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ABSTRACT
Retinal degeneration (RD) refers to a group of blinding retinopathies leading to the progressive photo-
receptor demise and vision loss. Treatments against this debilitating disease are urgently needed.
Intraocular delivery of exosomes represents an innovative therapeutic strategy against RD. In this
study, we aimed to determine whether the subretinal delivery of RPE-derived exosomes (RPE-Exos) can
prevent the photoreceptor death in RD. RD was induced in C57BL6 mice by MNU administration.
These MNU administered mice received a single subretinal injection of RPE-Exos. Two weeks later, the
RPE-Exos induced effects were evaluated via functional, morphological, and behavior examinations.
Subretinal delivery of RPE-Exos efficiently ameliorates the visual function impairments, and alleviated
the structural damages in the retina of MNU administered mice. Moreover, RPE-Exos exert beneficial
effects on the electrical response of the inner retinal circuits. Treatment with RPE-Exos suppressed the
expression levels of inflammatory factors, and mitigated the oxidative damage, indicating that subreti-
nal delivery of RPE-Exos constructed a cytoprotective microenvironment in the retina of MNU adminis-
tered mice. Our data suggest that RPE-Exos have therapeutic effects against the visual impairments
and photoreceptor death. These findings will enrich our knowledge of RPE-Exos, and highlight the dis-
covery of a promising medication for RD.
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Introduction

Retinal degeneration (RD) is a heterogeneous group of
vision-threatening diseases that are characterized by progres-
sive photoreceptors loss. The most common forms of RD are
initiated by mutations in these genes closely related to
photoreceptor function and metabolism (Chang et al., 2002;
Scholl et al., 2016). The exact molecular pathways by which
gene mutations lead to photoreceptor death have not been
clearly characterized. Various studies employing a number of
experimental models have shed light on substantial aspects
in RD. It has been recognized that several pathological
events include apoptosis, autophagy, and necrosis, occur
during the process of RD (Boya et al., 2016). In particular, oxi-
dative stress due to the exacerbating metabolism seems to
be a significant influential factor in RD pathology. Up-regula-
tion of oxidative markers and energetic dysfunction are early
events involved in the photoreceptor death (Datta et al.,
2017). Excessive oxidative stress produces bursts of reactive
oxygen species (ROS), which will disturb the electron trans-
port chain, cause damages to mitochondria, and eventually
affects the survival of retinal neurons (Bellezza, 2018).
Furthermore, the oxidative stress is associated with

inflammatory response during retina degeneration. Oxidative
stress can activate the retinal microglia and promote the
release of inflammatory cytokines and chemokines in RD
patients as well as animal models (Rashid et al., 2018). In this
context, genetic and pharmacological strategies targeting
the oxidative stress are designed to enhance photoreceptor
survival in the degenerative retina. Researchers propose that
antioxidants may elicit a better visual prognosis for RD
patients (Limoli et al., 2020).

Retinal pigment epithelium (RPE) consists of a mono cell
layer that separates blood vessels from neural retina and
supports the survival light-sensitive photoreceptors. Due to
its special anatomical location and function, the RPE accom-
plishes a pivotal role in maintaining retinal homoeostasis
(Fuhrmann et al., 2014). RPE cells joint together via intercel-
lular tight junctions, and block these free passages of ions
and water. RPE also undertake a broad spectrum of physio-
logical functions of the retina: scavenge of reactive oxidative
species, nutrient delivery, ionic homeostasis, phagocytosis of
cell debris, and production of nutritional cytokines.
Impairments of RPE will cause excessive oxidative stress,
mitochondrial destabilization, and activation of inflammatory
response, all of which are implicated in the pathogenesis of
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RD (Ao et al., 2018). Mutations of RPE related genes would
engender a series of conditions ranging from consecutive
visual defects to severe phenotype of retinal dystrophies
(Han et al., 2014).

RPE cells are readily sustainable in laboratory culture and
suitable for cell transplantation (Nommiste et al., 2017).
Recent advances in the surgical technique and transplant-
ation instruments support the concept of RPE treatment as a
regenerative strategy. Researchers have endeavored to assess
the safety and effectiveness of RPE transplantation for RD
patients or animal models (Alexander et al., 2015). They use
a blunt needle or glass cannula to deliver either the RPE cell
suspension, or a patch of RPE graft into the subretinal space.
Although these attempts to transplant RPE into the appropri-
ate anatomical space are largely successful, the outcomes are
always far from satisfactory, because the transplantation
techniques carry the risks of immunological rejection, surgi-
cal trauma, and cause disturbance of blood–retinal barrier
(Cuevas et al., 2019). Previous studies have shown that
implantation of RPE cells cause the multilayered fibrocellular
scar, and the subsequent atrophy of photoreceptors overly-
ing the implant (Kashani et al., 2018; Stanzel et al., 2019).
Interestingly, RPE cells can secrete exosomes in a paracrine
manner to influence neighboring cells (Locke et al., 2014).
The role of exosomes in angiogenesis, apoptosis, autophagy,
and inflammation has been well established. They have been
delivered via intraocular, intranasal, intravenous, and other
systemic routes to interfere with the pathological process of
ocular diseases (Li et al., 2020).

RPE-derived exosomes (RPE-Exos) are extracellular vesicles
which contain a set of genetic materials and proteins from
their cells of origin (Biasutto et al., 2013). Due to their minus-
cule dimensions and lipid membrane, RPE-Exos can readily
pass across retinal–blood barriers and deliver therapeutic fac-
tors into lesion. Compared with cell or graft transplantation,
the subretinal delivery of RPE-Exo may cause less mechanical
disruptions, and achieve better preserved retinal architecture.
They hold promise for preventing photoreceptor loss and
maintaining visual function due to their versatile biological
activities, such as modulating immune responses, suppress-
ing inflammatory responses, prompting cell differentiation,
and inhibiting apoptotic cascades (Kannan et al., 2016; Li
et al., 2020). When exposed to oxidative stress, RPE cells
would secrete a higher quality of exosomes which are rich of
phosphorylated signaling proteins. RPE cells also secrete aB-
crystallin within exosomes upon stressed conditions, thereby
maintaining favorable retinal environment and providing
neuroprotection to neighboring cells (Sreekumar et al., 2010).
On the basis of these findings, we intend to study the RPE-
Exos induced effects on the RD models. We perform intraper-
itoneal injection in mice with a known apoptosis inducer,
MNU, to build RD models. Subsequently, RPE-Exos was
injected into the subretinal space of MNU administered mice.
Our data show that the subretinal delivery of RPE-Exos can
benefit photoreceptor survival and enhance the retinal
responsiveness of RD models. These findings will enrich our
knowledge of RPE-Exos, and highlight the discovery of an
effective medication for RD.

Materials and methods

Exosomes isolation and characterization

ARPE-19 cells were plated in a T75 culture flask and cultured
for 24 hours. When the cells reached 80% confluency, they
were rinsed twice with phosphate-buffered saline (PBS) and
incubated for 48 hours with freshly prepared complete
medium. Then, the culture supernatants were collected, and
the suspended cells were removed by centrifugation (300�g,
10min, 4 �C). The culture supernatant was subjected to
sequential centrifugation at 2000�g for 10min, 10,000�g for
30min, and 120,000�g for 70min, and then filtered with a
0.22 lm filter (Guay et al., 2019; Jiang et al., 2020). Exosomes
concentration was quantified by bicinchoninic acid protein
Assay Kit (Biorega, Tianjin, China). The final concentration of
exosomes derived from RPEs is 1.5lg/lL. A transmission
electron microscopy (TEM, JEM-1200EX, JEOL, Akishima,
Japan) was used to examine the morphology of the exo-
somes. Potential surface markers were examined by western-
blot analysis and flow cytometry assay. The extracted exo-
some preparations were stored at �80 �C and subjected to
nanoparticle tracking analysis. A clean-disposable sample
pool was chosen, and wiped with dust-free paper to ensure
that no particle adhered to the outer tube wall in the light
path. The exosomal solutions were slowly injected into the
appropriately slant sample pool to avoid air bubbles. Then,
the sample pool was put into the Nano series-Nano-ZS
instrument to examine the size distribution and particle con-
centration of these particles.

Animal modeling and drug delivery

Mice (C57/BL, age range 8–10 weeks, weighing between 21
and 25 g) were housed in the SPF animal facility (18–23 �C,
40–65% humidity). Each procedure involving animal handling
was approved by Zhengzhou People’s Hospital and adhered
to the ARVO statement for the Use of Animals in Ophthalmic
and Vision Research. Four animal groups were included in
this research: normal controls, MNU group, MNUþ vehicle
group, and MNUþ RPE-Exos group. MNU (Sigma, St. Louis,
MO; at the dose of 60mg/kg) was injected intraperitoneally
to induce RD in the mice. For treatment, the subretinal injec-
tion of RPE-Exos was performed instantly after MNU adminis-
tration. One microliter PBS (vehicle) or 1 lL RPE-Exos were
injected into the subretinal cavity. Procedures of subretinal
injection followed a previous described method (Choi et al.,
2018). Tobramycin ophthalmic ointment was applied to the
conjunctival sac after surgery. The delivered therapeutic
agents would produce bleb and partial retinal detachment
(RD) between the neuroretina and RPE layer. The partial RD
will reattach and become stable by two days post-injection
(Qi et al., 2015). Two weeks after delivery, functional and
morphological analysis was performed on these mice. In
each examination section, eight animals were used for every
animal group.
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Optokinetic behavior test

The visual responsiveness of mice was evaluated by their
optomotor responses to moving sine wave gratings
(Kretschmer et al., 2015). Briefly, stimulus gratings were pro-
jected on the wall of the machine under the control of a
computer (OptoMotry CerebralMechanics, Lethbridge,
Canada). Mice reflexively track the rotating virtual cylinders
by moving their head if they could see the gratings clearly.
The examiner could monitor the animal’s optomotor
response via an infrared television camera located at the top
of the testing box. The initial test parameters and protocols
followed the instructions of the manufactures.

Electroretinogram (ERG) examination

Mice were dark adapted overnight and were deeply anesthe-
tized by an intraperitoneal injection of ketamine (80mg/kg)
and chlorpromazine (15mg/kg, Shengda Animal
Pharmaceutical, Jilin, China). Their pupils were dilated with
tropicamide eye drops (Shenyang Xingqi, Shenyang, China).
A platinum circellus electrode was placed in connect with
the central cornea and a reference electrode was inserted
beneath the cheek mucosa. Full-field light stimulus from the
RETI port system (Roland Consult, Brandenburg, Germany)
was used to induce the ERG responses. In this study, the sco-
topic responses were documented at the light intensity of
0.5 log cd-s/m2, while photopic recordings at the light inten-
sity of 1.48 log cd-s/m2. The amplitude of a-wave was
defined as the distance from baseline to a-wave trough,
while the amplitude of b-wave was measured as the distance
between trough and peak of each waveform.

Spectral-domain optical coherence tomography
(SD-OCT)

SD-OCT examination was performed on these anesthetized
mice immediately after ERG examination. The mouse was
moved onto on plate of Micron IV imaging system (Phoenix
Research, Pleasanton, CA) after their pupils were dilated.
Examiner adjusted the position of probe to produce horizon-
tal volume scans until legible images appeared on the moni-
tor screen. In each examination, three lateral scans were
made starting 0.3mm above the optic nerve head (ONH)
meridian, at the ONH meridian and 0.3mm below ONH
meridian. A corresponding box was centered on the ONH,
and the retinal thickness was measured at eight selected
points within the scan (separated at the distance of 0.3mm)
using a software accessory kit. The obtained values were
averaged for each mouse. The retina thickness of mouse eye
was quantified by measuring the distance from the vitreal
face of GCL to the apical face of the RPE.

Multi electrode array (MEA) recording

The MED-64 system (Alpha MED Sciences, Osaka, Japan) was
used to document the topographic electrical responses of
mice (Xu et al., 2019). Briefly, retinal flat-mount patch was

placed in to the center of the electrodes array of recording
chamber. Light stimulus (with the mean intensity of
850 mcd-s/m2) was projected onto recording chip, there by
triggering off the local field potentials (LFPs) of retinal neu-
rons. Electrodes in the recording chip detected these elec-
trical activities and then transmitted them into the
computing monitor for further off-line analysis.

Histological and immunohistochemical analysis

Eyeballs were collected from euthanized mice and were fixed
in phosphate buffered paraformaldehyde (4%). These eye-
balls were then dehydrated and optimum cutting tempera-
ture (OCT)-embedded. Hematoxylin–eosin staining was
performed on the frozen sections. The nuclear layer (ONL)
thickness was measured using the ImageJ software
(Bethesda, MD). For immunohistochemistry, the retinal sec-
tions were blocked with 3% bovine serum albumin (BSA) at
37 �C for 30min, and were incubated subsequently with pri-
mary antibodies (rabbit polyclonal cone opsin antibody 1:
400, Millipore, Billerica, MA) or peanut agglutinin (PNA) con-
jugated to a Alexa Fluor 488 (1: 200, Invitrogen, Carlsbad,
CA) overnight at 4 �C. The retinal specimens were rinsed
thoroughly, and then were incubated with Cy3-conjugated
anti-rabbit IgG (1:400, Jackson ImmunoResearch Laboratories,
West Grove, PA) and DAPI at 37 �C for 30min. After washing
with PBS, these retinal sections were observed using a Zeiss
LSM 510 META microscope (Zeiss, Thornwood, NY) fitted
with Axiovision Rel. version 4.6 software (Carl Zeiss AG,
Oberkochen, Germany). All fluorescent images were captured
using identical exposure settings to ensure consistent stable
lighting throughout the image capture procedure. A back-
ground image of a blank slide was taken for each sample set
and was subtracted from the corresponding sample image.

Quantitative reverse transcription-polymerase chain
reaction (qRT-PCR)

Total RNA was extracted from microglial cells mouse retinas
using TRIzol reagent (Invitrogen, Carlsbad, CA) and reverse-
transcribed to cDNA using a PrimeScript RT reagent kit
(TaKaRa, Dalian, China). Reactions were performed with SYBR
Green Master Mix on a real-time Touch PCR detection system
(Tiangen Biotech, Reinach, Switzerland). The amplification
program consisted of polymerase activation at 95 �C for
5min and 50 cycles of denaturation at 95 �C for 1min,
annealing and extension at 59 �C for 30 seconds. Threshold
cycle efficiency corrections were calculated, and melting
curves were obtained using cDNA for each individual-gene
PCR assay. The primers sets are listed in Table 1. The relative
expression levels were normalized and quantified to obtain
the DDCT values for each sample.

Quantitative analysis of malondialdehyde concentration

A total bile acids colorimetric assay was used to measure the
retinal malondialdehyde (MDA) concentration according to
the guidance of the manufacturer’s protocol (Jiancheng
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Biotech Ltd., Nanjing, China). The MDA concentration was
expressed as nmol/g retinal protein as described previously
(Siu & To, 2002).

Statistical analysis

Data are presented as mean and standard deviation. One-
way ANOVA with Bonferroni’s post hoc analysis was used to
analyze the differences among animal groups. A p value<.05
was considered statistically significant.

Results

RPEs-exosomes characterization

These particles derived from ARPE-19 cells were examined
under electron microscopy (Figure 1(A)). These particles were
put into the ZETASIZER Nano series-Nano-ZS instrument, and
laser was projected on these samples. These particles could
refract the scattering light. The extracted particles appeared
as specific spheroidal shape with the diameters of approxi-
mately 40–100 nm (Figure 1(B)). Western blot assay was used
identify the biomarkers of these particles (Figure 1(C)). We
detected the expression of CD81 and TSG101, two bio-
markers of exosomes, in these vesicles samples. Flow cytom-
etry analysis showed that surface proteins CD63 and CD81
were expressed in these vesicles (Figure 1(D)). The positive
rates of CD63 and CD81 are 69.9% and 74.9%, respectively.
These findings suggest that these RPE-Exos were pure and
could be used for subsequent therapeutic trials.

Subretinal delivery of RPEs-exosomes retained retinal
structure integrity

The MNU was used to induce RD in mice retinas.
Histologically, by two weeks following MNU administration,
the retinal architectures of the MNU group were severely dis-
rupted without any nucleus in the ONL (Figure 2(A)). The ret-
inal morphology of the MNUþ vehicle group also underwent
terrible destruction, since no improvement was found in
these mice. Interestingly, the retinal cells of RPE-Exos treated
group were organized in well-defined layers, which were
similar to the architectures of the normal group. The mean
ONL thickness of RPE-Exos treated group was significantly

larger compared with MNU group (p< .01; n¼ 8). However,
the mean ONL thickness of the vehicle treated group was
not different from MNU group (p> .05; n¼ 8). OCT images
collected from MNU group demonstrated the complete loss
of ONL and the reduced thickness of total retinal layers
(Figure 2(B)). OCT examination of the RPE-Exos treated group
also revealed significant protective effects, seen as a thicker
total retina thickness compared with MNU group (p< .01;
n¼ 8). In general, subretinal delivery of RPE-Exos successfully
alleviated the morphological injury in degenerative retina.

Subretinal delivery of RPEs-exosomes rescued the
visual function

ERG examination was performed to check the electrophysi-
ology function of RPE-Exos treated mice. The representative
ERG waveforms afforded a comparison of the waveforms
(both scotopic and photopic phases) between the RPE-Exos
and vehicle treated mice (Figure 3(A)). ERG data demon-
strated better visual responsiveness in RPE-Exos treated mice,
while no improvement was detected in these vehicle treated
group. Quantified analysis showed that the b-wave ampli-
tude was significantly larger in RPE-Exos treated group than
that in the vehicle treated group (p< .01; n¼ 8; Figure 3(B)).
The scotopic a-wave amplitudes were significantly larger in
the MNUþ RPE-Exos group than those in the MNU group
(p< .01; n¼ 8). However, the scotopic a-wave amplitudes in
the MNUþ vehicle group were not significantly different
from those in the MNU group (p> .05; n¼ 8). Consistent
with the ERG data, optokinetic behavioral tests also showed
that RPE-Exos induced therapeutic effects on the visual activ-
ity of MNU group. Both the visual acuity and contrast sensi-
tivity in the RPE-Exos treated group were larger compared
with the MNU group (p< .01; n¼ 8; Figure 3(C)). On the
other hand, these parameters were not significantly different
between the MNUþ vehicle group and the MNU group
(p> .05; n¼ 8). Collectively, these findings suggest that sub-
retinal delivery of RPE-Exos rescued the visual function of
RD models.

Subretinal delivery of RPE-Exos rescued cone cells

Since the ERG data demonstrated critical improvement in the
photopic vision RPE-Exos treated mice, we performed immu-
nostaining experiments to examine the cone survival in these
retinas (Figure 3(D)). Extensive punctate PNA staining was
detected in the retinal sections of the RPE-Exos treated
group, indicating a substantial cone photoreceptors were
preserved by RPE-Exos treatment. In the retinal sections of
MNU group, no PNA staining was found since the outer and
inner segments of the cone photoreceptors were severely
disrupted. Furthermore, the viability of M- and S-cone sub-
types was assessed using opsin antibodies. Abundant M- and
S-cone opsin staining was found in the retinal sections of
RPEs-Exos treated group. Conversely, these cone opsin stain-
ing disappeared in the vehicle treated group. These data
indicated that the RPEs-Exos conferred extensive benefits on
the M- and S-cone photoreceptors.

Table 1. Primers sequences for mRNAs amplified in qRT-PCR.

Gene Primer sequences

Bax 50-AGCTCTGAACAGATCATGAAGACA-30 (forward)
50-CTCCATGTTGTTGTCCAGTTCATC-30 (reverse)

Bcl-2 50-GGACAACATCGCTCTGTGGATGA-30 (forward)
50-CAGAGACAGCCAGGAGAAATCAA-30 (reverse)

Caspase-3 50-ATG GGA GCA AGT CAG TGG AC-30 (forward)
50-CGT ACC AGA GCG AGA TGA CA-30 (reverse)

TNF-a 50-CCC TCA CAC TCA GAT CAT CTT CT-30 (forward)
50-GCT ACG ACG TGG GCT ACA G-30 (reverse)

IL-1b 50-AAACAGATGAAGTGCTCCTTCCAGG-30 (forward)
50-TGGAGAACACCACTTGTTGCTCCA-30 (reverse)

IL-6 50-GCAAAGGGAAACTCACCA-30 (forward)
Calpain-2 50-AACACCTGTTTGGCTTTTAG-30 (reverse)

50-CCCCAGTTCATTATTGGAGG-30 (forward)
50-GCCAGGATTTCCTCATTCAA-30 (reverse)
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Topographic quantification of the RPE-exosomes
induced protective effects

MEA recording was performed to evaluate the electrical
response of regional retina (Figure 4(A)). The mean LFPs ampli-
tude of MNU group was significantly smaller compared with
normal controls (p< .01; n¼ 8; Figure 4(B)). The mean LFPs
amplitude of vehicle group was not significantly different from
that of MNU group (p> .05; n¼ 8). Compared with MNU group,
a significant improvement of LFPs amplitude was found in the
RPE-Exos treated group (p< .01; n¼ 8). The recording field of
MEA was set into three zones according to their distances to
ONH: the central, the mid-peripheral, and the peripheral zone.
Comparison analysis detected topographic differences among
the three zones: LFPs amplitudes of central, the mid-peripheral,
and peripheral zone in the RPEs-Exos treated mice were
�18.3%, �42.4%, and �69.2% of the normal controls,

respectively. Thus, the photoreceptors in peripheral region were
more efficiently rescued by RPE-Exos treatment. Furthermore,
the spontaneous firing frequency of MNU group increased sig-
nificantly compared with normal controls (p< .01; n¼ 8; Figure
4(C)), suggesting that visual signal transmission was severely dis-
turbed in these mice. On the other hand, the increase of spon-
taneous firing frequency was relatively slighter in the RPE-Exos
treated group, suggesting that RPE-Exos treatment could
enhance the efficiency of visual signal transmission.

RPE-exosomes ameliorated the inflammatory and
apoptotic response

The relative mRNA levels of apoptotic factor and pro-inflam-
matory cytokine in retina were investigated by RT-PCR. In
comparison with normal controls, the mRNA levels of pro-

Figure 1. (A) Upper micrographs: particles derived from RPE appeared as specific spheroidal shape under electron microscopy. Bottom micrographs: the particles
of scattering light were observed using the ZETASIZER Nano series-Nano-ZS instrument. When laser is projected on these samples, these white objects can refract
the scattering light, indicating that the size of particles is uniform under dynamic light scattering. (B) Concentration and size distribution of the particles samples
derived from RPEs by NTA. The diameters of extracted particles ranged between 40 and 100 nm. (C) Western blot assay was used to identify the biomarkers of
these particles. The exosomes biomarkers CD81 and TSG101 were detected in these vesicles. (D) Flow cytometry analysis showed that surface proteins CD63 and
CD81 were expressed in these vesicles (#1 and #2 represents two replicate samples derived from RPEs).
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Figure 2. (A) RD was induced by an intraperitoneal injection of MNU. The subretinal injection of RPE-Exos was performed instantly after MNU administration.
Morphological analysis was performed 2 weeks following treatment. Retinal architecture of MNU administered mice was effective preserved by RPE-Exos treatment.
The mean ONL thickness of RPE-Exos treated group was significantly larger compared with MNU group. (B) OCT examination of the RPE-Exos treated group also
revealed significant protective effects, seen as a thicker total retina thickness compared with MNU group (ANOVA analysis followed by Bonferroni’s post hoc ana-
lysis was performed, #p< .01, for differences between groups; n¼ 8; GCL: ganglion cell layer; IPL: inner plexiform layer; OPL: outer plexiform layer; ONL: outer
nuclear layer; INL: inner nuclear layer; OS: outer segments).

Figure 3. (A) Representative ERG waveforms demonstrated better visual responsiveness in RPE-Exos treated mice compared with MNU group. (B) The a- and b-
wave amplitudes were significantly larger in RPE-Exos treated group than those in the vehicle treated group. (C) Optokinetic behavioral tests also showed that the
visual acuity and contrast sensitivity in the RPE-Exos treated group were larger compared with the MNU group. (D) Immunohistochemistry work was performed on
these retinal sections from central retina. Extensive punctate PNA staining was detected in the retinal sections of the RPE-Exos treated group. No PNA staining was
found in the retinal sections of vehicle treated group. Abundant M- and S-cone opsin staining was also found in the retinal sections of RPE-Exos treated group
(ANOVA analysis followed by Bonferroni’s post hoc analysis was performed, #p< .01, for differences between groups; n¼ 8).
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inflammatory cytokines, including IL-1b, IL-6, TNF-a, and
MCP-1 increased significantly higher in the MNU group
(p< .01; n¼ 8; Figure 5), indicating that inflammation was
involved in the pathogenesis of retina degeneration. On the
other hand, the mRNA levels of these pro-inflammatory cyto-
kines reduced significantly in the RPE-Exos treated group
than those the MNU group (p< .01; n¼ 8). The mRNA levels
of Bax, Calpain-2, and Caspase-3 decreased significantly in
RPE-Exos treated group than those in the MNU group
(p< .01; n¼ 8), whereas the mRNA level of bcl-2 increased
significantly (p< .01; n¼ 8). Endoplasmic reticulum stress and
the subsequent Ca2þ overload can activate the calcium
dependent cysteine proteases known as Calpain-2 (Cuenca
et al., 2014). Calpains-2 can work collaboratively with other
mediators to amplify the apoptotic signal. Activation of
Calpains-2 is considered an important caspase-independent
apoptotic pathway in the photoreceptor degeneration of RD
(Kanan et al., 2007; Zhang et al., 2017). Our data suggest
that RPE-Exos may rescue the photoreceptors by inhibiting
the caspase-independent apoptotic pathway. MDA is a stable
metabolite of lipid peroxidation, and the retinal level of MDA
has been examined to quantify the oxidative response (Ola

et al., 2019). Analysis of retinal MDA concentration demon-
strated a significant reduction in the RPE-Exo treated group
than that in the MNU group (p< .01; n¼ 8). These data sug-
gested that RPE-Exos therapy mitigated the oxidative stress
of degenerative retinas.

Discussion

RPE cells support the photoreceptors by releasing nano-sized
exosomes into the intercellular matrix under physiological
and pathological conditions. These RPE-Exos act as vital
mediators during intercellular communication by delivering
membrane proteins, mRNAs, and miRNAs to recipient cells
(Biasutto et al., 2013; Klingeborn et al., 2018). This study
investigates the RPE-Exos induced therapeutic effect on an
experimental RD model. We delivered RPE-Exos into the sub-
retinal space of MNU administered mice, and found that
RPE-Exos treatment alleviates the photoreceptor apoptosis,
suppresses the expression levels of inflammatory cytokine,
and enhances the visual responsiveness. The heterogeneity
of RD is challenging for any therapy. On the other hand,
each animal model has its limitation and cannot perfectly

Figure 4. (A) As shown in the MEA recording, the electrical response of retina was affected remarkably by MNU toxicity. However, the LFPs of the MNUþ RPE-Exos
group were effectively preserved. (B) Comparison analysis showed that the LFPs amplitude was significantly larger in the MNUþ RPE-Exos group than that in the
MNU group. In particular, these photoreceptors in peripheral region were more efficiently rescued by RPE-Exos treatment. (C) MNU administration also affected the
firing activities of retinal neurons, as evidenced by an elevated firing frequency in the MNU group. Conversely, the increase of spontaneous firing frequency was
relatively slighter in the MNUþ RPE-Exos group (ANOVA analysis followed by Bonferroni’s post hoc analysis was performed, #p< .01, for differences between
groups; n¼ 8).
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mimic the pathological process in human patients. In this
study, only one type of murine RD model was used to test
the efficacy of RPE-exosomes. This should be recognized as a
drawback of this study. In order to prevent the over-exagger-
ation of the RPE-exosomes induced beneficial effects, more
studies are needed to evaluate the efficiency, safety, and
technical challenges appropriately. The therapeutic effects of
RPE-Exos in this study are achieved through subretinal injec-
tion, implying that intraocular delivery approach may help
them reach the site of lesion. Typically, exosome membrane
is consolidated enough to protect their functional cargos
from external disturbances (Skotland et al., 2019). Through

this way, functional materials are transported from RPE to
host cells, leading to the production of proteins with versa-
tile biological functions. The MNU administered mouse is a
chemically induced RD model with rapidly progressive
dynamics. Typically, this animal model entirely lost ERG
amplitudes and photoreceptors one week after MNU admin-
istration (Tsubura et al., 2010). The modeling mechanism
should be ascribed to the principal DNA alkylation that is
induced by the MNU toxicity. MNU can produce 7MeG and
3MeA DNA lesions, both of which are alkyladenine DNA gly-
cosylase (Aag) substrates (Tsubura et al., 2011). The base
excision repair machinery cannot work efficiently enough

Figure 5. (A) The mRNA levels of these pro-inflammatory cytokines, including IL-1b, IL-6, TNF-a, MCP-1, reduced significantly in the RPE-Exos treated group than
those the MNU group. The mRNA levels of Bax, Caspase-3, and Calpain-2 decreased significantly in MNUþ RPE-Exos group than those in the MNU group, whereas
the mRNA level of bcl-2 increased significantly. Analysis of retinal MDA concentration demonstrated a significant reduction in the RPE-Exo treated group than that
in the MNU group, indicating that RPE-Exos can alleviate the oxidative stress in retina (ANOVA analysis followed by Bonferroni’s post hoc analysis was performed,
#p<.01, for differences between groups; n¼ 8).
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when the Aag loses its ability to function, and the photo-
receptor would die due to these DNA alterations. As the
DNA damage acts as a critical mechanism underlying the
MNU induced photoreceptor death, it is tempting to specu-
late that RPE-Exos may repair the DNA damages of photo-
receptor. Future investigation is warranted to decide
whether the RPE-Exos affects the DNA alkylation.

Progressive photoreceptor loss is the hallmark of RD
patients with different genetic backgrounds (Risenhofer
et al., 2017). Although the causative genetic mutations are
often known, the underlying mechanisms leading to photo-
receptor death remain poorly defined. Accumulating eviden-
ces show that apoptosis is a common feature of RD
pathogenesis (Doonan & Cotter, 2004). The intraocular deliv-
ery of pharmacological agent or gene vector represents a
promising therapeutic strategy against RD (Fischer, 2016;
Mead & Tomarev, 2017; He et al., 2018). As evidenced by ani-
mal and clinical trials, these therapeutic molecules could
retard the photoreceptor apoptosis, and ameliorate the
vision loss once they are delivered efficiently into the eye
(CATT Research Group et al., 2011; Athanasiou et al., 2018).
However, the enormous heterogeneity implied in RD patho-
genesis is challenging for any therapeutic approach. In this
study, we show that the subretinal delivery of RPE-Exos miti-
gates the mRNA levels of apoptotic factors. It has been
speculated that RPE-Exos may contain components influenc-
ing the caspase-mediated apoptotic cascades. Thus inhibiting
the photoreceptor apoptosis by RPE-Exos might be devel-
oped into a promising therapy for RD. Retina is characterized
by the active metabolic rate, and intense oxygen consump-
tion. Treatment with antioxidants alleviates the RD progres-
sion in patients and animal models. Herein, we show that
subretinal delivery of RPE-Exos reduces the level of oxidative
marker in retinas. It is conceivable that RPE-Exos would pro-
vide a beneficial environment for retinal neurons. When the
photoreceptors are exposed to excessive oxidative stress,
RPE-Exos can internalize to mitochondria, endoplasmic reticu-
lum, and nucleus to initiate anti-oxidative events (Locke
et al., 2014). Previous studies have shown that RPE-Exos con-
tain a myriad of aB-crystallin, a mitochondrial and cytosolic
protein with potent anti-oxidative capacity (Kannan et al.,
2016). Accordingly, RPE-Exos might act as vectors in RD ther-
apy through its potency of shuttling antioxidants.
Inflammation is also correlated with the photoreceptor death
in RD pathogenesis (Kauppinen et al., 2016). In this study, we
show that MNU toxicity can enhance the mRNA levels of
pro-inflammatory cytokines, such as TNF-a, IL-1b, and MCP-1.
The over-expression of inflammatory cytokines is also
detected in the vitreous fluid of RD patients (McMurtrey &
Tso, 2018; Massengill et al., 2018). These findings highlight
the possibility that inflammatory response happens to debili-
tate the photoreceptors regardless of the etiological cause
during RD process. It is noteworthy that modulating inflam-
matory response would alleviate the functional and morpho-
logical damages in RD (Rashid et al., 2018). Exosomes
represent an emerging therapeutic agent that provided new
insights into the manipulation of inflammatory response.
They act as immune response mediators with specific roles

in antigen presentation (Th�ery et al., 2009). Moreover, the
distinctive properties of exosomes make them appropriate
carriers for the delivery of anti-inflammatory biomolecules
(Srivastava et al., 2016). Researchers propose that exosomes
may be developed into therapeutic modalities against these
inflammation related diseases. TNF-a acts as an upstream
mediator for photoreceptor death, since it can trigger off
inflammatory response by recruiting CD11b-positive phago-
cytes and induce apoptosis by activating caspase-8
(Nakazawa et al., 2011). On the contrary, inhibition of TNF-
aexpression would up-regulate the autophagy level and
facilitate photoreceptor survival (Xie et al., 2017). MCP-1 is
cytotoxic to photoreceptor cells since it can recruit and acti-
vate the macrophages and microglia (Nakazawa et al., 2007).
IL-1b is another mediator of inflammatory response which
exerts neurotoxic effects on photoreceptors (Yoneda et al.,
2001). The exact mechanism by which RPE-Exos exert these
beneficial effects remains to be elucidated. Retinal glia cells
such as microglia, astrocytes, and M€uller cells, can provide
essential metabolic and structural support to photoreceptors,
and control the composition of the surrounding microenvir-
onment (Massengill et al., 2018). Once these glia cells are
activated by external stimulus, they would fulfill macrophage
function, and release inflammatory factors. These factors
would exacerbate neuroinflammation and hasten retinal neu-
ron death (Cuenca et al., 2014). An increase in pro-inflamma-
tory cytokine levels is a hallmark of various RD animal
models (Zeng et al., 2005; Rashid et al., 2019). Therefore,
inflammatory response is secondary to initial injury following
the MNU administration. Under acute conditions, an inflam-
matory response triggered by retinal microglia promotes
neuroprotection, and only prolonged exposure leads to
excessive amounts of proinflammatory factors that in turn
cause exacerbated tissue injury (Rashid et al., 2019).
Accordingly, RPE-Exos may not even have a direct anti-
inflammatory effect, simply because fewer cells in the treated
retinas have undergone degenerative processes. Further
studies are necessary to decide whether the RPE-Exos can
inhibit the inflammatory response.

Cone photoreceptor is charge of visual acuity and color
vision of mammal. The impaired color/contrast sensitivity
due to the progressive of cone photoreceptors is a critical
event in RD pathology (Liutkevi�cien _e et al., 2014). Mouse ret-
ina has two cone populations that can be distinguished by
the special visible light spectrum to which they are sensitive
(Allen et al., 2011; Cunea et al., 2014). The S-cones are sensi-
tive to the short wavelength (blue) light stimulus, while the
M cones are sensitive to the medium wavelengths (red) light
stimulus. Typically, the well characterized antibodies can
bind to the opsin protein in outer segments, thereby distin-
guishing the two cone populations (Narayan et al., 2019). We
show that both the M- and S-cone photoreceptors are res-
cued by RPE-Exos. These findings are consistent with immu-
nostaining assays employed the PNA which specifically labels
cone matrix sheaths. The RPE-Exos not only induce beneficial
effects on cone viability, but also yield functional benefits as
corroborated in the photopic ERG examinations. Previous
studies suggest a close relationship between rod viability
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and cone survival in degenerative retinas (Narayan et al.,
2016; Sahel & L�eveillard, 2018). An increment in the rate of
rod viability would promote a substantially longer survival of
cone. It is possible that the RPE-Exos mediated beneficial
effects on rod photoreceptors would propagate subsequently
to cone photoreceptors. In rodent retinas, cone photorecep-
tors distribute primarily as a ring in the equatorial retina,
which is different from the fovea dependence on cones in
human (Sz�el et al., 1996). Thus, the RPE-Exos induced benefi-
cial effects on cones should be further validated by clin-
ical trials.

MEA is a valuable tool to evaluate the effects of thera-
peutic agents on different locations of retina (Soto et al.,
2020). The delicate electrodes of MEA are highly sensitive to
the electrical activities of retinal neurons. In this study, we
show that RPE-Exos treatment induces regional preservation
on the retina of MNU administered mice. Typically, the MNU
induced photoreceptor degeneration is not homogeneous:
the damage in the central region is relatively more severe
than that in the peripheral region (Boudard et al., 2010).
Since the photoreceptors in the central retina are more sen-
sitive to the MNU toxicity, it is well accepted that the photo-
receptors in the peripheral regional would be more readily
rescued by therapeutic agents (Chen et al., 2016). These
topographic causes should be responsible for the differential
regional preservation by RPE-Exos.

In conclusion, we show that subretinal delivery of RPE-
Exos can ameliorate the photoreceptor loss and enhance the
visual responsiveness of MNU administered mice. RPE-Exos
confer these beneficial effects by suppressing apoptosis and
relieving the oxidative damage. RPE-Exos act as critical regu-
lator of photoreceptor apoptosis and provided a potential
therapeutic agent for retinal disorders like RD. Further inves-
tigations are necessary to determine the safety and efficiency
of RPE-Exos treatment, and to elucidate the specific cytokines
with their working mechanisms.
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