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Dendritic cells (DCs) facilitate cross talk between the innate and adaptive immune system.

They sense and phagocytose invading pathogens, and are not only capable of activating

naïve T cells, but can also determine the polarization of T cell responses into different

effector subtypes. Polarized T cells in turn have a crucial role in antibody class switching

and affinity maturation, and consequently the quality of the resulting humoral immunity.

Targeting vaccines to DCs thus provides a great deal of opportunities for influencing

the humoral immune responses, by fine-tuning the T cell response as well as regulating

antigen availability for B cells. In this review we aim to outline how different DC targeted

vaccination strategies can be utilized to induce a desired humoral immune response. A

range of factors, including route of vaccine administration, use of adjuvants, choice of

DC subset and surface receptor to target have been reported to influence the resulting

immune response and will be reviewed herein. Finally, we will discuss opportunities for

designing improved vaccines and challenges with translating this knowledge into clinical

or veterinary medicine.
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INTRODUCTION

Conventional dendritic cells (cDCs) are divided into two sub-populations, cDC1s and cDC2s,
based on ontogenic and functional differences [reviewed in (1, 2)]. Both populations are derived
from pre-cDCs that develop in the bone barrow, before migrating to secondary lymphoid or
peripheral tissue where the final differentiation into cDC1s and cDC2s occurs (3–5). Differentiation
into cDC1s is dependent on the transcription factors IRF8 (6) and Id2 (7), and to a lesser extent
BATF3 (8, 9), while cDC2 differentiation is dependent on IRF4 (10, 11). Both cDC1s and cDC2s can
present antigen-derived peptides on MHC-II to CD4+ T cells, although studies have reported that
cDC2s are more efficient at this process (12, 13). In contrast, only cDC1s efficiently cross-present
antigens to CD8+ T cells in mice (13–15).

Due to their crucial role in the induction of T cell responses, delivery of antigen to DCs has been
extensively evaluated in various cancer and infectious disease models [reviewed in (16)]. However,
targeting antigen to DCs can also enhance antibody responses. Indeed, early studies where
avidin was conjugated to biotinylated anti-MHC-II antibodies resulted in improved induction of
anti-avidin antibodies in the absence of adjuvant (17). However, since MHC-II is also expressed
on B cells and other antigen presenting cells (APC), it was unclear to what extent DC targeting
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contributed to the improved antibody responses. Wang
and colleagues later observed that targeting the pan-DC
marker CD11c also resulted in enhanced antibody responses,
highlighting DCs as an attractive target for enhancing humoral
responses (18). Here, we review the current literature on how
delivering antigens to cDCs can be utilized to enhance both the
polarization and the magnitude of the humoral response, and
discuss how different immunization strategies can be utilized to
fine-tune the antibody responses.

ANTIBODY POLARIZATION AS A
FUNCTION OF DC SUBTYPE

DCs are effective in priming naïve CD4+ T cells into functionally
distinct effector T helper (Th) cells, with different subsets of
DCs dictating differential effector T cell commitment (19, 20).
cDC1s promote development of T helper 1 (Th1) cells through
secretion of IL-12 (21), while cDC2s secrete IL-10 and IL-33
and drive Th2 responses (22) (Figure 1). In addition, cDC2s
are important for efficient induction of T follicular helper (TFH)
cells (23, 24). It is less clear to what extent cDC1s influence
TFH induction, but they have been reported to do so under
inflammatory conditions (25). Also, studies have shown that IL-
12 secreting DCs can promote TFH induction in humans (26, 27).
The different T helper subtypes, through secretion of different
cytokines, will in turn influence the magnitude and nature of
humoral immune responses mounted by B cells (28, 29). For
instance, secretion of IL-21 by TFH cells induces differentiation
of naïve and memory B cells into antibody secreting plasma
cells (26, 30, 31). Furthermore, the characteristic Th1 cytokine
IFN-γ promotes induction of IgG2a class switching, while the
Th2 associated IL-4 drives class switching toward IgG1, in mice
(Figure 1) (32, 33). Recent studies have identified subtypes of
TFH, now often referred to as Tfh1 and Tfh2, as the source of
IFN-γ and IL-4, respectively (34). However, induction of IgG2c
has been observed in mice deficient of TFH cells, suggesting that
Th1 cells may be sufficient for class switching (35).

Mice have four subtypes of IgG: IgG1, IgG2b, IgG3, and
depending on the strain, IgG2a in BALB/C or IgG2c in C57BL/6
(31, 36). The fragment crystallizable (Fc) region of the different
IgG subtypes binds to specific Fc-receptors (FcγRs) andmodulate
subsequent effector cell functions (37). In mice there are
three activating Fcγ-receptors (FcγRI, FcγRIII, FcγRIV) and
one inhibitory Fcγ-receptor (FcγRIIB) (38). IgG2a and IgG2b
are reported to have higher affinity for the activating Fcγ-
receptors which result in pro-inflammatory responses (39) and
antibody-dependent cytotoxicity (ADCC) (40). In contrast, IgG1
has higher affinity for the inhibitory FcγRIIB, and therefore
contributes to dampening the inflammatory response (41).

Several recent studies have observed that antibodies directed
against certain viral antigens heavily rely on Fc-mediated
effector functions to provide protection. For instance, broadly
neutralizing antibodies against HIV gp120 are more efficient
as IgG2c subtype compared to IgG1 (42). Similar observations
have been made with broadly neutralizing antibodies against the
stem-region (43) or head-region (44) of influenza hemagglutinin

(HA), and the highly conserved influenza M2e antigen (45, 46).
In humans, IgG3 is one of the subtypes with high affinity
for activating Fcγ-receptors, and consequently mediates strong
effector functions (38). Interestingly, a large phase 3 HIV vaccine
trial in Thailand observed a correlation between IgG3 titers and
partial protection against HIV infection (47).

Together, these studies demonstrate how DC subsets,
through T cell polarization, can influence antibody subclass
polarization and consequently vaccine efficacy. They also raise
the intriguing possibility of delivering different antigens to cDC1s
or cDC2s at the same time, and eliciting different polarized
immune responses to different antigens. Such approaches could
be of value in the development of vaccines against more
complex microorganisms, such as Mycobacterium tuberculosis,
where conventional vaccine technology has yet to produce an
efficient vaccine.

TARGETING DIFFERENT DC RECEPTORS
IMPACTS ANTIBODY POLARIZATION

The propensity of the different DC subtypes to elicit different
arms of the adaptive immune response creates opportunities for
fine-tuning of vaccine induced immune responses. In accordance
with the described role of DC subsets, targeting influenza HA
to cDC1s by fusion to the chemokine Xcl1, the ligand for
the cDC1 restricted receptor Xcr1 (48, 49), induces Th1 cells
and antibody responses dominated by the IgG2a subclass (50–
52). Similarly, targeting the model antigen ovalbumin (OVA)
to the C-type lectin DEC-205 on cDC1s has also been shown
to increase IgG2a and IgG2b responses compared non-targeted
controls (53). However, targeting the cDC1 restricted C-type
lectin Clec9a has been reported to induce more of a mixed
IgG1/IgG2a response, suggesting that the choice of the targeted
receptor also influences the antibody polarization, and not just
the targeted DC subset. The enhanced induction of IgG1 may be
related to the increased TFH induction observed when targeting
antigen to Clec9a (54).

Delivering antigen to surface receptors expressed on cDC2s,
such as toll like receptor 5 (TLR5) or DC-inhibitory factor 2
(DCIR2), results in antibody responses of the IgG1 subclass
(52, 55). However, the exact mechanism of Th differentiation
and whether or not germinal center (GC) formation is enhanced
during DCIR2 targeting is less clear. For instance, Chappell
and colleagues reported that during DCIR2 targeted vaccination,
Tfh differentiation is achieved indirectly through activation
of extrafollicular B cells, which ultimately results in an IgG1
response (55). In this study, it was reported that DCIR2 targeting
failed to induce germinal center formation (55). However, Shin
et al. (24, 56) have reported that DCIR2 targeted vaccination in
the presence of poly(I:C) or LPS is capable of efficiently inducing
GC formation and TFH differentiation.

In a comparative study, Do and colleagues targeted antigen
from Yersinia pestis to DEC-205 or DCIR2, and observed
distinct cytokine profile associated with Th1 or Th2 polarization,
respectively (57). Consistent with these observations, targeting
CIRE and FIRE (C-type lectin family receptors on murine

Frontiers in Immunology | www.frontiersin.org 2 July 2019 | Volume 10 | Article 1529

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tesfaye et al. Targeting cDCs to Fine-Tune Antibody Responses

FIGURE 1 | Targeting DC subsets to influence the polarization of the antibody response. (A) Targeting the receptors Xcr1, Clec9a and DEC-205 can be used to

deliver antigen to cDC1s, while targeting DCIR2 and TLR5 will deliver antigen to cDC2s. Targeting CD11c will deliver antigen to both DC subsets. (B) Delivery of

antigen to cDC1s or cDC2s will result in presentation of antigen derived peptides on MHC-II. Secretion of cytokines such as IL-12 by cDC1s, or IL10 and IL33 by

cDC2s, can initiate polarization of the T helper cell responses in direction of Th1 or Th2, respectively. In addition, both cDC1s and cDC2s have been reported to

induce TFH cells, although cDC2s are likely more important in this respect. (C) TFH cells migrate to germinal center where they regulate isotype switching of antigen

specific B cells through secretion of IFNγ (IgG2a) or IL4 (IgG1). Th1 may also contribute to isotype switching through secretion of IFNγ, while it is less clear if Th2 cells

contribute to IgG1 switching by secretion of IL4. TFH cells further regulate affinity maturation of the antigen specific B cells, and secrete IL-21 resulting in the formation

of plasma cells and secretion of high affinity antibodies.

cDC2s) using rat anti-CIRE and anti-FIRE antibodies results in
enhanced antibody production of the IgG1 subtype compared
to rat anti-DEC-205 antibodies (58). In this study, the antibody
profile obtained from targeting cDC2s was limited to IgG1,
while DEC-205 targeting induced IgG2a, and IgG3 responses
mixed with IgG1 (58). Consequently, targeting cDC1 or
cDC2 predominantly polarize the antibody response toward
IgG2a/IgG2c or IgG1, respectively.

Targeting antigen to surface receptors expressed on both
cDC1s and cDC2s, such as CD11c or MHC-II, have yielded
antibody responses dominated by the IgG1 subclass (18, 52, 59).
One potential explanation for this observation is that cDC2s
constitute 80–90% of the cDCs in secondary lymphoid organs
(60, 61), and would therefore be more likely to obtain the
antigen. Interestingly, fusing influenza HA to the chemokine
CCL3, a ligand for CCR3 and CCR5 expressed on both cDC1s
and cDC2s, resulted in a more mixed IgG1 and IgG2a response
(62, 63). Adding to the complexity, vaccine delivery site may

also contribute to the polarization of the antibody response.
For example, we recently observed that CCL3-HA induced
a significantly more Th1 polarized antibodies response after
intramuscular DNA immunization compared to intradermal
DNA immunization (63), despite reports of similar ratio of
cDC1s to cDC2s in the two tissues (15, 64).

It should be noted that adjuvants also influence immune
responses during cDC1 and cDC2 targeted vaccinations. At
steady state, immature DCs tend to induce tolerogenic responses
[reviewed in (65)] while presence of adjuvants stimulates
upregulation of maturation markers and abrogates tolerance
induction (66). During DEC-205 targeted cDC1 vaccinations, co-
administration of adjuvants was important in inducing immune
responses (58). However, targeting Clec9a, another receptor on
cDC1, is reported to be immunogenic even in the absence of
adjuvants (54). Furthermore, presence of adjuvants influences
the efficiency of DCIR2 targeting on formation of GC reactions
and TFH polarization (24, 55, 56). Of note here is that adjuvants
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may act on other immune cells than cDCs to dictate the
immune outcome. For instance, a synthetic hemozoin adjuvant
has recently been shown to interact directly with B cells and
enhance IgG2c class switching (67). In this regard, addition
of Th1 polarizing adjuvant can boost the induction of Th1
associated IgG subclasses even when delivering antigens to
cDC2s. For instance, targeting antigen to DCIR2 in the presence
of anti-CD40 and polyI:C increased titers of both the Th1
(IgG2c or IgG2a) and the Th2 (IgG1) subclasses (57, 68). All
in all, the variation in choice of vaccine design coupled with
differences in adjuvants used, makes the direct comparison of DC
targeted vaccination from different studies difficult. Therefore,
comparative investigations of antibody polarization profiles after
targeting DCs using similar vaccine platforms is crucial.

MAGNITUDE OF THE ANTIBODY
RESPONSE

While the ability to impact the polarization of the antibody
response is important, the magnitude and the affinity of the
antibodies will ultimately determine whether the vaccine is
protective or not. With regards to achieving good antibody
responses, Clec9a has been reported to be a promising targeting
candidate in mice using the model antigen OVA as well as the
influenza antigen M2e and the hand, foot and mouth disease-
causing enterovirus 71 antigen SP70 (54, 69). This effect of Clec9a
targeting has in part been attributed to efficient induction of
TFH cells (54, 70). Targeting antigen to the pan-DC marker
CD11c has also resulted in high antibody titers as well as
improved germinal center responses (18, 71). While CD11c,
and especially Clec9a, are predominantly expressed on cDCs,
there are other markers worth mentioning that are not as DC
specific. For instance, targeting influenza HA to MHC-II or NP
and OVA to CD180 have resulted in strong antibody responses
(59, 71–73). While both of these markers are expressed on
DCs, they are not DC specific. Indeed, it is the proliferation
and differentiation of the B cells that has been shown to be
of importance in inducing antibody responses upon targeting
CD180 (73). Similarly, Andersen et al recently used adoptively
transferred B cells to show that targeting MHC-II exclusively on
B cells, in the absence of DCs, is sufficient to increase antibody
production (74).

MODULATING ANTIGEN AVAILABILITY
KINETICS TO INCREASE ANTIBODY
RESPONSES

Recently, the augmentation of vaccine induced antibody
responses through modulation of antigen availability kinetics
has emerged as a promising strategy in rational vaccine design.
Encouraging findings in mice using HIV Env trimers or
HIV gp120 as antigen have shown that prolonged antigen
release gives better antibody responses when compared to
bolus vaccination—an effect that may be further improved by
exponentially increasing the immunization dose (75, 76). Studies
in non-human primates have shown similar effects (77, 78),

demonstrating the translational potential of this immunization
strategy. One possible explanation for the improved antibody
responses may be that these vaccination strategies more closely
mimic antigen availability kinetics of natural infections. Further
beneficial effects of prolonged antigen availability applied to
vaccinations are reviewed in more detail elsewhere (79).

The objective of DC targeted vaccine strategies is the
manipulation of antigen delivery to DCs, which in turn directly
affects antigen availability for B cells. This latter aspect presents
opportunities that perhaps have not been fully appreciated in
the field. Targeting strategies could be designed to optimize the
antigen availability kinetics for B cells in order to augment the
antibody response, aiming to achieve the same effects as those
seen with prolonged antigen release in the above-mentioned
studies. For instance, we have observed that when targeting
hemagglutinin influenza HA to the Xcr1 receptor on cDC1s
in a manner that does not result in receptor activation and
internalization, the ensuing GC and antibody responses were
greater than when the vaccine was actively endocytosed (51, 80).
A strength in our approach is that we directly compare targeting
to the same receptor on cDC1s in a manner that either induces
endocytosis or not, while keeping all other variables constant.
Similarly, the strong antibody responses observed when targeting
Clec9a are suggested to be due to high specificity of Clec9a
expression resulting in long half-life of the vaccine molecule in
serum after immunization, thus prolonging availability of the
antigen to B cells (54). Notably, a DEC-205 targeted vaccine in
the same study had a shorter half-life and was less efficient in
inducing antibody responses (54). These effects were obtained in
the absence of adjuvants, supporting the notion that they were
purely due to the nature of the targeting.

Finally, the choice of delivery method may affect the antigen
availability kinetics. For instance, DNA vaccination may result
in more optimal antigen availability kinetics than bolus protein
vaccination. The antigen will be produced and released over
a prolonged time, more resembling a natural infection and
delivering fresh and intact antigen to the GC response after its
initiation. Nevertheless, DC targeting strategies aiming to achieve
good antibody responses should be designed with the B cell
antigen availability kinetics in mind, whether they are based on
DNA or protein immunization.

From these observations, we can summarize that targeted
vaccines that are less efficiently taken up and degraded by DCs
are more likely to be potent in inducing antibody responses. Such
vaccines may result in more antigen being available in the lymph
nodes for a longer period of time, potentiating the GC reaction.
Additionally, if the vaccine molecule stays on the DC surface,
it might interact with and recruit B cells entering the draining
lymph node through high endothelial venules in the form of a
DC-B cell synapse (81).

TRANSLATION TO CLINICAL MEDICINE

Translating vaccine strategies aimed at delivering antigen to DCs
to humans present a number of challenges. First, DC subsets in
mice and humans have until recently been defined by different

Frontiers in Immunology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 1529

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tesfaye et al. Targeting cDCs to Fine-Tune Antibody Responses

surface markers, making it challenging to compare observations
between the different species. However, with the discovery of
more conserved markers for cDC1s such as XCR1 (82–84),
CLEC9A (85–87), and for cDC2s such as SIRP1a (60), more
accurate strategies for defining DC populations in both man
and mouse have become available (60). Second, expression of
specific surface markers may vary between species. For example,
DEC-205 has been reported to have a broader expression pattern
in humans compared to mice (88), adding uncertainty to how
pre-clinical data from mice will translate to humans. Third, it
is unclear to what extent the functional separation of cDC1s
and cDC2s seen in mice is conserved in humans. For instance,
cross-presentation to CD8+ T cells and induction of Th1 cells
has been associated with cDC1s in mice. In humans, however,
both cDC1s and cDC2s have been reported to cross-present
antigen (89), secrete IL-12 and promote Th1 polarization (90, 91).
Nevertheless, clinical trials have demonstrated that targeting the
tumor antigen NY-ESO-1 to DEC-205 induced antigen specific
antibodies (92). The antibody responses were dominated by
IgG1, which is functionally more similar to the IgG2a subclass
in mice (38).

While delivering antigen to DEC-205 is the only DC targeting
strategy to have entered into clinical trials so far, studies in other
animal models have been reported. Immunization of Macaques
with a rat antibody specific for Macaque CLEC9A resulted in
strong anti-rat IgG antibody responses in the absence of adjuvant
(93). In pigs, targeting the influenza antigen M2e to cDC1s by
fusion to porcine XCL1 enhanced antibody responses in both
naive and sero-positive animals (94). Also in pigs, targeting
the influenza antigen nucleoprotein (NP) to CD11c induced
strong antibody responses, although the responses were not

enhanced compared to non-targeted controls (95). With more
DC targeting strategies being evaluated in multiple species, we
should obtain a better understanding of how characteristics like
Th1/Th2 polarization and magnitude of the antibody response
translate from mouse studies.

CONCLUDING REMARKS

Delivering antigens to cDCs has garnered much attention
as a method for enhancing CD8+ T cell responses. We
strongly believe that the potential to influence CD4+ T cell
polarization, and consequently antibody class switching,
are of equal importance. Especially when considering the
observations that IgG-subclass and Fc-mediated effector
functions strongly influence the protective ability for broadly
neutralizing antibodies against influenza and HIV. When also
considering the ability to actively manipulate the magnitude and
quality of the antibody responses, DC targeting will be a valuable
tool for further vaccine development.
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