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Highly comparative time series analysis of oxygen

saturation and heart rate to predict respiratory

outcomes in extremely preterm infants

Abstract.

Objective: Highly comparative time series analysis (HCTSA) is a novel approach

involving massive feature extraction using publicly available code from many

disciplines. The Prematurity-Related Ventilatory Control (Pre-Vent) observational

multicenter prospective study collected bedside monitor data from > 700 extremely

preterm infants to identify physiologic features that predict respiratory outcomes.

We calculated a subset of 33 HCTSA features on > 7M 10-minute windows of

oxygen saturation (SPO2) and heart rate (HR) from the Pre-Vent cohort to quantify

predictive performance. This subset included representatives previously identified

using unsupervised clustering on > 3500 HCTSA algorithms. Performance of each

feature was measured by individual area under the receiver operating curve (AUC) at

various days of life and binary respiratory outcomes. These were compared to optimal

PreVent physiologic predictor IH90 DPE, the duration per event of intermittent

hypoxemia events with threshold of 90%.

Main Results: The top HCTSA features were from a cluster of algorithms associated

with the autocorrelation of SPO2 time series and identified low frequency patterns of

desaturation as high risk. These features had comparable performance to and were

highly correlated with IH90 DPE but perhaps measure the physiologic status of an

infant in a more robust way that warrants further investigation. The top HR HCTSA

features were symbolic transformation measures that had previously been identified as

strong predictors of neonatal mortality. HR metrics were only important predictors at

early days of life which was likely due to the larger proportion of infants whose outcome

was death by any cause. A simple HCTSA model using 3 top features outperformed

IH90 DPE at day of life 7 (.778 versus .729) but was essentially equivalent at day of life

28 (.849 versus .850). These results validated the utility of a representative HCTSA

approach but also provides additional evidence supporting IH90 DPE as an optimal

predictor of respiratory outcomes.

Keywords: highly comparative time series analysis, preterm infants, intermittent

hypoxemia, predictive models
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1. Introduction

1.1. Highly comparative time series analysis (HCTSA)

Analysis of heart rate (HR) and oygen saturation (SPO2 or more precisely SpO2) vital

sign time series during the stay of infants in the neonatal intensive care unit (NICU)

has been shown to be useful in predicting unfavorable outcomes. This is part of larger

efforts to improve care of infants using big data analytics (Vesoulis et al. 2023, Cole

2021). Notably, models for predicting sepsis have not only been developed (Griffin

et al. 2003, Fairchild et al. 2017, Kausch et al. 2023) but implemented in the NICU and

shown to improve outcomes in a large clinical trial (Moorman et al. 2011, Fairchild et al.

2013). Models have also been developed for other adverse outcomes during NICU stay

including death (Sullivan et al. 2016, 2018, Niestroy et al. 2022), bronchopulmonary

dysplasia (BPD) (Raffay et al. 2019, Gentle et al. 2023, Ramanand et al. 2023), and

retinopathy of prematurity (Di Fiore et al. 2010, 2012). Vital sign data during an infant’s

stay has also been shown to predict long-term outcomes of cognitive impairment (Poets

et al. 2015), cerebral palsy (Letzkus et al. 2022), and autism (Blackard et al. 2021).

Highly comparative time-series analysis (HCTSA) developed by Fulcher et al.

(2013) is a novel method that naturally applies to HR and SPO2 data. The core

concept involves using numerous time-series algorithms with a wide-ranging set of

parameter values to extract a massive number of features to associate with some

target outcome. They examined over 35,000 real-world and model-generated time series

with more than 7,000 time-series analysis algorithms developed from a wide variety

of disciplines. The MATLAB code to implement these HCTSA algorithms is publicly

available at https://github.com/benfulcher/hctsa. The goal of using HCTSA is not

necessarily to develop an optimal predictive model restricted to these algorithms. Here

we use HCTSA as a tool to identify new types of algorithms for future more traditional

development with sufficient understanding to be useful for clinicians.

Recently, Niestroy et al. (2022) applied > 3500 HCTSA algorithms to > 17M

10-minute windows of heart rate (HR) and oxygen saturation (SPO2) vital sign data

collected from bedside monitors (displayed every two seconds) from 6000 infants at the

University of Virginia NICU from 2009 to 2019. The data (including all HR and SPO2

time series) is publicly available at Niestroy et al. (2021). In an effort to reduce the

high dimensionality of the data, a random subset of > 120K daily results was then used

for unsupervised k-medoids clustering based on distance metric of mutual information.

With k = 20 clusters, 81% of the variance of full data was explained and identified 20

central algorithms or medoids. A medoid is defined to be a point in the cluster from

which the sum of distances to other data points in the cluster is minimal.

Utilizing these clusters, they found that HCTSA algorithms can discover novel

patterns associated with neonatal mortality in the next 7 days. Notably, models based

solely on the cluster centers performed comparably to those considering the full feature

set. This lead to a hypothesis that identifying algorithms by unsupervised clustering

could capture most of the predictive information in NICU vital sign data and that
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motivates this work.

Based on this hypothesis, a subset of HCTSA algorithms (including at least

one from each of the 20 clusters) was implemented using the publicly available code

as part of the Batch Algorithm Processor (BAP) software package developed for

comprehensive analysis of bedside waveform and vital sign time series data. In

addition, the maximum and minimum cross-correlation of HR and SPO2 at lags up

to 30 seconds were calculated which have been shown to be associated with sepsis,

apnea and periodic breathing (Fairchild & Lake 2018) giving a total of 33 vital sign

features calculated. The BAP software including extensive documentation is available

at https://github.com/UVA-CAMA/BatchAlgorithmProcessor.

1.2. PreVent Study

The Prematurity-Related Ventilatory Control (Pre-Vent) study was of a cohort of > 700

extremely premature infants (gestational age less than 29 weeks) across 5 NICU sites

with the hypothesis that physiologic features of ventilatory control extracted from

bedside monitoring data can predict unfavorable respiratory outcomes at 40 weeks post-

menstrual age (PMA) (Dennery et al. 2019). The BAP was developed for Pre-Vent and

used to extract a large number of physiologic (including HCTSA) features. The software

was run at each of the sites remotely in a separate but uniform way while keeping raw

data stored locally. A result of this processing was 33 features calculated on 7.8M

10-minute windows of HR and SPO2 data.

In the primary analysis of the Pre-Vent study, optimal logistic regression models

were developed for predicting respiratory outcomes at varying days of life during the

NICU stay and identified important risk factors for both physiologic and clinical models

(Ambalavanan et al. 2023). Physiologic models included metrics calculated from bedside

waveforms (ECG and chest impedance) and vital signs (HR and SPO2). Notably, the

duration per event (DPE) of intermittent hypoxemia events with SPO2< 90% (IH90)

was most significant individual physiologic factor for predicting the primary unfavorable

respiratory outcome. At day of life 28, performance of IH90 DPE as an individual

predictor performed similarly to optimal models with demographic, respiratory support

and other clinical features. However, IH and physiologic models in general did not

perform as well earlier in the NICU stay (day 7) where identification of higher-risk

infants would have more impact.

1.3. Intermittent Hypoxemia

Intermittent hypoxemia (IH) in the NICU has been widely studied (Ramirez et al. 2023,

Dormishian, Schott, Aguilar, Jimenez, Bancalari, Tolosa & Claure 2023, Dormishian,

Schott, Aguilar, Bancalari & Claure 2023). Definitions of IH events require fixed

parameters including SPO2 threshold (e.g. 80% or 90%), min/max duration, and

possibly joining rules for nearby events. These definitions can be somewhat arbitrary and

susceptible to varying hospital protocols (e.g., target SPO2 ranges) or clinical practice.
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IH events can also be sensitive to the averaging time of the pulse oximeter which can

vary across vendor and NICU. Published physiological models relying on threshold-

based events may not prove to be robust in universal and evolving applications. Using

advanced time-series metrics to predict neonatal respiratory outcomes without relying

on clinical definitions have not yet been fully studied.

2. Methods

2.1. Study Population

The study population consisted of the 717 extremely premature infants prospectively

enrolled in Pre-Vent study and with respiratory outcome determined (Ambalavanan

et al. 2023). Analysis was restricted to days where sufficient HR and SPO2 monitor

data was available (at least 12 hours of each) which represented over 80 percent of the

study period.

The Pre-Vent study predefined 5 mutually exclusive respiratory outcome categories

which in order of decreased severity are:

(i) Death: prior to 40 weeks PMA

(ii) Severe: invasive mechanical ventilation (IMV) at 40 weeks PMA

(iii) Moderate: need for positive pressure at 40 weeks PMA

(iv) Mild: respiratory medications, oxygen or other respiratory support either inpatient

at 40 weeks PMA or at discharge prior to 40 weeks PMA

(v) Favorable: none of the above

The primary outcome of the Pre-Vent study was an unfavorable outcome consisting

of any of the first 4 outcomes (i.e., not favorable). Three additional binary outcomes

analyzed here in order of increase severity are moderate or severe or death, severe or

death and death. For each outcome, the entire cohort was used to compare having vs.

not having outcome.

Predictive performance of the time series features were evaluated at day of life 7, 14,

and 28 which follows the approach of the PreVent analysis (Ambalavanan et al. 2023).

Table 1 shows a breakdown of the infants by binary outcomes at these time points. A

particular focus was predicting an unfavorable outcome at day 7, which consisted of 584

infants and an event rate of 265/584=45.4%. An important aspect of the analysis to

consider is the evolving distribution of the outcomes by day of life. Figure 1 shows how

the mortality rate of surviving infants is significantly reduced by week of life. Since death

outcomes include those of all causes and not necessarily related to respiratory failure,

analyzing outcomes later in the NICU stay are therefore more directly associated with

control of breathing. Also note in Figure 1 that there is minimal difference in mortality

rate between those with monitor data and entire population suggesting there is no

significant selection bias in the analysis.
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Table 1: Sample size and distribution of binary respiratory outcome at day 7, 14, and

28 for infants with monitor data collected.

Day 7

N=584

Day 14

N=584

Day 28

N=551

death 40 (6.8%) 30 (5.1%) 15 (2.7%)

severe\death 80 (13.7%) 71 (12.2%) 40 (10.0%)

severe\death\moderate 121 (20.7%) 110 (18.8%) 92 (16.7%)

unfavorable 265 (45.4%) 263 (45.0%) 228 (41.4%)

favorable 319 (54.6%) 321 (55.0%) 323 (58.6%)

Figure 1: Mortality rate by week of life. For each time point, the solid line shows the

mortality rate in patients with monitoring data collected and the dotted line shows the

mortality rate in all infants in study.

2.2. Time Series Features

The 33 new HR and SPO2 HCTSA features are described in Table 2 along with which

of the 20 clusters they belonged to and a general description of the type of algorithms

in the cluster. The number of the clusters are ordered in way so that nearby clusters

tend to be more related. Table A1 provides more details on the exact parameters and

the publicly available Matlab code used for each feature. For evaluation purposes, the

features were summarized as the daily median of the every 10 minute results.
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Table 2: Time-series features implemented in Batch Algorithm Processor (BAP).

Feature Cluster Cluster Name Cluster Descripton

hr mean

hr avgthresh

hr corrmean

1 hr mean HR mean

hr std

hr cv
2 hr std HR standard deviation

hr max 3 hr max HR maximum

hr min 4 hr min HR minimum

hr kurt

hr skew
5 hr skew HR skewness

hr symautocorr 6 hr autocorr HR autocorrelation

hr surprise

hr surprise
7 hr entropy HR entropies

hr wavelet 8 hr wavelet HR wavelet decomposition

hr probincreases

hr entropy diff
9 hr symbolic HR symbolic transforms

sp std 10 sp std SPO2 standard deviation

sp mean

sp avgthres

sp corrmean

11 sp mean SPO2 mean

hr derivative 12 hr derivative HR nth derivative

sp min 13 sp min SPO2 minimum

sp skew

sp kurt

sp mean trim

14 sp median SPO2 median

sp wavelet 15 sp misc SPO2 miscellaneous

sp symeigen 16 sp symbolic SPO2 symbolic transforms

sp walk

sp autocorr
17 sp autocorr SPO2 autocorrelation

sp symentropy 18 sp entropy SPO2 entropies

sp symbin 19 sp binary SPO2 binary symbolic transforms

sp symiqr 20 sp more SPO2 more symbolic transforms

xc max Maximum cross-correlation

xc min Minimum cross-correlation

The daily HCTSA results were merged with the physiological features measured

on HR and SPO2 as part of PreVent study. Using the BAP, the following physiologic

events were extracted from bedside sign monitor data:

(i) IH80: Desaturation events with SPO2 < 80% for 10-300 seconds

(ii) IH90: Desaturation events with SPO2 < 90% for 10-300 seconds

(iii) Brady80: Bradycardia events with HR < 80 beats per minute for 5 or more seconds

These IH duration limits come from Di Fiore et al. (2012) but do vary slightly across

publications. For each of these 3 events, daily features were quantified as count of events

per day (count), total daily duration in events (dur) measured in minutes per day, and
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average duration per event (dpe) measured in seconds per event. These 3 quantities are

not independent and have relationship dpe=60×dur/count. These 9 clinically defined

features gave a total of 42 candidate HR and SPO2 metrics for the analysis.

2.3. Feature Evaluation

We evaluated the performance of each feature based on the area under the receiver

operating curve (AUC) at various days of life for all 4 binary outcomes. The AUC

for predicting the primary unfavorable outcome at day 7 was used to rank the features.

Signature of risk curves showing estimates of the probability of the unfavorable outcome

at day 7 as a function of the daily median value of each variable were made using logistic

regression model including a cubic spline transformation with 3 knots to account for

possible non-linearity. The top performers were then analyzed further by looking at a

range of examples stratified by percentile to better understand what the algorithm was

measuring and, in particular, its correlation with IH events. The trajectories of the

performance of these new metrics was also analyzed for the first 8 weeks of life.

For logistic regression models, AUC was measured using cross-validation where

each fold consisted of infants clustered by pregnancy so that an infant’s sibling was

not used to predict its outcome. Variable importance was quantified by the drop in

cross-validated AUC when the variable was removed from the model.

2.4. Demographic and Clinical Risk Factors

Detailed demographic information about the Pre-Vent cohort can be found in

Ambalavanan et al. (2023). The sex of the infants in the study were equally represented

(51% male) and the average birth weight and gestational age were 871 grams and 26.4

weeks rspectively. There is also a comprehensive list of clinical risk factors for predicting

respiratory outcomes at various time points. Based on this, the following were identified

as the major risk factors for unfavorable respiratory outcomes and included in the

presented results for comparison purposes.

(i) BW: birthweight in grams

(ii) GA: gestational age in weeks

(iii) IMV: daily need for invasive mechanical ventilation

(iv) FIO2 (or FiO2): value closest to noon (0.21 if on room air)

We acknowledge the importance of demographic and clinical risk factors for

predicting respiratory outcomes, but the focus of this paper is on prediction using only

vital signs HR and SPO2. We can justify this as still being relevant clinically for a

couple of reasons. First, vital sign features are dynamic and indicate the evolving status

of the infant during the NICU stay whereas demographic features are static and fixed

at birth. Second, clinical features like those associated with respiratory support are

often in response to changes in the vital signs of the infant and potentially not a direct

informative predictor of respiratory outcomes.
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It is also worth noting that we are not considering the physiologic measures of apnea

and periodic breathing (calculated by BAP using chest impedance waveform) in this

analysis. These features are only meaningful for infants not on mechanical ventilation

and have some of the same issues with respiratory support features mentioned above.

They were also not shown to be major predictors of respiratory outcomes in primary

Pre-Vent analysis (Ambalavanan et al. 2023).

3. Results

Figure 2 shows signature of risk curves for 5 of the top predictors of an unfavorable

outcome at day 7. These are discussed in more detail below.

Figure 2: Individual signature of risk for unfavorable outcome for top predictors at

Day 7. The gray area indicates the 95% confidence intervals. The black line represents

the outcome rate of .454 and the red line indicates where the confidence intervals do

not include this null value. The dotted lines represent the limits of the central 95% of

the daily distribution values.

Table 3 summarizes the top individual performers in order of highest AUC for

predicting primary unfavorable outcome at day 7. Results and ranks (out of 42) for

days 14 and 28 are also included. Comprehensive results for all features and each of the

outcomes for days 7, 14 and 28 is provided in Tables A2,A3, and A4. Performance of

the major clinical risk factors are also provided in Table A5 for comparison.
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Table 3: Top performers for predicting primary unfavorable respiratory outcome and

respective ranks (out of 42) at day 7, 14 and 28.

Feature Cluster day 7 Rank day 14 Rank day 28 Rank

sp walk 17 0.761 1 0.797 1 0.851 1

sp autocorr 17 0.740 2 0.782 3 0.841 3

sp avgthres 11 0.735 3 0.741 7 0.784 8

sp mean 11 0.731 4 0.732 8 0.772 10

sp corrmean 11 0.731 5 0.731 9 0.769 11

ih90 dur 0.730 6 0.742 6 0.797 6

ih90 dpe 0.729 7 0.792 2 0.850 2

sp mean trim 14 0.725 8 0.720 11 0.765 12

sp symeigen 16 0.718 9 0.749 5 0.814 5

sp min 13 0.703 10 0.666 21 0.655 24

sp kurt 14 0.698 11 0.750 4 0.817 4

ih90 count 0.696 12 0.663 22 0.691 16

hr entropy diff 9 0.689 13 0.704 13 0.688 17

hr entropy 7 0.675 14 0.647 25 0.635 27

hr probincreases 9 0.672 15 0.686 14 0.679 19

ih80 dpe 0.672 16 0.724 10 0.795 7

ih80 dur 0.671 17 0.706 12 0.756 13

sp std 10 0.665 18 0.653 24 0.675 21

ih80 count 0.652 19 0.675 17 0.714 14

hr wavelet 8 0.626 20 0.653 23 0.645 26

3.1. Top SPO2 HCTSA Features

The top HCTSA feature for predicting respiratory outcomes was sp walk which is a time

series metric inspired by physics. This may not be naturally intuitive for clinicians (and

others) and perhaps not that useful despite its optimal performance. The feature is

based on comparing the signal’s standard deviation to that of a simulated hypothetical

particle (or ’walker’) that moves in response to values of the time series at each point.

As described in the Matlab code, the walker moves as if it had inertia (based on its mass

which is an input parameter) from the previous time step so that it ’wants’ to move the

same amount and the original time series acts as a force changing its motion. SPO2

time series that behave very much like this simulated walk have lower ratios close to 1

which indicate higher risk of unfavorable outcomes.

This algorithm is part of a cluster of algorithms associated with the autocorrelation

of the SPO2 time series and includes the central algorithm and second best performer

sp autocorr. Autocorrelation is a standard time domain tool to evaluate, among other

things, the frequency content of the signal and as such likely a more intuitive approach

than that of sp walk. The specific parameters for sp autocorr was the correlation of

SPO2 with a delayed copy of itself at a lag of 4 samples or 8 seconds. High values of
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sp autocorr are associated with unfavorable outcomes and occur in signals that have

some variability over a 10-minute window but do not have high frequency variations

locally (over an 8 second window). Looking more closely at other lags and metrics

associated with the autocorrelation of the SPO2 is a potentially promising area for

future work. Both sp walk and sp autocorr were highly correlated with IH90 DPE

(−.77 and .76 respectively) and are fundamentally measuring the same physiological

status of the infant but perhaps in a more robust way.

Figure 3 shows examples of 10-minute SPO2 time series from extremely premature

infants on day of life 7 from publicly available dataset (Niestroy et al. 2021). Figure

3A and 3B shows the values and percentiles for sp walk and sp autocorr respectively.

The top row of each figure shows higher risk examples which is low values for sp walk

and high values for sp autocorr. These records are generally associated with persistent

low-frequency patterns with desaturations that include long duration IH90 and IH80

events. The middle and bottom rows of these examples show median and percentiles

associated with low risk. These exhibit some interesting patterns but not in a way that

has consistent clinical interpretation like with high risk examples. Future work beyond

the scope of this paper is needed to understand if the presence of subtle high-frequency

variability in SPO2 is clinically meaningful.

Other top SPO2 features include sp mean and other measures from this cluster.

None of these other features outperforms sp mean by an amount that would likely

justify deviating from using a simple measure that is clinically easy to understand.

Another SPO2 metric that performed well at days 14 and 28 was kurtosis. The mean

and kurtosis are part of a larger group of SPO2 features that characterize a daily pulse

oxygen histogram or profile. These histograms are used as a clinical tool in the NICU

to evaluate target range management(Gentle et al. 2020, Goetz et al. 2022, Borenstein-

Levin et al. 2020). Developing predictive models based directly on these daily SPO2

histograms is a promising area for future work. From an HCTSA perspective, this would

correspond to restricting analysis to metrics that don’t depend on the order of the time

series values.

3.2. Top HR HCTSA Features

The top three HR features were symbolic transformation metrics associated with

discretizing the HR record into sequence of either 2 (binary) or 3 symbols that are

also good measures of low HR variability associated with high risk of death. The

best algorithm, hr entropy diff, specifically first quantizes the successive HR differences

into 3 symbols roughly representing increasing, same and decreasing. It then looks

at the distribution of all 34 = 81 possible patterns of length 4 and calculates the

Shannon entropy. Low values of hr entropy diff are associated with large proportion

of unchanging HR during 10-minute window. The second best algorithm, hr entropy,

is the exact same algorithm applied to raw signal without first taking differences. The

third best HR algorithm is hr probincreases which was previously identified as best
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A. Values and percentiles of sp walk

B. Values and percentiles of sp autocorr

Figure 3: Examples of 10-minute SPO2 time series on day 7 for twp top HCTSA

features sp walk and sp autocorr. The title includes feature value and its percentile,

e.g. P5=5th percentile of distribution.
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individual predictor of mortality in next week in the NICU (Niestroy et al. 2022). This

measure transforms the HR record into binary sequence of either up (u) or down (d)

based on whether HR increases or not (HR staying same is considered down). The

hr probincreases is the probability of the uu pattern and low values indicate high risk

of mortality.

All three of these measures are related to heart rate fragmentation metrics

introduced recently (Costa et al. 2017a,b) and shown to be predictive of long-term

survival in large study of 3000 24 hour Holter recordings from patients of all ages (Lensen

et al. 2020). A lesson learned from HCTSA is that measures that convert the HR to

a simple binary time series and look for runs of ones of lengths 1,2,3,. . . can quantify

heart-rate variability and are good candidates to predict adverse neonatal outcomes in

a way clinicians can easily understand.

3.3. Trajectories of Predictive Performance

Values of the AUC for sp walk and IH90 DPE at days 7, 14 and 28 are summarized in

Table 4. Based on the individual results discussed above, a simple 3-parameter HCTSA

model using features sp walk, sp mean, and hr entropy diff was developed at each day of

life and also included. This model was considered sufficiently optimal because removing

any of these features reduced AUC by more than .005 and no HCTSA feaure added to

the model increased AUC by more than .005 at day 7. The performance of birth weight

alone is included as well for comparison.

Table 4: Comparison of AUC at days 7, 14 and 28 for predicting respiratory outcomes.

The HCTSA model used the 3 features sp walk, sp mean, and hr entropy diff

Features Day unfavorable moderate/severe/death severe/death death

ih90 dpe 7 0.729 0.715 0.731 0.719

sp walk 7 0.761 0.724 0.734 0.675

hctsa model 7 0.778 0.754 0.757 0.747

birth weight 7 0.798 0.788 0.786 0.801

ih90 dpe 14 0.791 0.767 0.761 0.741

sp walk 14 0.797 0.763 0.738 0.689

hctsa model 14 0.800 0.777 0.762 0.765

birth weight 14 0.798 0.787 0.781 0.808

ih90 dpe 28 0.850 0.866 0.843 0.770

sp walk 28 0.851 0.860 0.834 0.779

hctsa model 28 0.849 0.857 0.831 0.758

birth weight 28 0.792 0.801 0.802 0.849

The AUC of the models in Table 4 were calculated for each respiratory outcome

from birth up to 8 weeks of life. Figure 4 shows these performance trajectory curves.
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The evolving variable importance of each of the 3 features in the HCTSA model is shown

in Figure 5. All these curves are smoothed by taking average over window of plus or

minus two days. Detailed trajectories of the physiologic features including IH events are

available for the Pre-Vent cohort (Weese-Mayer et al. 2023).

Figure 4: Trajectory of AUC by week of life for predicting respiratory outcomes.

Results are averaged over ± 2 days.

Figure 5: Importance of HCTSA features by week of life measured by drop in AUC

when variable is dropped from 3-parameter model. Results are averaged over ± 2 days.

For unfavorable outcome, the top HCTSA feature slightly outperformed IH90 DPE

at day 7 (.761 to .729) but was essentially equivalent at day 28 (.851 to .850). The
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HCTSA model increased the AUC to .778 at day 7 but did not improve performance

at day 28 (.849). Models with new HCTSA features still have a lower AUC than birth

weight alone at day 7, but catch up and surpass birth weight by day 14. By week 4

or so, all the physiologic models outperform birth weight for predicting all outcomes

except death.

The variable importance of the IH related HCTSA feature sp walk steadily increases

to day of life 28 where it is essentially the only predictor needed. The top HR metric was

only an important predictor at early ages which was likely due to the larger proportion

of infants whose bad outcome is death by any cause.

4. Discussion

A representative subset of HCTSA algorithms predicted unfavorable respiratory

outcomes in extremely preterm infants and revealed both new robust features associated

with IH events and other features for improved detection early in NICU stay. This

large multi-center cohort study validated the hypothesis that identifying algorithms by

unsupervised clustering could capture most of the predictive information in NICU HR

and SPO2 data. However, this analysis also showed that HCTSA did not outperform IH

metrics later in the NICU stay and provides additional evidence supporting IH90 DPE

as an optimal predictor of respiratory outcomes.

As with all metrics based on bedside monitoring data, there are significant practical

issues associated with implementation especially for wide-spread clinical use. The data

used in the NICU study to perform the unsupervised clustering used in this paper was

from HR and SPO2 displayed on bedside monitors every 2 seconds. The PreVent sites

had a variety of bedside monitors that displayed vital signs either once every second or

every 1024 milliseconds. To accommodate for this, data was sub-sampled every 2 seconds

at all sites before applying algorithms. For the analysis of HR, one way to minimize

variability across sites is to work directly with the interbeat RR intervals derived from

ECG waveforms. However, this often involves a significant amount of additional data

processing and management that may not be practical. As mentioned previously, SPO2

metrics including IH events can also be sensitive to the averaging time of the pulse

oximeter which can vary across vendor and NICU.

In this study, the predictive performance of the features were analyzed at a daily

level to be consistent with the PreVent study database and primary analysis. Future

work would be to look at higher resolution windows of hourly or even down to individual

10-minute records. This would also involve a closer look at individual IH events and

their correlation with sp walk and sp autocorr.

One possible limitation of this study was that the algorithms implemented in

(Niestroy et al. 2022) did not include the entire HCTSA algorithm library of over

7000 features because it was not computationally feasible to implement on such a

large data set. It is believed that the algorithms implemented were sufficient to be

a reasonable implementation of HCTSA approach and extremely useful in developing
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predictive models in NICU. Also it was not feasible to implement a much larger set

of HCTSA algorithms on the Pre-Vent cohort since the data was spread out among 5

sites which led to only calculating the 33 features. Augmenting the BAP to efficiently

compute a larger number of physiologic features to help address these issues will be

included in future analyses of the Pre-Vent cohort.
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Appendix A. Supplemental tables

Table A1: HCTSA variable names and Matlab functions available to download from

https://github.com/benfulcher/hctsa.

Feature HCTSA Variable Matlab code Output Field

hr mean HR.mean mean(x)

hr avgthresh HR.EX.MovingThreshold.a0.25.b0.1.meanq EX MovingThreshold(x,0.25,0.1) meanq

hr corrmean HR.CO.tc3.1..denom CO tc3(x,1) denom

hr std HR.std std(x)

hr cv HR.DN.cv.3 DN cv(x,3)

hr max HR.Quantile.99 DN Quantile(x,0.99)

hr min HR.ST.LocalExtrema.n100.minabsmin ST LocalExtrema(x,’n’,100) minabsmin

hr kurt HR.kurt2 kurtosis(x)

hr skew HR.skew2 skewness(x)

hr symautocorr HR.SB.TransitionMatrix23.stdcoveig SB TransitionMatrix(x,’quantile’,2,3) stdeigcov

hr surprise HR.FC.Suprise.mean FC Surprise(x) mean

hr entropy HR.SB.MotifThree.quantile.hhhh SB MotifThree(x,’quantile’) hhhh

hr wavelet HR.MF.arfit.sbc.7 MF arfit(x) sbc 7

hr probincreases HR.SB.MotifTwo.diff.uu SB MotifTwo(x,’diff’) uu

hr entropy diff HR.SB.MotifThree.diffquant.hhhh SB MotifThree(x,’diffquant’) hhhh

sp std SP.std std(x)

sp mean SP.mean mean(x)

sp avgthres SP.EX.MovingThreshold.a0.25.b0.1.meanq EX MovingThreshold(x,0.25,0.1) meanq

sp corrmean SP.CO.tc3.1..denom CO tc3(x,1) denom

hr derivative HR.SY.StdNthDer.17 SY StdNthDer(x,17)

sp min SP.ST.LocalExtrema.n100.minabsmin ST LocalExtrema(x,’n’,100) minabsmin

sp skew SP.skew2 skewness(x)

sp kurt SP.kurt2 kurtosis(x)

sp mean trim SP.DN.RemovePointsmin.0.2.mean DN RemovePoints(x,’min’,0.2) mean

sp wavelet SP.MF.arfit.sbc.7 MF arfit(x) sbc 7

sp symeigen SP.SB.TransitionMatrix22.mineig SB TransitionMatrix(x,’quantile’,2,2) mineig

sp walk SP.PH.Walkermomentum.2..sw.stdrat PH Walker(x,’momentum’,2) sw stdrat

sp autocorr SP.AutoCorr.lag.4 CO AutoCorr(x,4,’TimeDomainStat’)

sp symentropy SP.SB.MotifThree.diffquant.hhhh SB MotifThree(x,’diffquant’) hhhh

sp symbin SP.SB.TransitionMatrix21.T10 SB TransitionMatrix(x,’quantile’,2,1) T3

sp symiqr SP.SB.BinaryMethod.iqr.pstretch1 SB BinaryStats(x,’iqr’) pstretch1
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Table A2: AUC at day 7 of all individual HR and SPO2 features on increasingly bad

respiratory outcomes.

Feature Cluster unfavorable moderate/severe/death severe/death death

hr mean 1 0.546 0.564 0.576 0.624

hr corrmean 1 0.547 0.566 0.578 0.626

hr avgthresh 1 0.554 0.573 0.587 0.638

hr std 2 0.623 0.643 0.666 0.693

hr cv 2 0.613 0.629 0.651 0.668

hr max 3 0.588 0.610 0.628 0.674

hr min 4 0.490 0.500 0.493 0.517

hr skew 5 0.550 0.540 0.526 0.492

hr kurt 5 0.506 0.494 0.532 0.534

hr symautocorr 6 0.610 0.578 0.555 0.630

hr surprise 7 0.624 0.625 0.672 0.718

hr entropy 7 0.675 0.673 0.665 0.736

hr wavelet 8 0.626 0.635 0.649 0.689

hr entropy diff 9 0.689 0.706 0.709 0.765

hr probincreases 9 0.672 0.688 0.702 0.744

sp std 10 0.665 0.641 0.598 0.560

sp mean 11 0.731 0.694 0.692 0.670

sp corrmean 11 0.731 0.693 0.692 0.669

sp avgthres 11 0.735 0.699 0.700 0.678

hr derivative 12 0.601 0.598 0.611 0.651

sp min 13 0.703 0.687 0.671 0.635

sp skew 14 0.614 0.587 0.559 0.601

sp kurt 14 0.698 0.646 0.614 0.608

sp mean trim 14 0.725 0.686 0.688 0.667

sp wavelet 15 0.540 0.503 0.549 0.570

sp symeigen 16 0.718 0.683 0.648 0.609

sp autocorr 17 0.740 0.702 0.692 0.645

sp walk 17 0.761 0.724 0.734 0.675

sp symentropy 18 0.552 0.509 0.538 0.548

sp symbin 19 0.595 0.614 0.626 0.618

sp symiqr 20 0.600 0.626 0.636 0.626

xc max 0.511 0.559 0.577 0.622

xc min 0.538 0.571 0.595 0.636

ih90 count 0.696 0.679 0.637 0.604

ih90 dur 0.730 0.715 0.691 0.658

ih90 dpe 0.729 0.715 0.731 0.719

ih80 count 0.652 0.673 0.666 0.678

ih80 dur 0.671 0.692 0.688 0.704

ih80 dpe 0.672 0.685 0.677 0.710

brady count 0.612 0.631 0.613 0.542

brady dur 0.595 0.615 0.595 0.517

brady dpe 0.542 0.584 0.564 0.508
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Table A3: AUC at day 14 of all individual HR and SPO2 features on increasingly bad

respiratory outcomes.

Feature Cluster unfavorable moderate/severe/death severe/death death

hr mean 1 0.513 0.546 0.569 0.570

hr corrmean 1 0.513 0.547 0.570 0.571

hr avgthresh 1 0.522 0.558 0.581 0.587

hr std 2 0.666 0.694 0.730 0.799

hr cv 2 0.667 0.687 0.723 0.787

hr max 3 0.585 0.611 0.635 0.649

hr min 4 0.522 0.531 0.536 0.569

hr skew 5 0.615 0.575 0.536 0.498

hr kurt 5 0.525 0.521 0.575 0.610

hr symautocorr 6 0.537 0.545 0.537 0.582

hr surprise 7 0.620 0.632 0.668 0.765

hr entropy 7 0.647 0.658 0.667 0.747

hr wavelet 8 0.653 0.672 0.698 0.803

hr entropy diff 9 0.704 0.718 0.727 0.807

hr probincreases 9 0.686 0.704 0.731 0.809

sp std 10 0.653 0.634 0.560 0.534

sp mean 11 0.732 0.698 0.686 0.603

sp corrmean 11 0.731 0.696 0.687 0.603

sp avgthres 11 0.741 0.708 0.700 0.625

hr derivative 12 0.629 0.637 0.668 0.745

sp min 13 0.666 0.636 0.583 0.519

sp skew 14 0.682 0.664 0.687 0.708

sp kurt 14 0.750 0.725 0.711 0.668

sp mean trim 14 0.720 0.683 0.691 0.631

sp wavelet 15 0.540 0.559 0.614 0.712

sp symeigen 16 0.749 0.720 0.657 0.575

sp autocorr 17 0.782 0.751 0.710 0.659

sp walk 17 0.797 0.763 0.738 0.689

sp symentropy 18 0.511 0.516 0.576 0.676

sp symbin 19 0.672 0.685 0.663 0.694

sp symiqr 20 0.683 0.695 0.667 0.707

xc max 0.595 0.628 0.629 0.648

xc min 0.623 0.661 0.674 0.714

ih90 count 0.663 0.616 0.553 0.549

ih90 dur 0.742 0.699 0.647 0.554

ih90 dpe 0.792 0.767 0.761 0.741

ih80 count 0.675 0.667 0.633 0.596

ih80 dur 0.706 0.700 0.670 0.625

ih80 dpe 0.724 0.734 0.727 0.672

brady count 0.600 0.614 0.595 0.633

brady dur 0.586 0.597 0.581 0.635

brady dpe 0.536 0.549 0.538 0.641
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Table A4: AUC at day 28 of all individual HR and SPO2 features on increasingly bad

respiratory outcomes.

Feature Cluster unfavorable moderate/severe/death severe/death death

hr mean 1 0.524 0.588 0.608 0.581

hr corrmean 1 0.525 0.589 0.608 0.580

hr avgthresh 1 0.533 0.600 0.620 0.589

hr std 2 0.657 0.679 0.696 0.678

hr cv 2 0.651 0.655 0.669 0.656

hr max 3 0.604 0.664 0.681 0.657

hr min 4 0.515 0.549 0.559 0.569

hr skew 5 0.679 0.661 0.641 0.584

hr kurt 5 0.558 0.556 0.541 0.505

hr symautocorr 6 0.544 0.572 0.552 0.552

hr surprise 7 0.663 0.673 0.708 0.802

hr entropy 7 0.635 0.642 0.626 0.673

hr wavelet 8 0.645 0.679 0.694 0.685

hr entropy diff 9 0.688 0.697 0.705 0.719

hr probincreases 9 0.679 0.702 0.715 0.751

sp std 10 0.675 0.620 0.588 0.492

sp mean 11 0.772 0.754 0.748 0.768

sp corrmean 11 0.769 0.753 0.748 0.770

sp avgthres 11 0.784 0.771 0.766 0.790

hr derivative 12 0.612 0.625 0.642 0.378

sp min 13 0.655 0.595 0.577 0.543

sp skew 14 0.783 0.779 0.767 0.752

sp kurt 14 0.817 0.821 0.799 0.745

sp mean trim 14 0.765 0.750 0.759 0.790

sp wavelet 15 0.577 0.652 0.647 0.667

sp symeigen 16 0.814 0.794 0.750 0.691

sp autocorr 17 0.841 0.844 0.807 0.728

sp walk 17 0.851 0.860 0.834 0.779

sp symentropy 18 0.532 0.543 0.554 0.621

sp symbin 19 0.681 0.706 0.687 0.673

sp symiqr 20 0.704 0.728 0.705 0.687

xc max 0.606 0.652 0.648 0.590

xc min 0.634 0.673 0.665 0.616

ih90 count 0.691 0.618 0.595 0.580

ih90 dur 0.797 0.760 0.737 0.680

ih90 dpe 0.850 0.866 0.843 0.770

ih80 count 0.714 0.669 0.655 0.604

ih80 dur 0.756 0.727 0.727 0.646

ih80 dpe 0.795 0.798 0.816 0.711

brady count 0.542 0.541 0.468 0.430

brady dur 0.475 0.481 0.500 0.429

brady dpe 0.502 0.510 0.525 0.590
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Table A5: AUC at day 7, 14 and day 28 of individual clinical features on increasingly

bad respiratory outcomes.

Feature Day unfavorable moderate/severe/death severe/death death

birth weight 7 0.798 0.788 0.786 0.801

gestational age 7 0.765 0.794 0.765 0.782

fio2 7 0.763 0.733 0.736 0.696

imv 7 0.736 0.755 0.745 0.720

birth weight 14 0.787 0.780 0.781 0.808

gestational age 14 0.770 0.779 0.748 0.780

fio2 14 0.797 0.783 0.789 0.765

imv 14 0.748 0.770 0.752 0.734

birth weight 28 0.792 0.801 0.802 0.849

gestational age 28 0.776 0.807 0.776 0.833

fio2 28 0.829 0.817 0.791 0.754

imv 28 0.737 0.789 0.777 0.722
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