents P < 0.1; ** represents P < 0.05; *** represents P < 0.01
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Discussion

Discussion of direct effect estimation results

According to the direct effect regression results, the following
discussion can be drawn:

As can be seen from the results in Table 5, with the increase
of the proportion of coal consumption, carbon emissions will
also increase. It shows that China’s carbon emission level is
still highly related to the energy consumption structure. From
Figure 1, both the proportion of coal consumption and carbon
emissions presented an increasing trend from 2004 to 2017. It

can be seen from Table 1 that the average growth rates
of carbon emissions are all positive, and Hainan,
Xinjiang, Guangxi, Ningxia, and Inner Mongolia are
the five provinces with the fastest growth rate of carbon
emissions, and their carbon emission growth rates are
all over 10%. And the growth rate of carbon emissions
in Inner Mongolia is faster than economic growth, and
the quality of energy consumption is obviously low
(Rehman et al. 2021a, 2021b). One possible reason is
that these provinces have a relatively low level of eco-
nomic development. In the early stage of economic de-
velopment, energy consumption is relatively large,

Table 10 Regression results of regulatory effect based on heterogeneity of resource endowment

Explanatory variables Total carbon emissions The carbon intensity Per capita carbon emissions

Resource Non-resource Resource Non-resource Resource Non-resource

lnE 0.451*** 0.389*** 0.422*** 0.345*** 0.260*** 0.283***

(12.22) (3.86) (12.35) (6.18) (4.68) (3.71)
lnD 0.058* 0.041 0.103*** 0.144 * * 0.094*** 0.058

(1.86) (0.96) (4.18) (2.37) (2.96) (1.57)
lnE×lnD×dummy4 −0.457 −0.123 −0.314

(−1.31) (−0.54) (−1.14)
lnE×lnD×dummy5 −0.146*** −0.106*** −0.104**

(−3.13) (−2.34)
lnP 0.867*** 0.593** −0.096 −0.080 −0.077 −0.094

(9.74) (2.46) (−1.15) (−1.60) (−1.21) (−1.41)
lnA 1.446*** 1.094*** 0.338* 0.141 0.755** 0.877***

(6.43) (3.62) (1.81) (0.63) (2.36) (3.53)
lnT 0.941*** 0.872*** 0.970*** 0.643*** 0.535*** 0.604***

(10.13) (3.39) (9.84) (3.22) (3.75) (3.36)
lnrd −0.057 0.272 −0.065 −0.012 0.046 0.137

(−0.26) (1.64) (−0.38) (−0.08) (0.43) (0.93)
lnrlzb −0.129** −0.031 0.046 0.012 −0.053 −0.085

(−2.06) (−0.53) (0.99) (0.22) (−0.91) (−1.21)
lnfdi 0.011 −0.071* −0.078** −0.129** 0.029 −0.009

(0.29) (−1.84) (−2.14) (−2.36) (1.26) (−0.33)
lnmykf 0.119*** 0.027 −0.001 0.012 0.029 0.027

(3.04) (0.53) (−0.09) (0.61) (0.88) (0.67)
lnind −0.281* −0.258 −0.256 −0.042 −0.209 −0.157

(−1.66) (−1.21) (−1.57) (−0.22) (−1.54) (−1.01)
lncsh −0.670 −1.155** −0.960 0.196 −0.709 −1.018*

(−0.94) (−2.11) (−1.45) (0.37) (−0.91) (−1.93)
dummy4 0.081 −0.159 0.017

(0.72) (−1.05) (0.19)
dummy5 0.062 0.153 0.094

(0.51) (1.05) (1.23)
L.lnC/ L.lnCI/ L.lnCP 0.040*** 0.477*** 0.072*** 0.498*** 0.420*** 0.518***

(2.63) (2.80) (3.13) (4.35) (3.62) (3.60)
Constant 0.362 −0.869 −1.362* −0.222 0.271 0.636

(0.29) (−0.49) (−1.88) (−0.22) (0.33) (0.55)
F-value/AR(2) 0.05

[0.962]
−0.10
[0.917]

1.50
[0.134]

−0.30
[0.765]

−0.76
[0.445]

−0.27
[0.787]

Hansen test 19.39 8.40 14.13 7.07 10.96 11.47
[0.111] [0.396] [0.365] [0.630] [0.278] [0.245]

Year FE Yes Yes Yes Yes Yes Yes
Province FE No No No No No No
Observations 180 180 180 180 180 180

The values in brackets are T values, and the values in [] are P values

* represents P < 0.1; ** represents P < 0.05; *** represents P < 0.01
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which brings relatively high economic growth (Wu
et al. 2018; Wu et al. 2021b).

The intensity of energy structure’s impact on carbon emis-
sions varies significantly with different levels of economic
development. The results in Table 6 show that the eastern
energy structure has the least impact on carbon emissions,
while the western is in the middle and the central is the largest.
The reason is that the central region is not only the main
agricultural production area, but also the traditional produc-
tion area of coal and other energy, and the secondary and
tertiary industries started late (Jin and Wu 2013; Song and
Peng 2019).With the advancement of China’s industrial struc-
ture, the energy and resource-based industries in the eastern
region have to find the best transfer place under the constraints
of the livable environment of local residents and the rising cost
(Yang et al. 2021b; Hao et al. 2021b). The central region has
the advantages of resources, transportation, and population,
which will reduce the production cost and transfer cost of
enterprises. Therefore, it has become an ideal place to under-
take the eliminated industries in the eastern region (Mao
2019). In addition, the low added value of these backward
industries is not conducive to the improvement of technical
efficiency and the reduction of carbon emissions. The eco-
nomic development of the western region is relatively back-
ward, but it contains abundant wind energy, natural gas, and
solar energy resources. Under the western development strat-
egy, the implementation of the West-East natural gas trans-
mission project and the West-East power transmission project
has slowed down the dependence on coal and other traditional
energy to a certain extent (Tian et al. 2006). At the same time,
natural gas and hydropower replace coal as primary energy,
which also contributes to reducing CO2 and other greenhouse
gas emissions. Combined with Table 6 and China’s carbon
emission calculation results (Table 1), the eastern region ac-
counts for 6 of the 10 provinces with the largest carbon

emission, but the energy structure of the eastern region has
the least impact on carbon emissions; from the results of av-
erage growth rates of carbon emissions, the growth rate of
carbon emissions in eastern China is low. It can be seen that
the energy demand of the eastern region is transferred across
regions (Wu et al. 2020). China’s energy geographic spatial
reallocation not only transforms the resource advantages of
the western region into economic advantages, but also makes
an indelible contribution to the economy and environment of
the eastern region; carbon emissions in the western region
have also increased (Guo and Ge 2004).

The impact of energy structure on carbon emissions is het-
erogeneous due to the difference of resource endowment. The
contribution of energy structure to carbon emissions in
resource-based provinces is greater than that of non-
resource-based provinces. One possible explanation is that,
for resource-based provinces, it is undoubtedly a “shortcut”
to drive economic growth by taking advantage of local re-
source industries to drive economic growth, but this growth
model naturally attracts resource-intensive industrial agglom-
eration (Wang et al. 2019). The excessive dependence of
resource-based provinces on resources will lead to the simpli-
fication of the local industrial structure, and regional develop-
ment is likely to form the “inertia” (Fouquet 2016). Moreover,
the industries pursuing resources are mostly high energy con-
sumption and high emission sectors (Hao and Deng 2019).
There is no doubt that the high level of energy consumption
leads to an increase in carbon emissions.

Discussion on the estimation results of the
moderating effect

First of all, at the national level, the digital economy has an
obvious moderating effect on the relationship between energy
structure and carbon emissions. According to Eq. 5, the

Table 11 Total carbon emissions
as explained variable The number of

thresholds
(total carbon emissions)

The threshold
value

TheF value P
values

The critical value

1% 5% 10%

Single threshold test 4.7529 77.53 0.000 36.8878 27.2855 22.0899

Double threshold test 3.7180 52.97 0.014 60.1436 25.5798 19.3863

Triple threshold test 2.7551 21.42 0.7080 110.990 68.7736 54.0355

Table 12 Carbon emission
intensity is taken as the explained
variable

The number of
thresholds
(The carbon intensity)

The threshold
value

The F value P
values

The critical value

1% 5% 10%

Single threshold test 4.7529 77.53 0.000 37.0517 25.5707 22.5935

Double threshold test 3.7180 52.97 0.018 76.3572 26.8427 18.4189

Triple threshold test 2.7551 21.42 0.664 96.7156 59.1368 49.4026
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marginal contribution of the energy structure to carbon emis-
sions is a function of the digital economy. Since the influence
coefficients of the interaction terms of the digital economy on
carbon emissions are all significantly negative (Table 8), the
higher the development level of digital economy, the greater
the contribution of the moderating effect of digital economy to
carbon emission reduction.

The moderating role of the digital economy in the relation-
ship between energy structure and carbon emissions is signif-
icant in the eastern region, but not significant in the central and
western regions. This may be because the eastern region has a
higher level of economic development than the central and
western regions and a better environment for the development
of the digital economy, which is conducive to the regulation of

Table 14 Regression results of
the threshold effect Threshold effect parameter estimation results (1) (2) (3)

TC CI CP

lnP 1.402* * 0.402* 0.402*

(6.42) (1.84) (1.84)

lnA 0.942* * −0.058 0.942 * *

(15.06) (−0.92) (15.06)

lnT 0.784 * * 0.784* * 0.784 * *

(15.27) (15.27) (15.27)

lnrd 0.012 0.012 0.012

(0.37) (0.37) (0.37)

lnrlzb −0.033 −0.033 −0.033
(−1.25) (−1.25) (−1.25)

lnfdi −0.025* −0.025 * −0.025 *

(−1.94) (−1.94) (−1.94)
lnmykf 0.021 * 0.021 * 0.021 *

(1.94) (1.94) (1.94)

lnind −0.110** −0.110 * * −0.110**

(−2.58) (−2.58) (−2.58)
lncsh −0.061 −0.061 −0.061

(−0.46) (−0.46) (−0.46)
lnEit·F(lnDit≤3.7180) 0.425*** 0.425*** 0.425***

(31.96) (31.96) (31.96)

lnEit·F(3.7180≤ lnDit≤4.7529) 0.349*** 0.349*** 0.349***

(37.11) (37.11) (37.11)

lnEit·F(lnDit≥4.7529) 0.255*** 0.255*** 0.255***

(20.47) (20.47) (20.47)

Constant −2.861 −2.861 −2.861
(−1.62) (−1.62) (−1.62)

R2 0.944 0.967 0.939

Observations 210 210 210

The values in brackets are T values

* represents P < 0.1; ** represents P < 0.05; *** represents P < 0.01

Table 13 Per capita carbon
emissions as explained variable The number of thresholds

(Per capita carbon
emissions)

The threshold
value

The F
value

P
values

The critical value

1% 5% 10%

Single threshold test 4.7529 77.53 0.000 37.9399 26.3816 22.4251

Double threshold test 3.7180 52.97 0.010 51.3781 22.0493 17.2228

Triple threshold test 2.7551 21.42 0.6980 103.209 61.8878 49.9699
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the digital economy. The digital economy provides more ob-
vious “information and technology incentives” to enterprises
and users. Driven by a higher level of the digital economy,
companies are more willing to transform their energy structure
and save energy. And the information integration effect of the
digital economy has a more obvious effect on improving en-
ergy efficiency. Energy efficiency directly affects the amount
of energy required to provide products and services so as to
reduce energy consumption and curb the increase of carbon
emissions. Moreover, the central and western regions are fac-
ing greater economic development pressure compared with
the eastern region. Therefore, these two regions pay more
attention to the short-term impact of energy consumption on
economic growth and pay less attention to the development of
digital economy and energy structure adjustment. Therefore,
the regulatory effect of digital economy in the impact of ener-
gy structure on carbon emissions has not been effectively
exerted.

The digital economy has a significant regulatory role in
non-resource-based provinces but not significant in resource-
based provinces. The reason is that, on one hand, compared
with non-resource-based provinces, resource-based provinces
undertake the two important tasks of supplying production
factors and maintaining economic growth. GDP-oriented per-
formance concept drives local governments to use resources
with comparative advantages to attract resource-based indus-
tries to gather in the region. But the traditional extractive in-
dustry as the pillar of economic development will make the
development of emerging technologies subject to the dilemma
of the “economy-environment” zero-sum game, causing
resource-based provinces to ignore the development of envi-
ronmentally friendly technologies. On the other hand,
resource-based industries have a relatively great demand for
production factors such as capital and labor and have strong
“stickiness” (Liebowitz and Margolis 1995), which has a sig-
nificant “crowding-out effect” on innovative enterprises.
Thus, it is not conducive to promoting the regional technology
level, and the development level of digital technology is low.
Therefore, the positive regulatory role of the digital economy
has not yet appeared.

Discussion of threshold effect estimation results

The nonlinear effect of energy structure on carbon emissions,
with the digital economy as the threshold variable, is the fur-
ther research of this paper based on the heterogeneity analysis
of moderating effect. According to Table 14, when lnDit ≤
3.7180, the level of the digital economy does not pass the
threshold, and the positive effect of energy structure on carbon
emissions is 0.425; when 3.7180 ≤ ln Dit ≤ 4.7529, the posi-
tive effect of energy structure on carbon emissions is 0.349,
which is 17.88% lower than that of regions without passing
the threshold; when lnDit ≥ 4.7529, the impact of energy struc-
ture on carbon emissions is only 0.255, which is 34.12% low-
er than that of regions without passing the threshold.
Therefore, the digital economy is an important driving factor
for carbon emission reduction, and only a high level of digital
economy development quality can reduce the adverse impact
of energy structure on carbon emissions. The higher the level
of the digital economy, the less negative effect of the energy
consumption structure dominated by coal on carbon emissions
will be. In the role of the digital economy, energy consump-
tion has brought economic growth, but the adverse output
(carbon emissions) is lower than in places where the digital
development level failed to pass the threshold. Therefore, the
digital economy is a strong competitive force for a region to
balance the “economic growth-environmental pollution”
dilemma.

Conclusions and implications

Based on the extended STIRPATmodel, this paper empirical-
ly tests the impact of energy structure and digital economy on
carbon emissions in 30 provinces of China from 2011 to 2017
and discusses the heterogeneity of economic level and re-
source endowment. The static and dynamic regression results
show that the energy structure has a significant driving effect
on carbon emissions, and the conclusion is still robust after
changing the explained variables. It is worth noting that this
kind of influence has a greater impact on the central region of

Table 15 Development level of the digital economy in different provinces

lnDit≤3.7180 N 3.7180≤ lnDit≤4.7529 N 4.7529≤ lnDit N

Shanxi (3.7078), Xinjiang (3.6794), Heilongjiang
(3.6198), Gansu (3.5227), Jilin (3.4973), Ningxia
(3.4665), Qinghai (3.4590), Tianjin (3.3501)

8 Zhejiang (4.7060), Jiangsu (4.6791), Shandong (4.4431),
Shanghai (4.4293), Sichuan (4.2014), Hebei (4.0411),
Liaoning (4.0187), Henan (4.0181), Anhui (3.9570),
Hunan (3.9267), Chongqing (3.9242), Hainan
(3.8600), Hubei (3.8964), Shaanxi (3.8261), Guangxi
(3.8248), Inner Mongolia (3.8020), Yunnan (3.7923),
Jiangxi (3.7628), Guizhou (3.7180)

19 Beijing (5.0693),
Fujian (5.0580),
Guangdong
(4.7529)

3
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China, followed by the western region and the eastern region.
In addition, the digital economy has a significant moderating
effect. Specifically, the digital economy can play the role of
energy conservation and emission reduction. With the devel-
opment of the digital economy, the impact of coal-based en-
ergy structure on carbon emissions is gradually decreasing.
This effect is more obvious in non-resource-based provinces
and eastern China but not obvious in resource-based cities and
central and western China. On the basis of the above analysis
results, this paper gets the following enlightenment:

Combined with the regional characteristics, we believe
that, as the key carbon emission regions with higher economic
development level, the eastern and non-resource-based prov-
inces should pay attention to the development of green tech-
nology, effectively use the advantages of local talents and
capital, research and develop green technology and transform
process flow, improve energy utilization efficiency, and pro-
mote the development of energy conservation and emission
reduction technology. The central and resource-based prov-
inces need to take into account the governance of input and
output. On one hand, the central and resource-based provinces
should abandon the traditional path of resource-based indus-
tries for growth, restrict the development of high energy con-
sumption and high-carbon emission enterprises, and promote
the transformation and upgrading of industrial structure. On
the other hand, the government should improve the market
mechanism design of carbon emission reduction and guide
enterprises to pay attention to the application of green tech-
nology in the form of carbon tax and carbon emission right, so
as to realize low-carbon development. The western region
needs to focus on breaking through the bottleneck of photo-
voltaic, wind, solar, and other clean energy utilization, strive
to realize the wide application of clean energy as soon as
possible, and decarbonize production and life by means of
energy structure transformation.

Digital economy includes digital industrialization and dig-
ital industry. Among them, digital industrialization is the
foundation. According to the white paper on China’s Digital
Economy Development and Employment (2018), China’s dig-
ital foundation is weak, and it still needs a process for China’s
manufacturing industry from automation and digitization to
networking and intellectualization. Therefore, the government
should guarantee the orderly progress of digital economy in-
frastructure construction by means of financial support, indus-
trial support, investment, and financing inclination. In addi-
tion, the government should encourage social and economic
entities to increase their understanding and application of dig-
ital technology, expand digital reform efforts, and promote the
wide application of digital technology in the three major in-
dustries. Due to the unbalanced development level of digital
economy among regions, digital knowledge and technology
need to bewidely popularized in less developed areas. In order
to narrow the development gap of digital economy between

regions, the government should build a platform for knowl-
edge and technology communication and exchange among
regions. Threshold effect shows that the higher the develop-
ment level of digital economy, the more obvious the effect of
emission reduction. This means that while promoting the pop-
ularization of digital knowledge and technology, innovation
and breakthrough of digital technology still need to be placed
in an important position. Finally, the healthy development of
digital economy is inseparable from the effective supervision
and management mechanism. In the process of the integration
of digital economy and traditional industries, and the birth of
new business state by digital economy, the government should
also pay attention to the potential security risks of digital
economy, so as to ensure that the application and promotion
of digital economy can play an “enabling” role.
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