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Abstract: Helicobacter pylori (H. pylori) is a spiral-shaped gram-negative bacterium that causes one of the most common infections 
worldwide, affecting a significant portion of the human population. It plays a crucial role in regulating cellular activities, such as 
apoptosis, through various virulence factors, thereby contributing to the development and progression of gastrointestinal diseases 
including gastritis, ulcers, and gastric cancer. Here, we explored the complex relationship between H. pylori infection and apoptosis, 
emphasizing how H. pylori induces apoptosis via virulence factors (such as cytotoxin-associated gene A and vacuolating cytotoxin A), 
death receptor pathways, and host cell responses. Additionally, we critically examine current diagnostic strategies used to detect 
H. pylori infection and apoptosis, including non-invasive tests, invasive histopathological methods, and emerging molecular techni
ques. We assess their diagnostic value, limitations, and applicability in clinical settings, with the aim of identifying more effective 
approaches for early detection and disease monitoring.
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Introduction
Helicobacter pylori (H. pylori) is a microaerophilic gram-negative, helical bacterium1 first identified in Australian 
scientists Barry Marshall and Robin Warren studied patients with gastric ulcers in 1983, revealing their pathogenic 
roles in gastrointestinal diseases.2,3 The presence of this bacterium has profoundly altered the medical understanding of 
the etiology of gastritis and gastric ulcers.4 H. pylori flourishes under highly acidic conditions by producing urease, an 
enzyme that converts urea into ammonia and carbon dioxide, thereby enabling survival.5,6 Ammonia helps neutralize 
stomach acid, creating a slightly alkaline environment that is conducive to bacterial survival. Its spiral form and surface 
flagella allow it to navigate through thick gastric mucus, facilitating intricate biological interactions with host cells.7

Globally, the prevalence of H. pylori infection exhibits significant regional disparities influenced by economic 
development and public health conditions. Statistics indicate that the global average infection rate dropped from 
58.2% in the 1980s to 43.1% now.8 Which is primarily attributed to improved living standards, better hygiene practices, 
and the widespread use of antibiotics. In high-income countries, enhanced sanitary facilities and increased health 
awareness have significantly reduced the infection rates. Nevertheless, its prevalence continues to increase in low- and 
middle-income nations, especially across Africa, Russia, and South America.9,10 H. pylori infection is not only wide
spread, but its associated clinical hazards are also of significant concern. According to the Global Burden of Disease 
Study in 2014,9 peptic ulcer disease caused 3.5 deaths per 100,000 population in 2010. Furthermore, nearly 800,000 new 
cases of gastric cancer worldwide in 2018 were attributed to H. pylori infection.11 The persistently high prevalence of 
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H. pylori infection, along with its severe clinical consequences—particularly in endemic regions—underscores the urgent 
need for a deeper understanding of its pathogenic mechanisms, as well as the importance of early diagnosis and effective 
management.

Apoptosis, also known as programmed cell death,12 is a tightly controlled mechanism of cellular self-destruction that 
is essential for maintaining homeostasis and health. In H. Pylori infection, apoptosis is complex and dual, serving as 
a defense mechanism and promoter of pathological processes. From a defensive standpoint,13,14 apoptosis helps eliminate 
H. pylori-infected cells, thereby reducing bacterial persistence and spreading and limiting the progression of the 
infection.

Conversely, in promoting pathological processes,14 H. pylori employs a series of virulence factors,15 such as 
cytotoxin-associated gene product (CagA)16,17 and vacuolating cytotoxin (VacA),18 which directly disrupt host cell 
signaling pathways. This interference leads to significant alterations in cell structure and function, thereby triggering 
apoptosis. An increase in the apoptosis rate compromises the integrity of the gastric epithelial barrier, rendering the 
gastric mucosa more susceptible to invasion by H. pylori and other pathogens and exacerbating the severity of infection 
and inflammation.

Given the key role of apoptosis in H. pylori infection, understanding its underlying mechanisms and clinical 
implications is essential for advancing both scientific knowledge and clinical practice. This review explores the complex 
interactions between H. pylori and host cell apoptosis, focusing on bacterial virulence factors, host responses, and 
environmental influences that contribute to disease progression, including gastritis, ulcers, and gastric cancer. In addition, 
we summarize current diagnostic techniques for detecting both H. pylori infection and apoptosis and discuss the potential 
of integrated diagnostic approaches to improve early detection and guide personalized treatment strategies. Although 
each of these aspects has been studied individually, few reviews have systematically connected the molecular mechan
isms, disease associations, and diagnostic technologies into a unified framework. By bridging these dimensions, this 
review aims to provide a comprehensive perspective on H. pylori-induced apoptosis and offer insights that support 
further research and the development of more effective diagnostic and therapeutic solutions.

Apoptosis and H. Pylori
The Biological Basis and Significant Pathways of Apoptosis
Apoptosis is essential for organism development, immune system regulation, and elimination of damaged or 
abnormal cells.19,20 It involves distinct changes such as cell shrinkage, chromatin condensation, nuclear fragmenta
tion, and apoptotic body formation.21 These apoptotic cells and fragments are eventually engulfed and cleared by 
neighboring cells or macrophages, thereby maintaining tissue homeostasis and overall health. Dysregulated apop
tosis is linked to various diseases including cancer, autoimmune disorders, and neurodegenerative conditions. 
Therefore, understanding the molecular mechanisms underlying apoptosis is crucial in disease research and 
therapeutic development.22

Apoptosis is primarily mediated through two main pathways: intrinsic and extrinsic.

Intrinsic Pathway
The intrinsic (or mitochondrial) pathway is initiated by internal damage such as DNA damage, lack of growth factors, or 
mitochondrial dysfunction.23 Anoikis, a type of intrinsic apoptosis, occurs when cells lose their integrin-mediated 
attachment to the extracellular matrix. This pathway is controlled by the BCL-2 family, which includes pro-apoptotic 
(BAX, BAK, and BH3-only proteins, such as BIM, BID, BAD, NOXA, and PUMA) and anti-apoptotic proteins (BCL-2, 
BCL-xL, MCL-1, and BCL-W).24,25

In response to DNA damage or oxidative stress, pro-apoptotic BH3-specific proteins inhibit the anti-apoptotic BCL-2 
proteins, thereby activating BAX and BAK. These proteins form pores in the mitochondrial outer membrane, facilitating 
the release of pro-apoptotic factors such as cytochrome c, activating caspase 9, and activating executioner caspases 
(caspase-3 and caspase-7), resulting in apoptosis.26–28
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Extrinsic Pathway
Activation of death receptors such as Fas, TNFR1, TRAIL-R1, and TRAIL-R225 mediates the extrinsic pathway. These 
receptors have an intracellular interaction region called the death domain (DD). The Fas-FasL interaction is essential for 
the extrinsic pathway. Binding of FasL to Fas recruits the adaptor proteins FADD and caspase-8, forming the death- 
inducing signaling complex (DISC) and activating caspase-8, which subsequently triggers apoptosis.29 The extrinsic 
pathway is associated with TNF-α-mediated TNFR1 activation. Upon activation, TNFR1 forms a transient intracellular 
signaling complex known as Complex I.30 Activated TNFR1 recruits adaptor proteins such as TRADD and RIPK1 via its 
intracellular DD, further recruiting TRAF2, TRAF5, cIAP1, and cIAP2, which catalyze the polyubiquitination of 
Complex I. The LUBAC complex (comprising HOIP, HOIL1, and Sharpin) catalyzes the M1-linked ubiquitination of 
Complex I components, recruiting essential kinase complexes, such as TAK1-TAB and NEMO-IKK, thereby activating 
the NF-κB signaling pathway and promoting cell survival and inflammatory responses.

Specifically, TNFR1 activation can lead to RIPK1-dependent or RIPK1-independent apoptosis. Ubiquitination and 
phosphorylation of RIPK1 regulate its activity, and its dysregulation can promote RIPK1-dependent apoptosis (RDA). 
For instance, the loss of cIAP1, cIAP2, LUBAC, or NEMO or inhibition of TAK1, TBK1, or IKK can activate RIPK1, 
forming Complex IIa (comprising RIPK1, FADD, and caspase-8), thereby mediating caspase-8 activation and RDA.31

Mechanism of Apoptosis Induced by H. Pylori
H. pylori infection can colonize the gastric mucosal epithelium and glands. Various adhesion and virulence factors 
activate the host immune response, disrupt gastric homeostasis, and induce apoptosis, leading to gastrointestinal diseases. 
Understanding these mechanisms will elucidate the pathogenicity of H. pylori and aid in the development of new 
diagnostic and therapeutic strategies. This review summarizes the primary mechanisms by which H. pylori induces 
apoptosis, including bacterial virulence factors, death receptor pathways, and responses of the environment and host cells 
(Figure 1).

Figure 1 Schematic illustrates the cellular apoptosis responses to H. pylori infection. Created in BioRender. Smith, Z. (2025) https://BioRender.com/l5rgaq5.
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Bacterial Virulence Factors
Vacuum-Activated Cytotoxin A (VacA) 
VacA is a major virulence factor of H. pylori, forming anion-selective channels in the cell membrane that disrupt calcium 
and potassium ion balance, leading to intracellular disturbances.32–34 This disruption compromises the integrity of the 
gastric epithelial barrier, thereby increasing its permeability. Furthermore, VacA disrupts the mitochondrial membrane 
potential and activates the release of pro-apoptotic BAX proteins from the BCL-2 family, releasing cytochrome c and 
activating the mitochondrial apoptotic pathway. Repeated immune responses to VacA in host epithelial cells are crucial 
for the progression of gastritis to cancer.

Cytotoxin-Associated Gene A (CagA) 
CagA is another key virulence factor of H. pylori that affects host cells through its phosphorylated and non-phosphorylated 
forms.35,36 Once injected into host cells via the Type IV secretion system (T4SS),37 CagA can be phosphorylated by host 
cell kinases, such as Src and Abl. The phosphorylated form of CagA (p-CagA) interacts with various signaling pathways to 
induce pathogenesis. p-CagA activates SHP-2, promoting cell motility and elongation.38 It also disrupts intercellular 
junctions in epithelial cells, thereby increasing permeability. In addition, p-CagA activates the MAPK/ERK pathway, 
ultimately leading to cytoskeletal rearrangement, inflammatory responses, and apoptosis. Non-phosphorylated CagA 
disrupts intracellular signaling pathways. CagA interacts with E-cadherin, disrupting the E-cadherin–β-catenin complex 
and causing the nuclear accumulation of β-catenin, which promotes the transcription of genes linked to carcinogenesis.39 

Additionally, CagA activates the PI3K-AKT signaling pathway, directly activating β-catenin and enhancing the expression 
of pro-inflammatory cytokines such as IL-8 by activating NF-κB.40 Notably, the function and pathogenicity of CagA exhibit 
significant strain- and geography-specific differences, particularly between East Asian-type41 and Western-type strains.42 

These differences primarily lie in the structure of the EPIYA (Glu-Pro-Ile-Tyr-Ala) motifs.
The pathogenicity of CagA is closely associated with the number and type of its EPIYA motifs. East Asian-type CagA 

typically carries EPIYA-A, EPIYA-B, and EPIYA-D motifs, whereas Western-type CagA predominantly contains EPIYA-A, 
EPIYA-B, and one or more EPIYA-C motifs. Studies have shown that the EPIYA-D motif exhibits significantly higher 
phosphorylation efficiency compared to the EPIYA-C motif, which enhances the ability of East Asian-type CagA to activate 
SHP-2 phosphatase.43 Excessive activation of SHP-2 not only promotes cell migration and morphological changes but is also 
closely associated with the carcinogenesis of gastric epithelial cells.

In addition, the pathogenicity of East Asian-type CagA is further reflected in its stronger ability to disrupt signaling 
pathways. For instance, studies have revealed that East Asian-type CagA more effectively activates the MAPK/ERK and 
NF-κB pathways, thereby exacerbating the expression of pro-inflammatory cytokines (eg, IL-8), as well as cell apoptosis 
and inflammation.44 This functional enhancement may help explain the significantly higher incidence of gastric cancer in 
East Asia compared to Western regions.

Beyond the differences between East Asian-type and Western-type CagA, some studies have also observed notable 
strain-specific variations in H. pylori CagA in other regions, such as South Asia,45 the Middle East,46 and Latin 
America.47 These variants differ not only in the diversity of EPIYA motifs but also in CagA sequence variations, the 
number of phosphorylation sites, and the activation of downstream signaling pathways. Therefore, the geography- and 
strain-specific differences in CagA not only determine the virulence of H. pylori but also have a profound impact on the 
severity and type of associated diseases.

The Death Receptor Pathway
The death receptor pathway (extrinsic apoptosis pathway) is a crucial mechanism by which H. pylori induces apoptosis in 
the host cells. Following H. pylori infection, the expression of death receptors on the surface of gastric epithelial cells is 
markedly upregulated. The central death receptors include Fas, TNFR1, and TRAIL receptors (DR4 and DR5).48 

Upregulation of these receptors increases the sensitivity of cells to their corresponding ligands (FasL, TNF-α, and 
TRAIL), thereby facilitating the initiation of apoptotic signaling and inducing gastric mucosal damage.
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Environmental and Host Cell Responses
Oxidative Stress 
H. pylori infection markedly elevates intracellular reactive oxygen species (ROS) levels, including superoxide anions 
(O2⁻), hydrogen peroxide (H2O2), and hydroxyl radicals (OH·).49 ROS can damage cellular DNA, proteins, and lipids, 
compromising cellular integrity and function. Mitochondria, the primary sites of ROS production, may suffer from 
mitochondrial DNA damage and electron transport chain dysfunction, thereby creating a vicious cycle. Additionally, 
oxidative stress activates various signaling pathways, promoting apoptosis and inflammation.

Inflammatory Response 
H. pylori infection induces a robust inflammatory response in the gastric mucosa. Bacterial lipopolysaccharide (LPS) 
activates immune cells to release pro-inflammatory cytokines such as interleukin-1 beta (IL-1β), tumor necrosis factor- 
alpha (TNF-α), and interleukin-6 (IL-6).50,51 These cytokines recruit and activate additional immune cells, thereby 
intensifying the inflammation. IL-1β and TNF-α are potent inducers of apoptosis, which activate death receptors and 
initiate the extrinsic apoptotic pathway.

Autophagy 
Autophagy is a cellular mechanism that breaks down and recycles damaged organelles and proteins, thereby promoting 
cell survival under stressful conditions.52 Following H. pylori infection, autophagy acts as a protective mechanism by 
removing damaged cellular components and limiting bacterial replication. However, excessive or dysregulated autophagy 
can also lead to cell death. H. pylori can manipulate autophagy via its virulence factors. For example, VacA can induce 
autophagosome formation, whereas CagA can interfere with the maturation and function of autophagosomes. 
Overstimulation of autophagy can result in autophagic cell death, which is characterized by the extensive degradation 
of cellular components and organelles, ultimately triggering apoptosis. Additionally, defective autophagy may lead to the 
accumulation of damaged mitochondria, increase ROS production, and further promoting apoptosis.53

Disease Associations
The infection of Helicobacter pylori not only triggers a strong immune response in the host but also successfully 
achieves long-term colonization through a series of complex immune evasion mechanisms. These mechanisms lay an 
important foundation for the progression of gastric diseases. Firstly, the lipopolysaccharide (LPS) of H. pylori, char
acterized by low endotoxin activity, attenuates the activation of Toll-like receptor 4 (TLR4), significantly diminishing the 
host’s innate immune responses.54 In addition, H. pylori secretes virulence factors such as VacA and CagA, which 
directly disrupt the maturation of dendritic cells and the process of antigen presentation, thereby preventing the effective 
activation of T cells and weakening the adaptive immune system’s ability to eliminate the bacteria.55 More importantly, 
H. pylori manipulates immune cell polarization, inducing T helper cells (Th cells) to shift towards a Th2 or regulatory 
T cell (Treg) phenotype. Tregs secrete immunosuppressive cytokines, such as IL-10 and TGF-β, which further inhibit the 
activity of effector T cells and macrophages, creating an immune-tolerant environment.56,57 These mechanisms not only 
enable H. pylori to persist within the gastric mucosa but also induce chronic low-grade inflammation and immune 
dysregulation.

Due to these immune evasion strategies, H. pylori infection gradually progresses into a spectrum of gastric diseases, 
including gastritis, peptic ulcers, and even gastric cancer. The following sections will explore the specific progression of 
these diseases in greater detail.

Gastritis
Molecular Mechanisms 
H. pylori is the leading cause of chronic gastritis.58 Its virulence factors, CagA and VacA, disrupt intracellular signaling, 
induce oxidative stress, and promote epithelial cell apoptosis, resulting in mucosal damage. The World Health 
Organization (WHO) classifies H. pylori as a Group I carcinogen due to its strong association with gastric cancer and 
MALT lymphoma.59 Infection triggers an inflammatory response, with increased secretion of cytokines such as IL-1β, 
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TNF-α, and IL-6, and immune cell infiltration. Chronic H. pylori-related inflammation is considered the initial step of the 
Correa cascade, leading to gastric malignancy. The Maastricht VI/Florence Consensus highlights eradication of H. pylori 
as central for preventing gastric cancer and related complications.60

Histopathological Changes 
H. pylori gastritis is characterized histologically by infiltration of neutrophils and mononuclear cells in the gastric 
mucosa, epithelial degeneration and apoptosis, and glandular atrophy. Persistent infection can progress to atrophic 
gastritis, intestinal metaplasia, and dysplasia, which are considered precancerous changes. The updated Sydney 
System, recommended by WHO and international guidelines, standardizes the assessment and grading of these lesions.61

Clinical Implications 
H. pylori infection is often asymptomatic but may cause nonspecific symptoms such as epigastric discomfort or nausea. 
Chronic infection weakens the gastric barrier, increasing the risk of peptic ulcers, MALT lymphoma, and gastric cancer. 
Since 1994, WHO has identified H. pylori as the main cause of gastric cancer, with an estimated global infection burden 
of around 440 million people, especially in developing countries.62 The American College of Gastroenterology (ACG) 
guidelines recommend testing and eradication therapy for symptomatic or high-risk individuals, such as those with 
a family history of gastric cancer or atrophic gastritis.63

Ulcers
Molecular Mechanisms 
H. pylori is one of the primary etiological factors of gastric ulcers. According to WHO and epidemiological studies, 
approximately 60%–80% of gastric ulcers worldwide are associated with H. pylori infection, with even higher rates 
observed in developing countries (eg, around 70% in China).64 The development of ulcers arises from an imbalance 
between gastric mucosal defense mechanisms (such as the mucus barrier) and aggressive factors (such as gastric acid and 
pepsin). H. pylori, through virulence factors like CagA and VacA, increases the generation of reactive oxygen species 
(ROS), promotes the release of pro-inflammatory cytokines such as IL-1β and TNF-α, and induces apoptosis of gastric 
epithelial cells. These processes collectively weaken the mucosal barrier, ultimately leading to ulcer formation.

Histopathological Changes 
H. pylori-associated gastric ulcers are characterized by deep mucosal necrosis, fibrosis, and granulation tissue formation at 
the base of the ulcer, often accompanied by marked infiltration of neutrophils and mononuclear cells (including lympho
cytes and plasma cells). There is increased epithelial cell apoptosis, significant glandular destruction, and proliferative 
repair with chronic inflammation observed at the ulcer margins. Pathological assessment commonly employs the updated 
Sydney System and staging with OLGA/OLGIM systems may be used to evaluate the risk of malignant transformation.65

Clinical Implications 
Clinically, gastric ulcers typically present with symptoms such as epigastric pain and dyspepsia, while severe cases may 
develop complications including gastrointestinal bleeding or perforation. H. pylori infection significantly elevates the risk 
of ulcer recurrence, with recurrence rates reaching 50%–80% in cases where the infection is not eradicated. The 
Maastricht VI/Florence Consensus (2022) recommends a 14-day bismuth-containing quadruple therapy or other eradica
tion regimens, which can reduce ulcer recurrence rates to 5%–10%.66

Gastric Cancer
Molecular Mechanisms 
According to the WHO International Agency for Research on Cancer (IARC), about 89% of non-cardia gastric cancers 
worldwide are linked to H. pylori (IARC, 2012).67–69 H. pylori virulence factors (eg, CagA, VacA) induce chronic 
oxidative stress and inflammation, leading to epithelial cell injury, apoptosis, and increased DNA damage. Chronic 
infection promotes genetic mutations, genomic instability, and impairs autophagy, all of which contribute to malignant 
transformation.
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Histopathological Changes 
H. pylori-associated gastric cancer typically follows the Correa cascade, progressing from chronic gastritis to atrophic 
gastritis, intestinal metaplasia, dysplasia, and finally adenocarcinoma. Key histological features include glandular 
distortion, marked cellular atypia, and tumor invasion into deeper layers, often with stromal and inflammatory cell 
infiltration.

Clinical Implications 
Early gastric cancer is often asymptomatic; advanced cases may present with epigastric pain, weight loss, or gastro
intestinal bleeding. WHO estimates H. pylori causes around 800,000 gastric cancer cases globally (2020), especially in 
high-incidence regions like East Asia. Given this clear association, WHO and the Maastricht VI/Florence Consensus 
(2022) recommend H. pylori screening and eradication in high-risk populations as a primary preventive measure.70

Detection of H. Pylori Infection and Apoptosis
H. Pylori Infection Detection
Previous studies have shown that H. pylori infection is associated with several diseases. When detected and treated early, 
H. pylori infection can significantly prevent the onset and progression of these diseases, improve patient quality of life, 
and reduce medical costs. Currently, both conventional and innovative diagnostic techniques are effectively used to 
diagnose H. pylori infection, encompassing non-invasive71 and invasive methods, as illustrated in Figure 2. Noninvasive 

Figure 2 Commonly used H. pylori detection strategies. On the left are non-invasive methods. On the right are invasive methods. At the bottom are newly developed 
molecular biology methods applicable to both non-invasive and invasive detection. These diverse techniques provide comprehensive options for diagnosing H. pylori, 
enhancing the effectiveness of detection strategies. Created in BioRender. Smith, Z. https://BioRender.com/a62utpp.
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methods detect bacterial antigens, related antibodies, or nucleic acid sequences in bodily fluids. For example, the urea 
breath test (UBT), which detects labeled carbon dioxide in a patient’s breath to assess H. pylori urease activity, is safe, 
convenient, and well accepted by patients, making it suitable for initial screening and post-treatment evaluation, and it is 
characterized by a sensitivity of 90%–95% and a specificity of 95%–98%.60,72–75 However, it is relatively costly, may be 
influenced by the patient’s recent diet and medications, and requires specialized equipment.66 Stool antigen testing is 
relatively simple, avoids patient discomfort and risk, and has around 85%–95% sensitivity and 90%–100% specificity.76 

However, handling stool samples is inconvenient, and cross-reactivity may lead to false positives.66,77 Serological testing 
for antibodies can provide results within a few hours and is suitable for large-scale screening with 80%–95% of 
sensitivity and specificity. However, it cannot distinguish between current and past infections.66,76,78

Invasive methods involve examination of tissues obtained via gastrointestinal endoscopy. Histological examination 
can directly detect the presence of H. pylori with 80%–95% sensitivity and 98%–100% specificity,79,80 but causes 
significant discomfort to patients and is highly dependent on the quality and location of the sample. Bacterial culture 
methods with 80%–95% sensitivity and 98%–100% specificity and can be used to confirm H. pylori infection for clinical 
treatment; however, they require long culture times, stringent culture conditions, high costs, and complex operations.80–82 

Rapid urease tests are quick and straightforward, providing results within an hour with 80%–95% sensitivity and 80%– 
100% specificity; however, their sensitivity is affected by the sample size and bacterial load, leading to potential false 
positives.80,83–85 Finally, molecular biology methods applicable to both non-invasive and invasive testing, such as PCR 
techniques for analyzing H. pylori DNA and high-throughput sequencing technologies (NGS) with quite high sensitivity 
and specificity,86–88 can comprehensively analyze the H. pylori genome in samples, providing detailed genetic informa
tion and antibiotic resistance analysis.89–91 These methods enhance the sensitivity of traditional detection techniques and 
offer more precise diagnostic tools, facilitating early detection and treatment of H. pylori infection. The relevant details 
are presented in Table 1.

Table 1 Recent H. Pylori Infection Detection Method Summary

Diagnostic Methods Principle Advantages Disadvantages Sensitivity Specificity Ref

Non-Invasive Test

Urea Breath Test (UBT) Measure the 
concentration of labeled 

carbon dioxide in the 
breath after the patient 

ingests labeled urea

Rapid diagnosis, simple 
operation, low cost, 
high specificity, non- 
invasive, high patient 

acceptance

Previous use of antibiotics, 
proton pump inhibitors, 

etc., can cause false 
negatives

90%–95% 95%–98% [74,75]

Stool antigen test (SAT) Identify the presence of 
bacterial antigens in a stool 

sample

Easy to collect 
samples, low cost, 

relatively high 
sensitivity and 

specificity, suitable for 
large-scale screening

Not applicable to all 
patients, high 

transportation condition 
requirements

85%–95% 90%–95% [76,77]

Serology Measure specific 
antibodies against the 

bacteria in the patient’s 
blood

Easy sample collection, 
rapid diagnosis, 

suitable for large-scale 
screening

Cannot distinguish past 
infection, unable to assess 

treatment efficacy

80%–95% 80%–95% [76,78]

Invasive test

Histology Stain and directly 
observe H. pylori in gastric 

biopsy samples under 
a microscope

Visualization, detailed 
information about 

gastric mucosa, 
simultaneous 

pathology assessment, 
permanent record

Time-consuming, high cost, 
operator and sample quality 

dependence

80%–95% 98%–100% [79,80]

(Continued)
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Apoptosis Detection
Apoptosis plays a crucial role in the pathogenesis of various diseases, and its detection provides deeper insights into 
disease onset and progression. Recent studies have demonstrated that the assessment of apoptotic markers—such as 
cleaved caspase-3, BAX, and BCL-2—not only reflects the extent of H. pylori-induced gastric mucosal damage but is 
also closely associated with disease severity and patient prognosis. For example, elevated expression of cleaved caspase- 
3 and higher apoptotic indices in gastric mucosal biopsies are often indicative of advanced gastritis, increased mucosal 
atrophy, and a heightened risk of gastric cancer.92 In patients with gastric cancer, a low BCL-2/BAX ratio or persistently 
high levels of apoptotic markers are generally correlated with poorer prognosis and reduced overall survival.93,94 

Moreover, patients who exhibit a significant decrease in apoptotic marker levels following H. pylori eradication therapy 
frequently experience symptom relief and histological improvement, such as resolution of inflammation and glandular 
restoration, suggesting that these markers may serve as early indicators of therapeutic response.

Therefore, the incorporation of apoptotic marker detection into clinical practice holds significant potential for risk 
stratification, prognostic assessment, and personalized treatment in H. pylori-associated gastric diseases. Currently, 
standard methods for detecting apoptosis include TUNEL staining,95 caspase activity assays,96 Western blotting97 and 
flow cytometry (as shown in Table 2).98 TUNEL staining directly observes DNA fragmentation in cells, revealing the 
degree and location of apoptosis. Its advantages include intuitive and accurate localization; however, it requires cell 
fixation and permeabilization, which makes the procedure complex. Caspase activity assays detect changes in the activity 
of critical enzymes during apoptosis and offer high specificity and sensitivity. However, this method can only indirectly 
reflect the apoptotic state and cannot provide specific information about the apoptotic cells.

Flow cytometry can accurately quantify the proportion of apoptotic cells, offering rapid and precise quantitative 
analysis. However, this method requires the preparation of single-cell suspensions, complex procedures, and expensive 
equipment. Western blotting was used to detect the expression levels of apoptosis-related proteins (such as BAX, BCL-2, 

Table 1 (Continued). 

Diagnostic Methods Principle Advantages Disadvantages Sensitivity Specificity Ref

Rapid urease test (RUT) Identify the presence of 
urease enzyme activity in 

gastric biopsy samples

Rapid diagnosis, simple 
operation, cost- 
effective, high 
specificity and 

sensitivity, on-site 
testing.

Invasive, false negatives, 
sample quality and location 

dependence, non- 
quantitative

80%–95% 80%–100% [80,84,85]

Bacteria culture Grow the bacteria from 
gastric biopsy samples in 
a controlled laboratory 

environment

Provides direct 
evidence 

of H. pylori presence, 
high specificity, allows 

for antibiotic 
susceptibility testing

Invasive, time-consuming 
culture, high cost, high 
technical requirements

80%–95% 98%–100% [80,82]

Molecular biology

PCR Amplification of specific 
H. pylori DNA fragments 
to detect targeted genes 

such as CagA, VacA

Fast, highly sensitive, 
low cost, simple 

operation, capable of 
detecting specific 

genes

Limited information, risk of 
false negatives and false 

positives, unable to 
comprehensively analyze 

resistance, invasive sampling 
may be required in some 

cases

75%~95% 95% [87,88]

NGS High-throughput 
sequencing to analyze the 
entire genome of H. pylori, 

identifying genes, 
mutations, virulence 

factors, and resistance 
markers

Comprehensive 
genomic analysis, high 

sensitivity, strong 
resistance detection 

capability, applicable to 
various sample types.

High cost, time-consuming, 
requires advanced 

technology, higher risk of 
false positives, unable to 

distinguish current infection 
from past infection

95% 95% [86]
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and Caspase-3). This method has high sensitivity and specificity and can detect multiple proteins; however, it involves 
cumbersome steps and relatively complex quantitative analysis.

Combined diagnostic methods should be considered to effectively assess the progression of H. pylori-induced apoptosis 
and to evaluate its severity. For example, combining Western blotting and PCR can simultaneously provide information on 
the expression levels of apoptosis-related proteins and direct evidence of H. pylori infection. This can aid in an in-depth study 
of the mechanisms by which H. pylori induces apoptosis. Flow cytometry and TUNEL staining can be used for quantitative 
analysis, providing accurate proportions of apoptotic cells and levels of H. pylori infection. Comprehensive application of 
these methods can improve diagnostic accuracy and facilitate the early detection of H. pylori infection and its induced 
apoptosis, providing opportunities for early intervention. Physicians can develop individualized treatment plans based on 
comprehensive detection results to improve therapeutic outcomes. However, combined methods typically require more 
complex procedures and higher equipment and reagent requirements, making them less accessible.

Future Directions
Challenges and Opportunities
Current diagnostic methods for detecting H. pylori infection and its apoptosis-inducing effects have established a solid 
foundation for clinical application. However, challenges persist in terms of sensitivity, specificity, accessibility, and 
adaptability to diverse clinical and geographical settings. Non-invasive methods, such as urea breath tests and stool 
antigen tests, are convenient but can be affected by recent antibiotic use or dietary factors, limiting their accuracy. 
Invasive methods, including histological examination and rapid urease tests, rely heavily on sample quality and technical 
expertise, making them less feasible in resource-limited settings. Specifically in low- and middle-income nations, these 
challenges are further amplified by the lack of adequate healthcare infrastructure, limited access to specialized diagnostic 
equipment, and financial constraints faced by both healthcare providers and patients. For instance, the high cost of 
molecular diagnostics and advanced imaging technologies often renders them inaccessible in these regions, despite their 
potential to improve detection accuracy. Moreover, logistical barriers, such as poor supply chain management and lack of 
maintenance for diagnostic equipment, further hinder the implementation of advanced diagnostic techniques. Addressing 
these unmet needs requires a focus on developing diagnostic solutions that prioritize affordability, simplicity, and 
adaptability to resource-constrained environments. Innovations such as low-cost point-of-care testing,99,100 multiplex 
molecular diagnostics,101 AI-driven data analysis for simplified diagnostics, and portable molecular diagnostic devices 
could provide transformative solutions for in low- and middle-income nations.

Table 2 Recent Apoptosis Detection Method Summary

Diagnostic Methods Principle Advantages Disadvantages Ref

Terminal deoxynucleotidyl 
transferase dUTP nick end 

labeling (TUNEL Assay)

Label and detect DNA strand breaks 
(hallmark of apoptosis)

High sensitivity, capable of 
detecting both early and 

late apoptotic cells

Detect non-specific DNA 
damage, false positives

[95]

Caspase Activity Assays Measure the activity of caspases, enzymes 

activated during apoptosis (eg, caspase-3, 

caspase-8, caspase-9)

High specificity, distinguish 

different apoptotic 

pathways

Indirectly reflect the apoptotic 

state, require specialized 

equipment and reagents

[96]

Western Blot Detect expression levels of apoptosis- 
related proteins (eg, Bax, Bcl-2, cleaved 

PARP)

Quantify changes in 
apoptotic protein 

expression

Time-consuming, technically 
demanding

[97]

Flow Cytometry Use fluorescent labeling to detect and 

quantify apoptotic cells

High throughput, analyze 

large numbers of cells 

quickly

Require expensive flow 

cytometry equipment and 

skilled personnel

[98]
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Emerging Trends in Research
Emerging technologies offer significant potential to improve the diagnosis of H. pylori infection and its apoptosis- 
inducing effects. For instance, loop-mediated isothermal amplification (LAMP) and NGS enable rapid and highly 
sensitive detection of H. pylori, including virulence factors such as CagA and VacA, facilitating early diagnosis and 
strain typing.102 Advances in imaging technologies, such as confocal laser endomicroscopy (CLE),103 allow the real-time 
visualization of cellular changes during infection, including apoptotic processes. These tools not only contribute to 
a more precise understanding of apoptosis mechanisms but also enable detailed evaluation of tissue damage caused by 
H. pylori infection.

The rapid development of nanotechnology has created new opportunities for H. pylori diagnosis. Owing to their high 
sensitivity and specificity, nanoparticles can be used to efficiently and cost-effectively detect H. pylori-related biomarkers 
efficiently and cost-effectively.104 Moreover, ongoing research is focusing on the development of “theragnostic” tools 
that utilize nanoparticles for targeted drug delivery while simultaneously monitoring the infection status and advancing 
precision medicine.

Artificial intelligence (AI) and machine learning have also provided innovative approaches for H. pylori diagnosis. 
These technologies can analyze complex datasets, such as genomic or multi-omics data, improving diagnostic accuracy 
and efficiency, while enabling automated diagnostic processes. CRISPR-Cas systems have recently been developed as 
novel molecular diagnostic tools capable of rapid and specific detection of H. pylori genes, further strengthening the 
capabilities of molecular diagnostics.99

Despite these advancements, several fundamental challenges remain. Patient compliance is a critical issue, particu
larly in resource-limited settings where the acceptance of new diagnostic technologies may be low. Additionally, the 
widespread adoption of these technologies in clinical practice and by the general public requires further validation. The 
regional variability of H. pylori strains also highlights the necessity of developing localized diagnostic tools tailored to 
specific strain characteristics. Finally, the lack of standardized diagnostic protocols remains a significant challenge. 
Establishing globally unified detection guidelines and technical standards is essential to ensure comparability and 
reliability of diagnostic results.

Discussion
This review systematically summarizes the molecular mechanisms by which H. pylori induces gastric mucosal cell 
apoptosis, in conjunction with the progression of related diseases such as gastritis, ulcers, and gastric cancer. It also 
provides a comprehensive analysis of both conventional and emerging diagnostic techniques for H. pylori infection and 
apoptosis. Compared to previous literature, this review focuses on the systematic integration of multiple mechanisms— 
including virulence factors such as CagA and VacA, with disease evolution, histopathological changes, and clinical 
manifestations. In addition, it offers a comparative evaluation of the clinical value, limitations, and applicable scenarios 
of various detection methods.

Future research should emphasize the combined application of multiple diagnostic approaches to comprehensively 
assess the impact of H. pylori on disease progression and to explore novel therapeutic strategies for improving clinical 
outcomes. Furthermore, efforts are needed to promote the clinical translation of research findings by incorporating 
innovative molecular detection and apoptosis marker assays into routine clinical practice, thereby enhancing early 
diagnosis and personalized treatment. Special attention should also be given to the needs of low- and middle-income 
countries, including the development of low-cost, portable, and user-friendly diagnostic methods to improve the 
screening and management of H. pylori-associated diseases, and to promote global disease prevention and health 
equity.
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