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Abstract 

Background: The identification of protein families is of outstanding practical impor-
tance for in silico protein annotation and is at the basis of several bioinformatic 
resources. Pfam is possibly the most well known protein family database, built in many 
years of work by domain experts with extensive use of manual curation. This approach 
is generally very accurate, but it is quite time consuming and it may suffer from a bias 
generated from the hand-curation itself, which is often guided by the available experi-
mental evidence.

Results: We introduce a procedure that aims to identify automatically putative protein 
families. The procedure is based on Density Peak Clustering and uses as input only 
local pairwise alignments between protein sequences. In the experiment we present 
here, we ran the algorithm on about 4000 full-length proteins with at least one domain 
classified by Pfam as belonging to the Pseudouridine synthase and Archaeosine trans-
glycosylase (PUA) clan. We obtained 71 automatically-generated sequence clusters 
with at least 100 members. While our clusters were largely consistent with the Pfam 
classification, showing good overlap with either single or multi-domain Pfam family 
architectures, we also observed some inconsistencies. The latter were inspected using 
structural and sequence based evidence, which suggested that the automatic clas-
sification captured evolutionary signals reflecting non-trivial features of protein family 
architectures. Based on this analysis we identified a putative novel pre-PUA domain 
as well as alternative boundaries for a few PUA or PUA-associated families. As a first 
indication that our approach was unlikely to be clan-specific, we performed the same 
analysis on the P53 clan, obtaining comparable results.

Conclusions: The clustering procedure described in this work takes advantage of the 
information contained in a large set of pairwise alignments and successfully identifies 
a set of putative families and family architectures in an unsupervised manner. Compari-
son with the Pfam classification highlights significant overlap and points to interesting 
differences, suggesting that our new algorithm could have potential in applications 
related to automatic protein classification. Testing this hypothesis, however, will require 
further experiments on large and diverse sequence datasets.
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Background
Conserved evolutionary modules shared by different proteins typically present some 
degree of structural and, to a lesser extent, functional similarity [1]. These modules 
are commonly called domains, and the ensemble of sequences from a set of evolu-
tionarily related domains is called a family. Identification of domains and families is 
of great importance in bioinformatics: if a protein of known sequence but unknown 
function and/or structure is annotated by a tool capable of recognizing its relation-
ship to an annotated family, or to several families organized in an architecture, one 
can hope to approximately infer from this information a possible biochemical or 
cellular role for the protein [2]. Several resources have been developed toward this 
goal, including but not limited to, Pfam [3], SMART [4], TIGRFAMs [5], PANTHER 
[6], SFLD [7], CATH-Gene3D [8], SUPERFAMILY [9] and ECOD [10]. Some data-
bases restrict themselves to specific functional categories (SMART, SFLD), phyloge-
netic groups (TIGRFAMs) or to families for which structural information is available 
(CATH-Gene3D, SUPERFAMILY, ECOD). Others aim to classify the protein sequence 
space more widely (Pfam, PANTHER). Most databases try to identify domains (evo-
lutionary, structural and/or functional units) while some build families for full-length 
protein sequences (TIGRFAM, PANTHER). All of these resources take advantage, at 
some level, of expert manual curation. While this helps increasing the quality of fami-
lies, it limits the proportion of the sequence space that can be covered by a classifica-
tion scheme. For example, Pfam residue coverage of the UniProtKB database as of 
release 04/2018 [3] was around 53% with more than 20% of all UniProtKB sequences 
lacking any type of Pfam annotation. In order to alleviate this problem, databases 
have been developed integrating classifications from several resources into a single 
platform (InterPro [11], CDD [12]).

An alternative approach to manually curated family classification is performing auto-
matic, sequence-based classification of protein regions. Automated family classification 
has a long history in protein bioinformatics and over the years has led to the develop-
ment of algorithms such as ADDA [13], COG [14], EVEREST [15], CD-HIT [16], linclust 
[17], UCLUST [18] and MCL [19], among others. Most of these methods aim to find 
conserved family architectures (i.e., full-length sequence homologs). To our knowledge 
ADDA and EVEREST are the only ones that were specifically developed to identify indi-
vidual families. EVEREST uses Pfam information to infer the general notion of ”protein 
family” via a supervised learning step [15] while the ADDA clustering algorithm uses 
elaborate models to extract information from the sequence space and define domain 
boundaries [13]. The published implementations of these two algorithms have not been 
maintained in the last years and are thus obsolete with respect to current operating 
systems. Until 2015, ADDA was used to produce Pfam-B: this is an automatically-built 
companion to the manually curated Pfam main family collection, which identifies novel 
entries not documented in Pfam-A. Between 2015 and 2020, Pfam-B was discontinued. 
Only recently, Pfam-B has been resurrected (see Pfam blog: https ://xfam.wordp ress.
com/2020/06/30/a-new-pfam-b-is-relea sed/ ). However, the fine details of the clustering 
procedure that has been adopted are, at the moment of writing, not available.

https://xfam.wordpress.com/2020/06/30/a-new-pfam-b-is-released/
https://xfam.wordpress.com/2020/06/30/a-new-pfam-b-is-released/
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Finally, algorithms based on more sophisticated concepts such as k-mers and deep 
learning have been recently developed to project full protein sequences into interpret-
able representations. As an example, [20] uses k-mers to annotate the PRX protein 
superfamily; [21] instead uses recurrent neural networks to learn from UniRef50 a 
vector representation of proteins, capturing a subset of known protein characteristics.

Our hypothesis is that, with the current size of protein sequence databases, it is 
possible in many cases to use information derived exclusively from sequence align-
ments to automatically identify protein families. Our approach is based on Density 
Peak Clustering (DPC) [22], an algorithm which clusters together data based on their 
local density in a non-parametric manner. This clustering approach is appropriate for 
protein sequence analysis since it requires estimating only the distance between the 
data points with no use of their coordinates.

In the problem of protein sequence classification the alignment score obtained 
by pairwise sequence alignment is a natural choice for defining ’closeness’ between 
sequences. However, in the task of family identification one cannot perform clus-
tering using simply the alignment score. Proteins can often contain several fami-
lies, whose ordered succession defines an architecture, e.g. -A-B- or -A-C-D-. Any 
approach aimed at finding families must be able to take into account the fact that two 
sequences can be extremely similar in a region, but totally different in the rest of the 
sequence: for example, two proteins of architecture –A–B– and –A–C–D– are simi-
lar only in region A. For the same reason, a sequence can be separately similar to two 
other sequences which are not similar at all between each other. To resolve these dif-
ficulties, we focus on clustering local pairwise alignments, and use distances between 
alignments defined considering their boundaries, rather than their score. The distance 
we use captures the difference between an alignment covering only region A, one cov-
ering only region B and a third covering both regions A-B. If there are enough align-
ments in which A and B are not covered together, a clustering algorithm such as DPC 
applied to those distances should be able, at least in principle, to recognize family A 
and family B as different objects.

We call the set of sequences where we want to identify the families the “query set”. The 
first step of the algorithm requires running BLAST [23] alignments of all the query set 
against a large database of sequences, which we call the “search set” and is roughly rep-
resented by a redundancy-reduced version of UniProtKB. Next, independently for each 
query sequence, we identify all regions that align to sequences in the search set. Query 
regions found in the alignments can be significantly smaller than the full sequence, and 
are typically many thousands, strongly overlapping with each other. We group them 
together by DPC, obtaining what we call “primary clusters”, which provide a first approx-
imation of the architecture of the query sequence, with each cluster potentially corre-
sponding to a separate domain. Primary clusters of different query sequences are then 
grouped into ‘metaclusters” (MCs) based on the number of search sequence regions they 
have in common. This step is performed once again with DPC and further MC merging. 
This corresponds to grouping together the individual query domain-like regions identi-
fied in the previous step into families. The sequence regions that form a metacluster are 
regions belonging to several hundred different proteins or more (we consider MCs of 
size > 100) which typically have a relatively high similarity between each other. This sets 
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of sequences can be used as seeds to build a Multiple Sequence Alignment (MSA) and a 
corresponding profile-HMM [24], similarly to what is done in Pfam [3].

In the experiment we perform here, we use the procedure outlined above to analyze a 
set of about 4000 full-length sequences and perform manual validation of the results by 
comparison to the Pfam annotation and to available structures. The dataset we consider, 
in particular, is constituted of sequences that contain at least one family from the Pfam 
defined Pseudouridine synthase and Archaeosine transglycosylase (PUA) clan [25]. In a 
second experiment, discussed in the final paragraph of the “Results” section, we run our 
procedure on sequences from the P53 Pfam clan [26]. In the Pfam classification, clans 
(also known as “superfamilies” in other databases) group together families that are evo-
lutionary related. Families in Pfam clans may be remotely related (possibly representing 
domains of different function) or, sometimes, evolutionarily close (i.e., sharing a sizable 
number of member regions). As of Pfam v.31, which we use throughout unless other-
wise specified, the PUA clan comprised the following 11 families (25,659 sequences in 
total): ASCH, DUF3850, EVE, LON_substr_bdg, Methyltranf_PUA, PUA, PUA_2, TruB-
C_2, TruB_C, UPF0113 and YTH. We choose the PUA clan for several reasons. PUA is a 
medium size clan, thus rendering in-depth manual analysis of results more manageable 
while still providing a rather complex set of relationships between sequences within and 
outside of the clan; moreover, extensive structural information is available for most of 
these families, which provides crucial insight for evaluating a posteriori the quality of a 
classification. Additionally, the PUA clan is well-known to us from previous studies [27]. 
We name the dataset of query proteins PUA_UR50 (more details on how it is generated 
are given in the “Methods” section). This dataset contains proteins with a large variety of 
architectures, including also numerous families which are not in the PUA clan. We will 
show that our procedure allows identifying both PUA and non-PUA families within the 
dataset.

Results
We first describe the measures we developed to compare Metaclusters (MCs) to Pfam 
families and clans; then we proceed to present in detail the results obtained.

In‑house Pfam annotation of the UniRef50 database and definition of dominant ground 

truth architecture of a metacluster

As previously mentioned, our protein database of reference is UniRef50 (v. 2017/7) pub-
lished by the UniProt consortium and obtained by reducing at 50% sequence identity 
(using CD-HIT [16]) the redundancy in the UniRefKB database. Since not all sequences 
in UniRef50 are annotated in Pfam, we are not able to use the Pfam database fam-
ily assignments directly. Instead, we run each sequence in UniRef50 against the set of 
all Pfam_A.hmm models (v. 31) using the hmmscan program from the HMMER 3.1b2 
suite [24]. We assign to each protein sequence a Pfam family architecture according to 
the models’ manually-curated gathering thresholds. In the case of multiple significant 
matches overlapping along the same protein sequence, we keep only the Pfam annota-
tion corresponding to the lowest E-value. Overlaps are calculated using start and end 
alignment positions. Note that this protocol does not account for domain nesting. We 
define the Pfam Ground Truth Architecture (GTA) pi of a region Si as the ordered set 
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of Pfam families that has overlap of at least one amino acid with Si , if any. The order 
of the families reflects their relative position along Si . For example, suppose that we 
want to determine the GTA of the region Si of protein si =Q5BH58 spanning positions 
132 to 567. Pfam annotation for Q5BH58 is as follows: PF02190 (aa 10-258), PF00004 
(aa 482-625), PF05362 (aa 706-915). In this case, the GTA of Si is represented by pi =
PF02190_PF00004. We can alternatively define the GTA in terms of Pfam clans to which 
each Pfam family is associated (in this case pi(clan) =CL0178_CL0023); again, the GTA 
is an ordered string of (clan) ids. If a family is not associated to a clan in Pfam, we use the 
family id also in the clan’s GTA. Pi is the whole region of protein si covered by the Pfam 
families of the GTA, including every residue between them (see Fig. 1). In the example 
above the Pi of Si is the interval between residue 10 and 625.

Next, we define the Pfam Dominant ground truth Architecture (we will abbreviate 
it as DA) of a metacluster as the most abundant GTA among all the sequence regions 
belonging to a metacluster. The DA can be defined at the family (using the pi s) or clan 
level (using the pi(clan)s).

Comparing metaclusters with the Pfam “ground truth”

When comparing Pfam annotations to our MC classification, one should take into 
account the following: (1) evolutionary distances between families within a Pfam clan 
can differ greatly; in particular, some families may be very closely related to each other. 
For this reason, it is often more informative to look at consistency of annotation in MCs 
at the clan level; (2) along with many full-length sequences, UniRef50 also contains 
sequence fragments. This may be relevant when comparing MC member annotations, 
especially for those MCs with a multi-domain DA. (3) Pfam classification of families and 
clans can be incomplete; as a consequence, regions in UniRef50 that are not currently 
annotated in Pfam may still belong to known Pfam families and clans.

Given a MC, we first determine its DA both at the family and at the clan level and 
we indicate with %DAF (family) and %DAC (clan) their relative frequencies among MC 
members. Hereafter, we call “DA members” those member regions for which, at the clan 
level, the GTA coincides with the DA. Next, we consider MC members that match the 
DA (again, at the clan level) only partially. While this makes sense in light of observa-
tions (2) and (3) above, it also allows for some variability in length among MC members. 
We compute the percentage of MC members with a GTA that lacks one or more of the 

Fig. 1 Schematic representation of Pfam Ground Truth Architecture (GTA) assignment to a generic protein 
region Si . In this example, the full-length protein si has the following three-family architecture: PFAAAAA + 
PFBBBBB + PFCCCCC; the aligned region of the search sequence, Si , covers (partially) only PFAAAAA and 
PFBBBBB; thus, the Pfam ground truth of Si is pi = PFAAAAA_PFBBBBB (note that a 1-residue overlap of Si with 
a family is enough for the latter to be included into the GTA); in orange we show Pi , namely the full region 
covered by the GTA families on sequence si , including residues between them
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DA clans but, at the same time, doesn’t feature any extra clan(s). We sum this percent-
age to %DAC and report it as %DACF (F = fewer); we still ask that the remaining clans 
are in the same order as in the DA. Note that MC members lacking any Pfam annotation 
are counted in %DACF. This is consistent with the idea that having no Pfam annotation 
does not imply that a region is not part of an existing Pfam clan [observation (3) above]. 
Finally, we compute the percentage of MC members with a GTA that features one or 
more Pfam clans not found in the DA but, at the same time, contains at least one of the 
original DA clans. We sum this to %DACF and call it %DACFA (A =  additional). We 
will see that the analysis of differences between these percentage scores facilitates the 
identification of MCs that may not be evolutionarily sound as well as those MCs that 
may help improving the Pfam classification by expanding family and clan membership, 
by uncovering novel domains or by pointing to potential inconsistencies in the existing 
annotation. Comparison between the DPC and Pfam classifications cannot be reduced 
to presence or absence of families and clans on MC members. Indeed, the degree of 
agreement between the boundaries of Si of the MCs’ regions and the boundaries of Pi of 
the Pfam annotations is also important. For the sake of the comparison between MC and 
Pfam family boundaries, we define:

Fred,i represents the fraction of the DA Pi that is not covered by the region Si ; vice 
versa, Fext,i is the fraction of the region Si that is not covered by the DA. We use these 
two measures to characterize boundaries of entire MCs with respect to Pfam annota-
tions by computing their average over all of the MC cluster’s DA members. We denote 
these averages as Fred and Fext.

Clustering of proteins from the PUA clan

Starting from the PUA_UR50 query dataset (see “Methods” section), our clustering 
method produces 71 MCs in total (Additional file 1: Fig. S1 for the MC size distribution). 
We find 19 MCs mapping to PUA families (Table 1) and 52 mapping to PUA associated 
families (Table 2). As previously mentioned, MCs can represent single or multi-family 
architectures and their DAs may or may not contain PUA clan families. Also, different 
MCs can map to the same Pfam family or architecture.

Evolutionary consistency of MCs

The first question we address is whether DPC-generated MCs are evolutionarily con-
sistent. In other words, we ask if MCs are formed of member sequences that share a 
core homologous region and could thus potentially be used as seeds for building pro-
tein families. In Tables  1 and  2 we report the percentage of member regions with 
a GTA that matches exactly (%DAF - family level and %DAC—clan level) or partially 
(%DACF and %DACFA) the DA of the cluster. %DAF or %DAC close to 100% indicate 
that, according to Pfam, most member sequences share a homologous core region that 

(1)Fred,i =
|Pi \ [Si ∩ Pi]|

|Pi|

(2)Fext,i =
|Si \ [Si ∩ Pi]|

|Si|
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covers all families or clans in the DA. For example, 99.7% of 1795 MC-A12_PUA mem-
ber regions are annotated in Pfam as Acetyltransf_3 (PF13302). Overall, 43.7% of MCs 
have %DAC > 95%. Differences between %DAF and %DAC can tell us to which extent 
member sequences are spread out across multiple families pertaining to the clan(s) rep-
resented in the DA. The number of Pfam families and clans and their relative weight 
within an MC can be better appreciated from the graphical representation in Fig. 2 (for 
MCs with > 500 members). For instance, MC-A3_PUA maps to several different families 
within the RING (CL0229) clan. This is not surprising given that the Pfam evolutionary 
profiles of zinc finger families within the RING clan tend to overlap (see e.g. the E-values 
of the families’ profile-profile alignments in the clan’s “Relationships” tab on the Pfam 
webserver).

When we add to %DAC all those members with a GTA matching only partially the 
DA of the MC (%DACF and, finally, %DACFA) we achieve close to full coverage in 
most MCs. Indeed, only one MC (MC-A18_PUA) has %DACFA < 90 (Fig. 3 and, again, 
Table 2).

Large percentage increases in the %DACF and %DACFA columns can point to MCs 
with the potential to increase coverage of existing Pfam families or clans. For example, 

Fig. 2 PUA_UR50 MCs versus Pfam annotation. On the x-axis, we list the 32 MCs (both PUA and non-PUA) 
with more than 500 member regions; on the y-axis we list the Pfam GTAs (family level) represented in each 
MC. We report only GTAs mapping to at least 10% of MC members and we aggregate all the remaining ones 
under the label “other”; finally, we label “UNK” MC members with no Pfam annotation. The heatmap is colored 
according to GTA fraction
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metaclusters MC-A6_PUA and MC-4_PUA feature rather large increases in %DACF 
(25.7% and 30.5%, respectively). Given that the DA of these MCs is single-domain, such 
increases correspond to the percentage of member regions lacking any annotation in 
Pfam. MC-A6_PUA DA is composed of the helicase family DEAD (PF00270). Unan-
notated MC-A6_PUA member regions are almost always found at the N-terminus of 
proteins with one or more families in the Helicase_C + HA2 + OB_NTP_bind archi-
tecture. Since this is a common Pfam architecture for the DEAD domain, unannotated 
regions in MC-A6_PUA are likely to represent yet unrecognized members of the DEAD 
family. The DA of MC-4_PUA, instead, corresponds to the ASCH domain (PUA clan), 
with about 69% of member regions carrying this Pfam annotation. While the vast major-
ity of remaining regions are not annotated in Pfam, in InterPro many carry an ASCH/
PUA-related annotation. A closer examination reveals that MC-4_PUA is constituted of 
regions that are part of the “ASC-1 proper family”, as defined in the work by Iyer et al. 
[28], in which ASCH domains were defined for the first time. The “ASC-1 proper fam-
ily” was there characterized as having a long insertion between the 3rd and 4th strand 
of the ASCH fold. Now that structures are available for this particular ASCH subfam-
ily, we can additionally recognize that the domain as originally defined was cut slightly 
short at the C-terminus, excluding a final, extra strand and short alpha-helix (see Fig. 
S2  in  Additional file  1). The presence of PDB structures for the C-terminal ASC-1 
domain of human activating signal cointegrator 1 protein (e.g. 2E5O, 5Y7D) allowed us 
to build an alignment covering the whole structural domain that the family represents. 
Using this alignment to build a profile-HMM and running it against the Reference Pro-
teomes database appears to capture a good number of yet unannotated regions. A large 
increase in %DACFA can similarly be a sign of an incomplete Pfam annotation for mem-
bers of the families in the DA. One example is likely to be MC-A8_PUA, in which several 

Fig. 3 Violin plots of the distribution of %DAF, %DAC, %DACF and %DACFA. See section Comparing 
metaclusters with the Pfam “ground truth” for definitions. a MCs generated from the PUA_UR50 dataset, b MCs 
generated from the P53_UR50 dataset. Violin plots are such that their width is proportional to the fraction of 
MCs with a given value of the respective consistency measure. We label outlier MCs for %DACFA
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member regions are likely to lack annotation for the C-terminal domain OB_NTP_bind 
- PF07717.

In other instances, percentage increases in the DACF and DACFA columns are not 
due to incomplete Pfam annotation but rather to the presence of subgroups of MC 
members featuring radically different lengths. Two such examples are MC-A14_PUA 
and MC-2_PUA (Fig. 4a, b). In these cases, differences in annotation between members 
could be easily resolved, for example, by trimming the respective MSA alignments to the 
shortest lengths. Further, there are cases in which the DA does not provide an accurate 
description of the annotation of the MC. This happens when a family has only a mar-
ginal overlap with a number of member regions and absolutely no overlap with others. 
In this case, we can have large increases in %DACF or %DACFA that are artifacts of the 
way we annotate the GTA of MC members.

One example is MC-A28_PUA where about 33% of member regions overlap with a 
small portion of family PF17125, which is located at the N-terminus and is not part of 
the DA of the metacluster. We note that in principle it would be possible for members 
counted as part of %DACFA to map to completely different, non-overlapping sections 
of the DA. These would be regions that are not homologous to each other. During our 
analysis of the PUA clan and associated families, however, we did not come across any 
such example, suggesting that these are unlikely to be common occurrences.

A quick look at Tables 1 and 2 reveals a couple of outstanding cases among all MCs 
produced. First MC-A18_PUA, which is by far the metacluster with the lowest %DACFA 
(89.6%). This indicates that > 10% of member regions carry Pfam annotation that appears 
to be incompatible with the DA of the MC; in other words, these regions would appear 
to be evolutionary unrelated to the others. The metacluster’s DA is constituted of Pfam 
family Fer4_9 (PF13187), which itself is part of the 4Fe-4S (CL0344) clan. Most families 
in this clan represent iron-sulfur cluster binding motifs (Fe-S BMs) characterized by a 
CCxxxC signature and they often feature two consecutive copies of such motif, PF13187 
being one of them. A more than 45% increase in member coverage from %DAF to %DAC 
for MC-A18_PUA indicates that Pfam annotation of MC members covers other families 
of the 4Fe-4S clan. Examples are members annotated as part of the double-motif families 

Fig. 4 Distribution of member regions’ length for MC-A14_PUA (a) and MC-2_PUA (b). For each plot, we 
show the distribution of lengths of DA regions (i.e. matching the DA exactly) (blue) and, additionally, of those 
matching the second most abundant GTA in the MC (orange); we report the percentage of members with a 
given architecture next to each violin plot (note that percentages need not sum to 100%)
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Fer4_7 (PF12838) and Fer4_10 (PF13237) as well as those annotated with two copies of 
the single motif family Fer4 (PF00037). All of the above are families with close evolution-
ary relationships within the clan. There is, however, a fraction of members that are anno-
tated as belonging to families such as Radical_SAM (PF04055) and DUF362 (PF04015) 
that are found in clans other than CL0244. What is happening in these cases, however, 
is that the MC members span Fe-S BM regions that are nested within these longer 
domains. As mentioned above, our in-house Pfam annotation protocol does not take 
into consideration nested domains. If family A spans region a to b of a protein and fam-
ily B the region a’ to b’ of the same protein with a’> a and b’ < b, region a’-b’ is assigned 
to one family only, the one with the lowest E-value, which will generally belong to the 
longest family. This is what happens for some of the MC-A18_PUA members, whereby 
regions that in Pfam are annotated as Fe-S BMs are instead annotated by our protocol as 
belonging to the family the BMs are nested within; we show one example of this in Fig. 5. 
In conclusion, we can say that the vast majority of MC-A18_PUA member sequences 
consistently represent regions spanning Fe-S BMs.

A second outstanding case is represented by MC-18_PUA. This metacluster has 
a significant number of member regions that feature extra clans not part of the DA 
represented by the PUA (PF01472) family (> 20% increase in %DACFA). While other 
clans have even larger %DACFA increases, MC-18_PUA is unique in that it is the only 
one featuring two extra non-DA clans (last column in Table 1).This would not con-
stitute a problem if the clans were added sequentially along the sequence but could 
be problematic if the two clans were found in a similar position upstream or down-
stream of the DA in different MC members. For this reason, MC-18_PUA needs to 
be analysed in detail. We start by observing that FMC

ext = 0.47 , indicating that even 
DA members typically extend well beyond their PUA domain  and into a (in this case 
N-terminal) region not annotated by Pfam. A number of other MC members, how-
ever, feature additional Pfam annotation at the N-terminus of the PUA domain: 13.6% 
feature a TGT_C2 (PF14810) domain, 8.4% a DUF1947 (PF09183) domain and, finally, 
1% a TruB_C_2 (PF16198) domain. When present, these families are well covered by 
the MC-18_PUA member sequences: 97% of TGT_C2 amino acids are covered, 67% 
of DUF1947 and 61% of TruB_C_2, respectively. Worryingly, these three families are 
not found in the same Pfam clan, that is, they are not recognized as homologous by 
the Pfam classification: DUF1947 is part of the pre-PUA (CL0668) clan that, as the 

Fig. 5 Example (protein R5WQE2) of nesting of an MC-A18_PUA region into a family of the “DUF362-like 
superfamily”—CL0471 clan. Solid-colored rectangles mark Pfam family annotations. The light red rectangle 
shows the actual region of R5WQE2 that aligns to the DUF362 profile-HMM. Note that in this specific 
case, even in the Pfam annotation nesting of Fer4_21 into DUF362 is not accounted for, resulting in two 
overlapping Pfam annotations. The yellow box marks a hit obtained using the profile-HMM derived from 
MC-A18_PUA
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Table 1 DA annotation of PUA_UR50 MCs containing PUA families

Top panel: pictorial representation of how MCs are qualitatively classified based on the overlap between DA and DA 
members (additionally see “Methods” section for the definition of these categories). In the table, for each MC, we report: the 
family-level Pfam Dominant ground truth Architecture (DA); the percentage of members featuring a DA annotation either at 
the family (%DAF) or at the clan (%DAC) level, these are what we call DA members; %DAC plus the percentage of members 
lacking one or more of the DA clans but having no additional clan’s annotation (%DACF); %DACF plus the percentage of 
members having clans outside of the DA but at least one DA clan (%DACFA); for DA members, the average extent of the 
overlap with the DA, FMC

ext  , FMC
red  ; the number of extra clans that feature in %DACFA (only those present in at least 5% of 

clan members). MCs are colored according to the overlap between DA members and DA annotation: equivalent (yellow), 
reduced (blue), extended (pink) and shifted (green)

Fig. 6 Annotation for protein Q68827 and B1L6M8. a Top: Pfam annotation for Q68827; the yellow box 
indicates a hit obtained using profile-HMMs derived from the metacluster MC-18_PUA. Bottom: Pfam 
annotation of protein B1L6M8; the yellow box indicates a hit obtained using profile-HMMs derived from the 
metacluster MC-18_PUA
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name indicates, is constituted of regions that are found N-terminal to PUA domains, 
TruB_C_2 is part of the PseudoU_synth (CL0649) clan and, finally, TGT_C2 is not 
part of any Pfam clan. We notice, however, that TGT_C2 regions are almost always 
found N-terminal to PUA domains; more importantly, alignment between repre-
sentative structures of TGT_C2 and DUF1947 reveals striking similarities (see Fig. 6 
and Additional file 1: Fig. S3) thus suggesting a common evolutionary origin for the 
two families. TGT_C2 would then represent a novel pre-PUA domain to be added to 
the Pfam clan of the same name. Interestingly, even a very sensitive profile-profile 
alignment method such as HHpred [29] appears not to be able to find a relationship 
between TGT_C2 and pre-PUA. In particular, when we ran HHpred using the Pfam 
seed multiple sequence  of family TGT_C2 against Pfam v33.1 we found no significant 
match to any of the pre-PUA clan families. The other extra family found in about 1% 

Table 2 DA annotation of PUA_UR50 MCs containing PUA associated families

MCs are labeled with “A” prefix (as “associated”) (see Table 1)
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of MC-18_PUA member regions, TruB_C_2, is instead structurally (thus evolutionar-
ily) unrelated to both DUF1947 and TGT_C2. Indeed, most MC-18_PUA alignments 
that feature TruB_C_2 have E-values of borderline significance (> 0.01) further sup-
porting the notion that these are likely to represent noise.

In summary, analysis performed using Pfam annotation suggests that the vast major-
ity of MCs are evolutionarily sound with member sequences that share between them a 
core homologous region. This core region may correspond to the DA of the metacluster 
or be longer/shorter as we will discuss more in detail in the following.

Comparison between MCs and Pfam families boundaries

Another important aspect of comparing two protein classifications entails investigating 
by how much the boundaries of the respective clusters or families differ when evalu-
ated on the same sequences. The quantities Fext

MC and Fred
MC in Tables  1  and 2 indicate 

the extent of the agreement between the boundaries of DA members and the respec-
tive Pfam annotations (these are averages over all DA members, as explained in previous 
section). To provide some qualitative insight, we classify MCs into the following four 
categories according to the agreement of their DA members with the DA Pfam family 
boundaries (see inset figure in Table 1): equivalent (both FMC

ext  and FMC
red  < 0.2 , yellow); 

reduced ( FMC
ext < 0.2 and FMC

red ≥ 0.2 , blue), extended ( FMC
ext ≥ 0.2 and FMC

red < 0.2 , pink) 
and, finally, shifted (both FMC

ext  and FMC
red  are ≥ 0.2 , green). Equivalent MCs are the clos-

est to the DA architectures in terms of their boundaries; the other categories feature 
cases that may be worthy of further inspection. MC-A29_PUA, for example, features 
member regions that typically cover only about half of the DA family tRNA (Uracil-5-)-
methyltransferase (PF05958) as annotated by Pfam in the full-length proteins they 
belong to. Structural data indicate that, in fact, Pfam family PF05958 covers two struc-
tural domains: a so-called central domain, which hosts a [Fe4S4] cluster, and a catalytic 
domain typical of SAM-dependent methyltransferases. MC-A29_PUA covers only the 
catalytic domain of the tRNA (Uracil-5-)-methyltransferase, albeit imperfectly (see 
Additional file 1: Fig. S4). In another example, the MC-18_PUA(FMC

ext = 0.47 ) metaclus-
ter we already discussed, the ’true’ DA is likely to be constituted of the double-domain 
architecture pre-PUA+PUA rather than by PUA only.

Interesting cases are constituted by MC-1_PUA and MC-17_PUA, both mapping to 
the Lon_substr_Bdg family (PF02190). While the first MC has “equivalent” status, the 
second one is a “reduced” MC mapping only to half of the domain. However, the Lon_
Substr_bdg domain contains two structural units (see Additional file 1: Fig. S5), of which 
MC-17_PUA captures only the first.

When discussing boundaries, we should not forget that some MCs feature a bi-modal 
distribution of their members’ lengths (see for example Fig. 4a, b). In these cases, the 
average measures Fext and Fred cannot capture the full complexity of boundary differ-
ences with respect to the Pfam annotation.

MCs with minimal Pfam annotation

Some MCs with single-family DA feature low %DAC and high %DACF indicating that, 
for the most part, they are constituted of member sequences that are devoid of any 
Pfam annotation; among  these are MC-A7_PUA, MC-A39_PUA and MC-A48_PUA. 
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MC-A48_PUA member regions, 92% of which are unannotated, are found in ATP-
dependent Lon protease proteins and typically cover a helical region located at the 
N-terminus of the AAA (PF00004) ATPase domain (Additional file  1: Fig. S6). This 
region could potentially be built into a short “pre-AAA” motif. MC-A7_PUA (23% 

Table 3 Member regions’ statistics for PUA_UR50 MCs

Top section: MCs containing PUA domains; bottom section, MCs containing PUA-associated domains (A-PUA, with “A” prefix). 
For each MC, we report size (i.e., number of sequence members), average and standard deviation of members’ lengths and, 
the fraction of residues (of all members) that are found in low-complexity regions (LC fraction, using the segmask software 
of the NCBI-BLAST+ suite [30]). We flag MCs (*) for which the SDL is larger than 50 amino acids (about the size of a small 
domain)

MC (PUA) Size Average 
length

SDL LC fraction MC (PUA) Size Average 
length

SDL LC fraction

1 1575 207.4 42.5 0.04 11 120 396.3 *61.8 0.04

2 862 623.1 *102.9 0.04 12 109 154.2 26.7 0.02

3 791 152.7 30.5 0.02 13 430 40.6 3.3 0.00

4 682 125.1 16.9 0.01 14 399 54.2 3.1 0.00

5 487 119.7 10.9 0.02 15 309 125.9 35.5 0.01

6 452 109.8 14.4 0.02 16 162 95.5 11.1 0.02

7 432 441.4 44.8 0.03 17 162 115.8 15.5 0.05

8 392 136.7 19.9 0.02 18 675 148.5 24.0 0.02

9 282 320.7 48.7 0.02 19 339 88.4 13.3 0.07

10 251 102.3 8.7 0.02

 MC (A-PUA) Size Average 
length

SDL LC fraction MC (A-PUA) Size Average 
length

SDL LC fraction

A1 69369 223.7 29.9 0.02 A28 1365 83.9 13.2 0.02

A2 8908 203.9 19.1 0.05 A29 615 84.5 8.4 0.04

A3 8324 49.1 5.6 0.00 A30 506 47.7 4.8 0.01

A4 4523 158.6 36.5 0.02 A31 464 99.5 10.8 0.01

A5 3559 210.2 28.7 0.03 A32 406 191.7 18.6 0.06

A6 3386 193.1 17.9 0.05 A33 340 183.3 33.4 0.02

A7 2934 102.7 12.1 0.02 A34 294 99.0 10.6 0.03

A8 2915 347.2 *76.5 0.04 A35 285 48.8 6.6 0.01

A9 2870 392.0 48.9 0.06 A36 248 59.6 7.5 0.03

A10 2735 257.3 12.6 0.02 A37 198 210.5 30.9 0.03

A11 2392 146.5 40.2 0.03 A38 1588 226.5 45.2 0.01

A12 1795 153.3 11.4 0.01 A39 691 86.7 19.7 0.00

A13 1751 235.9 25.9 0.03 A40 565 369.6 35.2 0.04

A14 986 289.8 *57.4 0.05 A41 430 339.6 36.9 0.01

A15 851 164.1 13.9 0.03 A42 359 328.7 *52.0 0.03

A16 839 193.3 26.1 0.01 A43 267 165.1 32.6 0.08

A17 700 259.4 29.3 0.03 A44 208 36.3 3.6 0.00

A18 556 46.8 5.0 0.02 A45 186 181.8 37.9 0.09

A19 452 173.0 17.0 0.02 A46 121 311.9 26.4 0.04

A20 384 189.3 32.3 0.01 A47 110 211.3 23.1 0.02

A21 193 293.9 36.0 0.02 A48 677 87.5 15.4 0.02

A22 190 114.7 13.7 0.02 A49 625 119.5 19.9 0.03

A23 172 43.0 4.2 0.00 A50 277 77.9 6.4 0.01

A24 162 60.4 4.8 0.01 A51 178 132.0 15.4 0.01

A25 146 86.6 16.1 0.04 A52 126 62.2 10.2 0.11

A26 135 216.7 12.3 0.02

A27 3181 196.9 21.1 0.02
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of unannotated members, see Fig.  3) and MC-A39_PUA (46.5%) map, respectively, to 
tetratricopeptide-like repeats or TPRs (CL0020) and Cys3His zinc-binding domains 
(CL0537) also often found in tandem repeats. Tandem repeats such as these, which are 
relatively short and often feature a high degree of divergence in sequence, are notori-
ously difficult to classify exhaustively. It is thus not surprising that many elements of 
these MCs do not carry annotation in Pfam. Note that increases of %DACFA in these 
two MCs are mostly due to the presence of members with a higher number of repeated 
domains than found in the DA. There might be scope for using these MCs as a basis to 
boost coverage of the respective clans.

Degeneracy of MCs with respect to Pfam families

In some instances, DPC produces multiple clusters that map to the same Pfam family 
or group of families. Here it is worth pointing out that we use the DPC algorithm to 
cluster alignments rather than protein sequences. This means that alignments of the 
same protein region to different proteins are treated as separate entities. Our cluster-
ing protocol tries to ensures that when two regions of the same protein of about the 
same size have a large overlap, they are classified as belonging to the same cluster. For 
overlaps that are small with respect to the length of the alignments being compared, the 
regions may end up in different MCs. One such example is represented by the trio of 
clusters MC-A30_PUA, MC-A13_PUA and MC-A49_PUA, all of which feature the same 
DA, namely, TruB_N + TruB_C_2 (PF01509+PF16198). Both of these Pfam families are 
part of the PseudoU_synth (CL0649) clan. In Fig. 7, taking as sample sequence one for 
which a structure is available, we show that although the 3 clusters share the same DA, 
the actual set of families they cover is quite different. In fact, the three MCs belongs 

Fig. 7 Annotation for protein Q57612 (2apo in pdb). a Sequence with Pfam annotation; yellow boxes 
shows the hits obtained using profile-HMMs derived from the metaclusters MC-A30_PUA, MC-A13_PUA 
and MCA-49_PUA. b Structure of 2apo PDB chain A, colored following Pfam classification in panel A and 
according to the matches with the profile-HMMs of MC-A30_PUA (aa 187-237) in yellow, MC-A13_PUA (aa 
66-271) in gold and MC-A49_PUA (aa 188-324) in dark gold
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to three different boundary categories (see Table 2): reduced (MC-A30_PUA), equiva-
lent (MC-A13_PUA) and shifted (MC-A49_PUA). Contrary to MC-A13_PUA, that truly 
corresponds to the DA families, MC-A30_PUA covers mainly TruB_C_2 with minimum 
overlap to the first family, and MC-A49_PUA covers mainly TruB_C_2, but also extends 
beyond it in a region that when annotated is reported to be part of a PUA-clan family.

In the Pfam clan, the pseudouridine synthase domain has sometimes been split into 
two families (TruB_N +TruB_C_2, PseudoU_synth_1x2, PseudoU_synth_1+DUF2344) 
or otherwise classified as a single family (PseudoU_synth_2, TruD). The difficulty for a 
consistent evolutionary classification of this domain comes primarily from two things: 
(1) the pseudouridine synthase domain appears to be formed by a tandem duplication 
the two moieties of which share often very little sequence similarity with each other (and 
only structural similarity in terms of their general topology) and (2) the two homologous 
moieties feature strand swapping and sometimes nesting of additional domains. The lat-
ter is the case for sequences in the TruD family, which in Pfam additionally covers a 
nested domain that should instead be built as a separate family outside of the CL0649 
clan (see Additional file  1: Fig. S7). Also, the boundaries of paired families such as 
TruB_N and TruB_C_2 do not seem to reflect the structural organization of the dupli-
cation very well (see red and blue regions in Additional file 1: Fig. S8). Indeed, the cur-
rent boundaries of the two families represent regions of very different structure, with 
the TruB_C_2 open and elongated structure not reminiscent of a typical structured 
domain. There is, for example, no pairwise structural alignment produced by DALI with 
default settings for the TruB_N and TruB_C_2 Pfam annotated regions of PDB structure 
3u28 A. We suggest that building a family covering the entire pseudouridine synthase 
domain would also in this case (as in, for example, PseudoU_synth_2) be the best option. 
Finally, the Pfam nomenclature of families that map to tRNApseudouridine synthase B 
proteins is quite confusing. TruB_N is the N-terminal part of a PseudoU_synth domain, 
TruB_C is a PUA domain, TruB_C_2 is the C-terminal part of a PseudoU_synth domain 
and TruB-C_2 is again a PUA domain. Although we understand family names have a 
historical relevance, a rethinking of this particular set of names may be beneficial. It is 
interesting to note that in our automatic classification the N-terminal boundary of the 
TruB_C_2 family is well matched by both MC-A30_PUA and MC-A49_PUA, highlight-
ing the differences between the two moieties of the pseudouridine synthase domain.

Coverage of the PUA clan by DPC‑generated MCs

So far, we have looked at how consistent the Pfam annotations are within the DPC-gen-
erated MCs (in other words, we looked at the accuracy of our classification). Clearly, 
it is also important to know to what extent the automatically-generated classification 
recapitulates Pfam’s coverage of the sequence space. In this section, we investigate cov-
erage of PUA clan regions within the UniRef50 database: we consider all regions that 
produce significant alignments to the MCs-derived profile-HMMs (hmmsearch run 
against PUA_UR50, sequence E-value < 0.01, Hit E-value < 0.03). We say that a MC cov-
ers a PUA region if there is at least one of the profile-HMM hits covering >= 75% or 
= 100% of it. We plot the cumulative coverage of the Pfam PUA clan when ranking MCs 
from the one that contributes the highest coverage to the one that contributes the lowest 
coverage (Fig. 8); we note that proteins are counted only once, even if covered by more 
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than one MC. It is interesting to see that coverage converges after a number of MCs that 
is roughly equivalent to the number of Pfam families in the PUA clan (11 total). We see 
that > 80% of the PUA clan regions are covered for at least 75% of their length by the top 
15 clusters. While a fraction of Pfam regions in the PUA clan is not covered by MCs, we 
should point out that most PUA-covering MCs include at least some additional regions 
not currently annotated in Pfam, which are likely to represent new clan members. The 
flattening out of the curves that we observe after 10–15 MCs reflects the fact that most 
of our 71 MCs cover PUA-associated families rather than PUA families.

Clustering of proteins from the P53‑like clan

Clustering of the PUA clan, which is described in detail in the previous sections, has 
uncovered several interesting features of the relationships between the Pfam fami-
lies involved. Our clustering procedure utilizes few adjustable parameters (“Methods” 
section) and we did not perform any systematic exploration of the parameter space. 
Rather, parameters were mostly chosen following heuristic rules from the literature, 
thus considerably limiting the risk of over-fitting. Nevertheless, we did use the PUA 
clan to tune some aspects of our procedure (e.g. thresholds for merging MCs). As a 
consequence, in this section we report on results obtained when running DPC-based 
clustering on a second Pfam clan, when all parameters have been left unchanged with 
respect to the ones used for PUA. This should provide additional evidence of the fact 
that our method could be successfully extended to the analysis of larger portions of 
the sequence space. In particular, we run our DPC procedure on the P53-like clan 
(Tables 4, 5). Overall, the results appear to be in line with the ones obtained for PUA. 
Our procedure generates 28 MCs of size > 100, of which 53.6% have %DAC > 95%. 
Only two MCs, MC-19_P53 and MC-28_P53, have %DACFA  <  98%. MC-19_P53 is 
peculiar in that the vast majority of its members lack Pfam annotation (+  95.4% in 

Fig. 8 Coverage computed on proteins in UniRef50 including at least a region of the PUA clan according to 
Pfam-A. By running the profile-HMMs derived from the metaclusters, we search for hits covering at least 75% 
or 100% of a PUA region. The graph shows the fraction of the PUA clan covered using an increasing number 
of metaclusters. After after the 15th metacluster, the fraction does not improve, because of some redundancy 
in PUA MCS, which are 19. Also, MCs appearing after the 19th do not map to a PUA clan family, and do not 
contribute to any increase in the coverage
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the %DACF column with respect to the single-domain DA). This may be explained 
by the high value of the low-complexity residue fraction in this MC ( LC = 0.58 , 
Table  4), suggesting that its member regions are unlikely to represent a structural 
domain. Additionally, low-complexity regions are more likely to align to non-homol-
ogous sequences (thus potentially explaning  %DACFA  =  95.9%). MC-28_P53 con-
tains 132 sequences, 54% of which are not annotated, 33% annotated as PF09270 
(BTD), 7% annotated as PF01833 (TIG) and, finally, 5% annotated as BTD + TIG. 
BTD is not a P53-like family, however, it is found by our clustering algorithm because 
BTD is commonly located at the C-terminus of the P53-like LAG1-DNAbind fam-
ily. Although the BTD annotation is the most present in MC-28_P53, the domain it 

Table 4 Member region’s statistics for P53_UR50 MCs (see Table 3)

MC Size Average length SDL LC fraction MC Size Average length SDL LC fraction

1 25859 185.9 30.8 0.02 16 281 126.1 13.5 0.01

2 941 171.9 26.9 0.01 17 254 68.2 7.4 0.01

3 481 279.4 30.7 0.01 18 213 45.8 2.9 0.00

4 467 465.9 *92.3 0.01 19 194 111.6 15.0 0.58

5 462 204.5 31.0 0.02 20 154 39.0 3.1 0.02

6 231 494.3 *106.3 0.02 21 145 34.0 3.5 0.01

7 231 340.8 *52.0 0.05 22 9428 207.9 17.6 0.03

8 225 191.1 29.7 0.02 23 699 135.1 21.9 0.02

9 166 475.7 *107.6 0.02 24 124 399.5 *58.8 0.03

10 163 126.0 10.4 0.01 25 203 136.3 15.9 0.01

11 110 421.4 *53.4 0.05 26 158 111.1 14.2 0.01

12 761 67.8 8.7 0.01 27 137 28.2 2.6 0.00

13 531 43.6 4.4 0.00 28 132 137.7 21.0 0.05

14 525 29.6 2.7 0.00

15 363 38.2 5.0 0.00

Table 5 DA annotation of P53_UR50 MCs (see Table 1 for column description)

Highlighted in bold MCs contain P53 domains. DA including “[...]” represent a very long repeat, which has not been reported 
entirely for formatting reasons
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represents is poorly covered. Indeed, only a few amino-acids at the C-terminus of 
BTD are found in MC-28_P53 members. On the contrary, when present, TIG regions 
are well covered. Searching the Reference Proteome dataset with a MC-28_P53 gen-
erated profile-HMM we found 2083 significant hits (hmmsearch, sequence E-value 
<  0.01, Hit E-value <  0.03). About half of these mapped to TIG domains, while the 
rest although often found C-terminal to a LAG1-DNAbind + BTD architecture are 
not annotated in Pfam. Finally, we ran MC_28-P53 profile-HMM against the PDB, 
finding as top matches yet unannotated regions located at the C-terminus of LAG1-
DNAbind + BTD architectures (see Fig. 9a–c for an example). Of these, we focused 
on SUH_HUMAN (Q06330, PDBid 3nbn_A). The region of 3nbn A aligned to the 
MC-28_P53’s profile-HMM appears to be well-structured (Fig.  9b, yellow) and it is 
structurally similar to TIG domains (Fig. 9c). In conclusion, MC-28_P53 is likely to 
represent a TIG family covering a good number of TIG domains not yet annotated in 
Pfam. Coverage of Pfam P53-like clan’s regions by P53 MCs is comparable to the one 
observed for the PUA clan (see Additional file 1: Fig. S10).

In general, in the case of the P53 clan, we notice two main differences with respect 
to the clustering of the PUA clan. First, we see what appears to be a higher degree 
of MC redundancy with respect to the Pfam classification. For example, 6 MCs have 
PF00907 as their DA and 4 MCs feature PF05224 in theirs. It should be noted, how-
ever, that in the case of PF00907 only two MCs have an average length of more than 
50aa. In fact, MC-14_P53 and MC-27_P53 have length < 30aa, which is much shorter 
than the length of the average protein domain [31]. In Additional file  1: Fig. S9 we 
show a graphical view of how the different MCs map to this Pfam family. Second, with 
respect to the PUA clan, on average, MC boundaries appear to match less well those 
of the DA families. Indeed, in Table 5 we observe several MCs with high FMC

ext  and/or 
FMC
red  . We notice, again, that this is often the case for MCs of short average length. 

Fig. 9 Annotation for protein Q06330. a Sequence Pfam annotation; the yellow box marks a hit obtained 
using the profile-HMM derived from metacluster MC-28_P53. b Pfam and MC-28_P53 annotations of a 
mapped to one of the available structures of Q06330 (PDBid 3nbn:A). Color code for families and regions 
is the same as in (A). c Structural alignment between the MC-28_P53’s annotated region of 3nbn (yellow) 
and the TIG domain of PDB structure 4hw6 (light blue). Alignment obtained with DALI pairwise online tool; 
alignment features: Z = 6.2, RMSD = 2.2, percent sequence identity = 25
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Discussion
Automatic classification of proteins into homologous regions or domains is a notori-
ously difficult problem due to the complexity of evolutionary relationships between 
proteins, which include but are not limited to the existence of multi-domain archi-
tectures, domain nesting and tandem repeats. Moreover, domain evolutionary 
divergence at the sequence level can be extremely high thus making it exceedingly 
difficult, if not impossible, to group into individual families all homologous regions. 
Finally, domain boundaries can be blurry. For these reasons, databases that attempt 
to classify protein families and domains use extensively either manual annotation 
or structural knowledge (often both). Nonetheless, unsupervised, automatic domain 
classication from sequence [13] [15] [19] is extremely relevant both to identify con-
served regions that can later be manually refined and annotated to create novel fam-
ilies and for complementing manual classification in differential domain analysis of 
large datasets with a high degree of sequence novelty (such as for example sequences 
from environmental genomics [32] [33]).

Here, we have presented a new unsupervised procedure for automatic protein 
domain classification based on Density Peak Clustering. In the proof-of-principle 
experiment presented in this work, we clustered proteins that feature domains 
from one of two separate Pfam clans (PUA and P53-like). We showed that, in most 
cases, automatically-generated metaclusters (MCs) represent single or multi-domain 
architectures which, overall, display a good agreement with the Pfam annotation. 
With respect to the presence of multi-domain MCs, we should emphasize that our 
procedure clusters evolutionary modules (using sequence similarity) rather than 
directly structural domains (see definitions in [1]). Because of this, it may be dif-
ficult for our method to split into separate MCs structural domains that are only (or 
overwhelmingly) observed in joint architectures, unless these domains are separated 
by long regions of low conservation. In the two clans we have analysed, choosing a 
number of MCs that is roughly comparable to the number of Pfam families belong-
ing to the clan provides good coverage of their member regions (Additional file  1: 
Fig. S10). We do observe, especially in the analysis of the P53-like clan, a certain 
degree of redundancy between MCs (i.e. multiple MCs mapping to the same Pfam 
family). Although it is possible that this redundancy could be significantly reduced 
by discarding short length MCs, this indicates that the MC-merging step of our pro-
cedure (see “Methods” section) could potentially be improved. With respect to the 
choice of the method’s parameters, our benchmarking experiments suggest that the 
clustering is robust within a certain range of variation in their values and, addition-
ally, of the size of the starting (query) dataset (Additional file 1: Table S1).

In general, significant differences between clans exist in terms of size, evolution-
ary divergence, complexity of architecture and structural class of their families. 
Although these diversity cannot be recapitulated in full by the analysis of only two 
Pfam clans shown here, it is worth pointing out that our clustering experiment did 
extend to numerous families outside of the PUA and P53-like clans (see Tables 2, 5). 
This is due to the fact that our method runs on full-length sequences and that about 
45% and 39% of PUA and P53-like member regions, respectively, are part of multi-
domain proteins.
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Conclusions
Overall, our procedure based on Density Peak Clustering identified interesting con-
served regions in the sets of proteins we analyzed, often in agreement with the Pfam 
classification. We have provided evidence, based on the analysis of two Pfam clans, that 
our method has potential for supporting manual annotation of protein families. While 
the method also identified a possible novel family (MC-A48_PUA), further experiments 
are required to assess its potential in domain discovery. In particular, it would be impor-
tant to test more numerous and diverse clans and, at the same time, to additionally com-
pare the clustering results with protein family classifications other than Pfam.

Methods
In the following sections we describe in detail the different steps of our clustering pro-
cedure, which consist of: producing BLAST alignments of our query (clan) database 
against UniRef50, primary clustering of alignments falling on the same query sequence, 
metaclustering of primary clusters, finally merging of metaclusters.

BLAST searches

Our database of reference throughout this work is UniRef50 (v. 07/2017). Given a Pfam 
clan, for example PUA, we generate a dataset constituted of all UniRef50 full-length 
sequences that carry a PUA clan member annotation by matching their UniProtKB 
ids with those of sequences in Pfam-A.full v.31. The dataset obtained is then named 
PUA_UR50, and contains 4083 protein sequences. With the same procedure we obtain 
P53_UR50, containing 2022 protein sequences. Next, for each sequence (query) in the 
dataset, we perform a local alignment search against the full UniRef50 database using 
NCBI BLAST (v. 2.2.30+)[23] and save all alignments with E-value < 0.1 (up to 5 mil-
lions, using the max_target_seqs option of BLAST).

We define a BLAST alignment, labeled by an index i, as:

(3)Bi =

(

qi, si,Qi,Si

)

Fig. 10 a Schematic representation of a pairwise alignment Bi = (qi , si ,Qi ,Si) . The aligned regions are 
shown in green (query) and red (search). b Representation of two different alignments (i and j) on the 
same query q0 . The aligned regions on the query are shown in green. The dark-gray portion of the protein 
represents the intersection between region Qi and region Qj , namely Qi ∩Qj ; ; the dark-gray+light grey 
region represents union of region Qi and region Qj , namely Qi ∪Qj
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where qi is the identifier of the query sequence, si is the identifier of the search sequence, 
Qi and Si are regions on, respectively, the query and the search sequence. Qi and Si rep-
resent the boundaries (start and end points) of the pairwise alignments on the query and 
on the search sequences, respectively (see Fig. 10a). Note that gaps and insertions are 
not taken into account.

Clustering of BLAST alignments

DPC [22] entails the following steps: (1) defining a distance in the space of the objects 
that are to be clustered; (2) estimating the local density of each object, namely the prob-
ability of observing other objects within a small distance; (3) selecting the objects corre-
sponding to density peaks (cluster centers) and, finally, (4) assigning of non-peak objects 
to density peaks (clustering). Here we perform two rounds of DPC. The first round 
allows us clustering alignments that cover similar regions of the query sequences (pri-
mary clusters, meant to represent domains); in the second round we group together pri-
mary clusters that share a number of overlapping alignments (metaclusters), which are 
pruned from redundancies in the merging step. Alignments belonging to metaclusters 
can then be linked back to the respective aligned sequences, thus obtaining clusters of 
protein regions, which are meant to represent families (see “Results” section).

Primary clustering

For a query q0 we write the set of all of its alignments as:

We define the distance between alignments in Bq0 as:

where |Qi ∩Qj| is the length (intended as number of residues) of the intersection 
between the segments identified by Qi and Qj , while |Qi ∪Qj| is the length of their union 
(see Fig. 10b). This distance is 0 if Bi and Bj are aligned to the same portion of the query 
q0 , that is, Qi = Qj ; while it is 1 if Qi and Qj do not overlap at all. As defined, dQ

i,j  repre-
sents a metric since it is symmetric and satisfies the triangular inequality. Using the dis-
tance in Eq. 5, we estimate the density ρi of the alignment i:

where χµ1
(x) = 1 if x < µ1 and zero otherwise. Thus, the density of an alignment Bi is 

given by the number of alignments that belong to the same set Bq0 and that are found 
at a distance less than µ1 from Bi . In the algorithm, we set µ1 = 0.2 , according to the 
rule of thumb in [22]: using this threshold the average number of neighbours closer than 
µ1 to a point is around 1 to 2% of the total number of points in the dataset. When two 
alignments with the same search sequence are such that dQ

i,j < µ1 , we retain only the 
alignment with the lowest E-value (for each query, this happens for 1% or less of the 
alignments).

(4)Bq0 = {Bi : qi = q0}

(5)dQ

i,j = 1−
|Qi ∩Qj|

|Qi ∪Qj|

(6)ρi =
∑

j

χµ1
(dQ

i,j )
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Next, following [22] we define γi = δiρi , where δi = minj:ρj>ρi d
Q

i,j  , namely the mini-
mum distance of i to a higher density point j. Then we sort the alignments according to 
decreasing values of γi , Ŵ(q0) = {γs, γs > γs+1 ∀s} . Finally we select density peaks by 
identifying a γg ∈ Ŵ(q0) such that γg−1

γg
≥ 10� &

γs−1

γs
< 10� ∀s > g & g ≤ gmax . This is 

equivalent to looking for a gap of size � between values in Ŵ(q0) (this was done by eye-
sight in [22]). We choose heuristically � = 0.5 and gmax = 20 , where gmax is the maxi-
mum number of peaks (primary clusters, see below) that we allow on a query sequence. 
The robustness of the results with respect to these parameters is discussed below. As a 
final step, we assign to each density peak all alignments that are found at a distance 
smaller than µ1 from the peak, and further away from any other peak: alignments map-
ping to a peak constitute what we call a primary cluster. Note that, generally, not all Bi 
alignments are assigned to a primary cluster: we discard the non-clustered alignments in 
the downstream analysis.

The clusters we obtain are subsets of the previously defined Bq0 set, where each subset 
includes alignments located around the same region of the query sequence. The cluster-
ing procedure we described is schematically shown in Fig. 11a, b, and two examples of 
primary clustering are shown in Fig. 12.

Metaclustering

We denote the set of alignments belonging to a primary cluster c as Bc and we call Nc the 
number of is elements.

Fig. 11 Graphical overview of the method. After running BLAST on a set of query sequences (a), alignments 
that lie on the same region of each query sequence are grouped into primary clusters (b); subsequently, 
primary clusters are “metaclustered” according to the number of search sequence alignments they share 
(c); finally, the set of metaclusters is pruned from redundancies by grouping those that share a significant 
number of search sequence regions (d)
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We define the distance between two clusters c and c0 , associated to two queries q and 
q0 as:

where dS
i,j is defined as in Eq.  5 using segments Si and Sj in place of Qi and Qj , and 

µd = 0.2 is chosen coherently with µ1 in Eq. 6. This distance is small if the number of 
alignments in the two clusters sharing the same search sequence is high.

We estimate the density ρc similarly as in Eq. 6:

where µ2 = 0.9 was also chosen following the rule of thumb in [22]. Then, similarly to 
what done in 2.2.1, we compute δc = minc′:ρc′>ρc Dc,c′ . This time, however, we use a more 
restrictive criterion for the identification of density peaks by choosing as peaks those 
primary clusters for which δc takes its maximum value of 1, and for which ρc > 1 . The 
reason for this is that different peaks in the primary cluster space should not have sig-
nificant overlaps between each other. Finally, we assign to each density peak all primary 
clusters that are found at a distance smaller than µ2 from the peak, and further away 
from any other peak; the set of primary clusters assigned to a peak constitute what we 
call a metacluster or MC. Primary clusters not assigned to any peak are discarded.

(7)Dc,c0 = 1−
1

min(Nc,Nc0)

∑

m∈Bc ,n∈Bc0

δsmsnχµd
(dS

m,n)

(8)ρc =
∑

c′

χµ2
(Dc,c0)

Fig. 12 Examples of primary clustering for two proteins in PUA_UR50, namely A0A142XZI2 (a) and Q5BH58 
(b). Thick, black lines represent the query sequences. Red lines show regions of the query that have been 
aligned by BLAST to other sequences in the PUA_UR50 dataset. The bottom part of each panel shows a 
comparison between Pfam annotation and MC clustering of the query sequences. According to Pfam, both 
A0A142XZI2 and Q5BH58, contain a LON_substr_bdg domain (a member of the PUA clan), the position 
of which is highlighted by a yellow frame. Protein Q5BH58, in addition, contains an AAA domain and a 
Lon_C domain, colored green and blue, respectively. Purple lines show the primary clusters we obtained 
automatically using the red line alignments at the top of each panel. Primary clusters are sorted from top 
to bottom according to decreasing value of their γ parameter (see “Methods” section), so that the top ones 
will most probably be cluster centers. We can see that some of the primary clusters overlap remarkably well 
with Pfam-annotated families while others either cover more than one family or overlap with only a fraction 
of a family. Also, note that in Q5BH58 no MC captures the LON_substr_bdg domain. In this particular case, 
we found that this region of Q5BH58 is a quite divergent member of the Pfam family, with both BLAST and 
phmmer finding less than 10 parwise alignments when using that portion of the protein as a query
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Merging metaclusters

The procedure described above produces at times metaclusters which share a significant 
fraction of sequences, and can therefore be considered redundant. We merge similar 
MCs by computing the quantity

where MC ′ and MC ′′ are any two metaclusters and NMC ′ and NMC ′′ is the number of 
their primary clusters. DMC ′,MC ′′ is the average of the distances between primary clusters 
contained in the two MCs. We merge all MC pairs for which DMC ′,MC ′′ < 0.9.

Filtering metaclusters’ alignments and building profile‑HMMs

A metacluster is a collection of protein regions Si . In order to reduce the level of noise 
coming from outlier sequences within an MC, from the list of all regions obtained in 
the previous section we remove those that don’t overlap with any other sequence in 
the MC. More specifically, we keep region i if it exists another region j in the same MC 
such that δsisjχµd

(dS
i,j) = 1 (cfr. Eq. 7). We additionally reduce redundancy at 95 percent 

identity using CD-HIT [16] (v4.7). MCs that at this stage contain less than 100 elements 
are removed from downstream analysis, since our approach can only identify clusters 
the population of which is large enough to form a density peak, which can be reason-
ably distinguished from the background noise. In our comparison with Pfam anno-
tation, only up to 5000 members per MC are taken into consideration; if an MC has 
> 5000 members, we select 5000 randomly to represent it. For the purpose of building 
MC-associated profile-HMMs, we further reduce MCs’ size by reducing redundancy 
at 60% (using CD-HIT [16]) and considering maximum 1000 members (if >  1000, we 
select 1000 randomly). Next, we build an MSA using MUSCLE [34] and use the MSA 
to construct a profile-HMM, using HMMER (v3.1b) [24]. We note that HMMER trims 
poorly ’populated’ N- and C-terminal regions of MSAs by considering as match states 
of the model only columns containing ≥ 50% sequences (see documentation at http://
eddyl ab.org/softw are/hmmer 3/3.1b2/Userg uide.pdf ). Although our choice of an E-value 
threshold equal 0.1 is expected to produce a certain number of false positives, the trade-
off with sensitivity means that we also gather a larger number of true positive relations. 
We expect clustering not to be affected by a small number of unrelated false positives 
(note that we perform single BLAST runs thus preventing false positive propagation at 
the alignment stage); however, the systematic misalignment of two unrelated families 
might lead to generation of erroneous clusters. Although in the experiments performed 
in this study we have not noticed any such occurrence, we cannot exclude that they will 
be observed when processing larger, more diverse sequence datasets.

Robustness of the metaclustering procedure

We test (a posteriori) the robustness of the metaclustering procedure on P53_UR50 with 
respect to small variations ( ±10% ) of the µ1 , µ2 and � parameters, and when reducing by 
half the size of the query sequence dataset. In particular, we compare the assignment of 
alignments to metaclusters before the filtering step (see Additional file 1: Table S1).

(9)DMC ′,MC ′′ =
2

NMC ′NMC ′′

∑

c′∈MC ′,c′′∈MC ′′

Dc′,c′′

http://eddylab.org/software/hmmer3/3.1b2/Userguide.pdf
http://eddylab.org/software/hmmer3/3.1b2/Userguide.pdf
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In our comparison, we use: (1) the number of alignments that are assigned to 
metaclusters; (2) the percentage of alignments metaclustered with the standard 
set of parameters that are still assigned to metaclusters when utilising the modi-
fied parameters; (3) the Normalized Mutual Information. The NMI is given by 
NMI(C1,C2) =

2I(C1,C2)
H(C1)+H(C2))

∈ [0, 1] , where C1 and C2 are the class labels assigned to 
alignments by two different clustering procedures, I is the Mutual Information between 
the two classifications and H(C) is the entropy of a single classification. Two identical 
classifications gives NMI= 1 . To compute NMI, we consider those alignments that have 
been metaclustered by both the reference and the alternative clustering procedure (i.e, 
those counted in the third column of Additional file 1: Table S1).

In general, parameters’ variation does not result in significant changes in the num-
ber of alignments assigned to a metacluster. Variations in µ1 and µ2 imply smaller 
or larger cutoffs in the density estimations, and a more or less restrictive criterion 
for assigning alignments to cluster centers. Not surprisingly, larger values of µ1 and 
µ2 produce larger metacluetsers, while smaller values produce smaller metaclusters 
(see second column of Additional file  1: Table  S1). This is reflected also in the per-
centage of alignments which are  metaclustered using the standard procedure that 
are also retrieved when varying µ1 and µ2 , with smaller percentages obtained using 
smaller values (see third column of Additional file 1: Table S1). However, despite of 
these differences, the NMI with the results obtained with the reference setup is always 
extremely high, indicating that the results are robust with respect to the choice of this 
parameter.

Different values of � result in adding or removing density peaks: the small varia-
tions performed do not change significantly the number of alignments metaclustered 
(changes of about 2%), covering the vast majority (98%) of the alignments clustered 
with the standard procedure. Also in this case the NMI with respect to the reference 
setup is very high.

We also repeated the whole procedure on a query dataset containing only half of the 
sequences, selected at random (50% P53_UR50). In this analysis we collect 642,223 
alignments in metaclusters. In the same subset of sequences, performing the analy-
sis on the full dataset we assign to metaclusters 644,648 alignments. Almost all these 
alignments are in common (see third column of Additional file 1: Table S1) and, con-
sistently, the NMI between the two metacluster partitions is 0.99.
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