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Background. Although Danhong injection (DHI) has been proved to be curative, the mechanism of its action against ischemia
stroke (IS) is not clear. Here, we explored the therapeutic basis of DHI by network pharmacology. Methods. Putative targets and
activity scores for each compound in DHI were obtained from the Traditional Chinese Medicine System Pharmacology
Database, Encyclopedia of Traditional Chinese Medicine, and Quantitative Structure Activity Relationships. Next, target
proteins of IS were identified on GeneCards and CTD. Overlapping targets of DHI associated with IS were acquired via Venn
diagram. GO and KEGG pathway analyses were done using WebGestalt. Cytoscape software was used for PPI network
construction and hub nodes screening. Several validation studies were carried out by using AutoDock-Vina, label-free mass
spectrometry, and transcriptome RNA-sequencing. Results. The 37 active compounds and 66 targets were identified. Of these,
26 compounds and 41 targets belonged to diterpenoid quinones (DQs), which is the predominant category based on chemical
structure. The results of enrichments analysis show that 8 DQs target proteins associated with IS were involved in several
biological processes and signaling pathway such as apoptotic, cell cycle, cellular response to xenobiotic stimulus process, and
the PI3K-Akt signaling. Moreover, 3 nodes in core module involved in PI3K-Akt signaling and 1 hub node were identified by
PPI network analysis. Finally, the results of molecular docking and label-free mass spectrometry display good effect on hub
node regulation in DHI treatment. Conclusions. DQs is the predominant category of DHI and play an important role in
antiapoptotic activity mediated by modulating PI3K-Akt signaling. Our findings offer insight into future research and clinical
applications in IS therapy.

1. Introduction

Cerebral stroke is the second most leading cause of death
and the main cause of disability in worldwide. According to
World Health Organization, it led to 6 million deaths in
2016 [1,2]. Ischemic stroke (IS) accounts for nearly 80% of
cases and is characterized by occlusion of the cerebral
artery, which leads to a temporary lack of glucose and
oxygen supply in brain [3,4]. Standard IS therapies involve
intravenous injection of recombinant tissue plasminogen
activator (t-TPA), antiplatelet therapy, and anticoagulants
for patients with atrial fibrillation, or interventions to limit
cell damage [5-7]. These single target therapies are limited
by the narrow time window of thrombolysis, hemorrhagic

tendency, and high cost [8]. For this reason, novel thera-
peutic strategies are needed.

Danhong injection (DHI) is the most popular Chinese
medicine for the treatment of IS and promotes blood
circulation and resolves stasis to promote regeneration [9].
DHI is extracted from Radix Salvia miltiorrhizae (Danshen,
DS) and Flos Carthami Tinctorii (Honghua, HH) [10].
Clinical studies show that DHI is efficacious and safe for IS
management [11]. Pharmacological studies show that DHI
is neuroprotective in rat models of cerebral ischemic
reperfusion injury, possibly by enhancing angiogenesis
[12], ameliorating blood-brain barrier (BBB) disruption,
relieving brain swelling and hemorrhage [13], attenuating
astrocytic dysfunction [14], and reversing neutrophil


mailto:zhonw@vip.sina.com
https://orcid.org/0000-0002-4820-6732
https://orcid.org/0000-0002-4003-8244
https://orcid.org/0000-0002-7111-1205
https://orcid.org/0000-0001-7161-0533
https://orcid.org/0000-0002-7619-7714
https://orcid.org/0000-0003-0975-9251
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5584809

infiltration [15]. Although multiple studies have investi-
gated the mechanisms underlying DHI action, its under-
lying pharmacological mechanisms have not been
elucidated at the systematic level.

Network pharmacology characterized by systematiza-
tion and wholeness and has potential to uncover TCM
mechanism via biological networks construction. Chinese
herbal medicines act on multitargets via multiple channels,
which is very similar to the multipathways and multilevel
features of network pharmacology [16]. Here, we used
various publicly available bioinformatics resources to in-
vestigate the potential pharmacological mechanisms of
DHI in IS treatment.

2. Materials and Methods

2.1. Screening for Active DHI Compounds. DS and HH
chemical compound data were collected from the Tradi-
tional Chinese Medicine Systems Pharmacology (TCMSP,
https://tcmspw.com/index.php) database and analysis
platform and the Encyclopedia of Traditional Chinese
Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/
Home/) database [17,18]. Next, pharmacokinetic proper-
ties and comprehensive drug-likeness grading of candidate
compounds in DHI were filtered. Frist, the effective
compounds screening performed using oral bioavailability
(OB) =>30%, drug-likeness (DL) index >0.18, and
BBB>-0.3. Next, the second screening was performed
using Lipinski Rule of Five. Two-dimensional (2D)
structure and canonical smiles of the active compounds
were demonstrated using PubChem.

2.2. Identification of Ischemic Stroke Targets and Collection of
Putative Target Proteins. 1S-associated targets were identi-
fied based on comparative toxicogenomics database (CTD,
http://ctdbase.org/) [19] and the GeneCards (http://www.
genecards.org/) [20], using scores >50% and 30% as cutofts
for higher correlation with IS, respectively. Prediction of
proteins related to DHI active compounds was done using
quantitative structure activity relationships: TargetNet
(QSAR-TargetNet, http://targetnet.scbdd.com) [21] and
identified targets transformed to gene symbols on R. The
overlapping targets between IS-related targets and active
compounds were retained for Venn analysis (https://
bioinfogp.cnb.csic.es/tools/venny/index.html).

2.3. GO and KEGG Enrichment and Network Construction.
Go and KEGG enrichment analysis was performed using
WEB-based Gene Set Analysis Toolkit (WebGestalk,
http://www.webgestalt.org/) [22,23]. The initial parameter
setting is shown as follows: species parameter set to
“Homo sapiens,” filter values parameter set to 0.05, and
the term with fewer than 3 detected genes were filtered
out. Based on the results of enrichment analysis, the TCM
compound regulatory network and the compound-tar-
gets-pathway regulatory network were visualized on
Cytoscape 3.7.2 software [24].
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2.4. PPI Network Construction and Topological Analysis.
Overlapping protein targets of DQs associated with IS were
considered as initial nodes. Next, the “input nodes and its
neighbors” method was used to construct the PPI network
using the “bisoGenet” plugin on Cytoscape. The species
parameter was set to “Homo sapiens.” “Database of Inter-
acting Proteins,” “Human Protein Reference Database,”
“Biological General Repository for Interaction Datasets,”
“Molecular INTeraction Database,” “IntAct molecular in-
teraction database,” and “Biomolecular Interaction Network
Database” were the main resources for PPI network con-
struction. To extract the core module, we used a method
combining degree centrality (DC) and betweenness cen-
trality (BC) values, which was effective in identifying key
proteins [25]. DC and BC reflect the influence of corre-
sponding nodes in the full network. The higher the DC and
BC, the more significant the node.

2.5. Molecular Docking. 3D structures of key active com-
pounds were obtained from PubChem (https://pubchem.
ncbi.nlm.nih.gov) and saved in SDF format and subse-
quently converted to PDB format using OpenBabal 2.3.0.
Crystal structures of key receptors were downloaded from
protein data bank (PDB, http://http://www.pdb.org) and
processed by removing ligand and water motifs and adding
hydrogen using the Discovery Studio software. Rotatable
bonds were then set in the flexible residues and converted to
PDBQT type and resulting grid center site information
analyzed using AutoDockTools-1.5.6. Moreover, AutoDock-
Vina software was used to calculate binding affinity and find
probable binding sites.

2.6. Label-Free Mass Spectrometry Analyses. For evaluating
the protein expression changes after DHI treatment in
patients with acute ischemic stroke, a total of 6 acute is-
chemic stroke patients and 6 healthy volunteers without
diseases including cerebral injury were enrolled from
General Hospital of Northern Theater Command (Trial
registration: ClinicalTrials identifier: NCT02176395). The
peripheral venous blood samples of healthy volunteers,
patients before treatment, and patients after day 14 of DHI
treatment were obtained. Firstly, the albumin was removed
from the serum using the Abundant Protein Depletion Spin
Columns kit (ThermoScientific). Next, the label-free mass
spectrometry analyses were carried out on the nLC-
Easyl000-Orbitrap Fusion (ThermoScientific). Thirdly,
protein identification was performed in the NCBI Database
using Mascot2.3. Statistical differences between groups were
analyzed using Kruskal-Wallis test for nonparametric values
with SPSS23.0.

2.7. GEO Database Validation of DHI Treating IS. To further
validate the effects of DHI for the treatment of IS, the genetic
samples (series: GSE106680) were obtained from GEO da-
tabases (https://www.ncbinlm.nih.gov/geo/). In this study,
Sprague Dawley (SD) rats were divided into 3 experimental
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groups as follows: sham group, vehicle group, and DHI
group, each group with 3 samples. To study on protective
effects of cerebral ischemia/reperfusion-induced damage,
the expression changes of the key receptors after 14-day
treatment in cerebral ischemia/reperfusion model were
compared among the 3 groups [14]. Statistical differences
between groups were analyzed using ANOVA with
SPSS23.0.

3. Results

3.1. Identification of Active Compounds and Putative Target
Proteins. Details on investigating the pharmacological
mechanisms of DHI against IS are shown in Figure 1. DHI
consists of Danshen and Honghua. 45 DS and 12 HH
components were obtained from the TCMSP database. After
screening by pharmacokinetic properties and the Lipinski
rule of 5, duplicate removal, and verification on PubChem,
37 active compounds were obtained and the divided into 4
categories: 26 diterpenoid quinones (DQs) (e.g., dehy-
drotanshinone II A, Danshenol A, and tanshinaldehyde,
among others), 3 terpenes (e.g., arucadiol, przewalskin B,
and sclareol), 2 flavonoids (e.g., baicalein and carthamidin),
and 6 others (e.g., isoimperatorin and Microstegiol) (Fig-
ure 2). Based on ETCM database analysis, 21 compounds
exhibited a good grade using the ADMET criterion
(Table S1).

Higher combining probability indicated a close inte-
gration between compounds and targets. A total of 371
putative targets were identified by combined probability
score along with the 37 candidate compounds using QSAR-
TargetNet. After duplicate removal and name conversion, 66
targets were obtained, 41 of which were putative target
proteins of DQs.

Based on this, a compound-target (CT) network was
constructed. Figure 3 shows putative targets surrounded by
various categories of grouped compounds. Candidate
compounds are divided into good, moderate, week, and N/
A, marked by purple, yellow, gray, and white borders, re-
spectively. Of these, 20 compounds with good grade belong
to DQs, 95% of total. We found that DQs have good
pharmacokinetic properties based on the ADMET criterion,
and that they may be the main active compounds driving
DHI neuroprotective effects (Table S2).

3.2. Potential DHI Targets in Ischemic Stroke Treatment.
CTD and GeneCards analyses identified 107872 and 3443 IS-
associated gene entries, respectively. With prioritized in-
ference and relevance scores, 436 gene entries were iden-
tified from the 2 databases and merged. These targets served
as key putative IS-associated proteins (Tables $3-S4). Of the
predicted DHI targets, 13 target proteins associated with IS
were found, including caspase-9, MAOB, MAOA, NR3Cl,
CDC25B, RARA, CYP1A2, MCL-1, HSP90AA1, PTGSI,
CYP2C19, ABCBI, and RELA. Of these, 8 belonged to the
DQs (Figure 4(a)). The putative proteins of DQs’ targets
associated with IS can uncover the potential functions of
DHI treating IS.

3.3. Core Module and Hub Nodes in PPI Network. We ob-
tained a PPI network comprising 1162 nodes and 19211
edges, based on 8 overlapping target proteins belonging to
DQs (see Figure 4(c) and 4(d)). Next, a subnetwork com-
prising 233 nodes and 6148 edges was extracted by top 20th
percentile of DC from the PPI network, and then a core
module comprising 70 proteins was re-extracted by top 6th
percentile of BC from the subnetwork above. We found that
5 of 8 overlapping protein targets of DQs, MCL-1,
HSP90AA1, NR3C1, CASPY, and RARA were always in the
subnetwork and the core module. Notably, HSP90AA1 was
the hub node with highest DC and BC (Tables S5-S6), and 3
of those 5 overlapping protein targets were involved in
phosphatidylinositol-3 kinase (PI3K)/protein kinase B
(PKB/AKkt) signaling.

3.4. Biological Function of DQs Targeting on 1S. To provide
turther insight into the mechanisms underlying DQs effects
on IS at the systematic level, GO and KEGG pathway an-
alyses were done and gene functions depicted based on effect
on biological process (BP), cellular component (CC), and
molecular function (MF). There were 50 GO terms and 2
KEGG pathways enriched from the 8 overlapping target
proteins (Tables S7-S8). The GO-BPs mainly involve in
oxygen-containing compound, organic cyclic compound,
and apoptotic process, and the 2 KEGG pathways were
PI3K-Akt signaling pathway and pathways in cancer. No-
tably, these two KEGG pathways were the common path-
ways enriched from the DQs target proteins and DHI target
proteins (Figure 4(b) and Table S9). According to KEGG
enrichment analysis and PPI network analysis, the PI3K-Akt
signaling pathway may be the most important signaling
related to the treatment of DHI for IS. Based on these, a
compound-targets-pathway (CTP) network was constructed
(Figure 5).

3.5. The Affinity between Compounds and Receptors.
Binding energy can be calculated to predict affinity between
2 counterparts. Twenty-one active DHI compounds with
good pharmacokinetic properties were molecularly docked
with 5 key receptors including MCL-1 (PDB ID: 3MKS8),
HSP90AA1 (2BTH), caspase-9 (2AR9), RARA (5K13), and
NR3C1 (6CFEN). Binding energy less than 0 indicated that
spontaneous combination occurred between 2 molecules.
The lower the binding energy is, the stronger the affinity
between compounds and targets is. A total of 105 ligand-
receptor combinations were computed. Except RARA, most
DHI components bind well with key receptors and 93
combinations had affinities of < -7 kcal/mol, accounting for
88.6%, with the strongest binding being with Casp9
(-10.6 kcal/mol) (Figure 6(a)). Molecular docking structures
are detailed in Figure 6(b)-6(e).

3.6. Validation on the Targets of DHI for the Treatment of IS.
According to the label-free mass spectrometry analyses from
our previous trial, compared with healthy volunteers, the
expression of HSP9OA A1 was upregulated after IS (P < 0.05),



)
c
2
@
=
@
3

S ————

Active and putative

IS targets
compounds target &

= = \

. i

i VENNY 21§

. = i .

~ e Intersection

! [ venn \ [

EN Nain) targets

\ e v o

Evidence-Based Complementary and Alternative Medicine

I -
] q : . ST :
, Bisogenet g y ! 1
i 1 % AutoDock 1
1 cytoNCA 1
, ® ! pyMoL |
} 1 3
S e
Networks Molecular
analysis docking
FmmEmE=" \
1 !
5. {4
I Webostar i
Enrichment " Kkece patHWAY |
analysis 1 Database [}
\

FIGURE 1: Network pharmacology approach for deciphering pharmacological mechanisms of DHI activity in cerebral ischemia.
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FIGURE 2: 2-dimensional (2D) molecular structures and classification of 37 DHI candidate compounds. There are 4 classifications, including
diterpenoid quinones (26), terpenes (3), flavonoids (2), and others (6).

and after treated with DHI for 14 days, the HSP90AA1
expression was downregulated (P <0.05) (Figure 7(a)).
Moreover, according to the expression of mRNA from
another independent experiment, compared with the sham
group, the expression of Casp9 was downregulated
(P <0.05), while MCL-1 showed an upregulation trend in
the vehicle. After 14-day treatment of DHI, the expression of
Casp9 was upregulated and MCL-1 was downregulated,
although there was no significantly statistical difference
compared with the vehicle (Figures 7(b) and 7(c)).

4, Discussion

Based on chemical structure analysis and network phar-
macology, we find DQs are the major category in DHI
compounds. Biological processes of DQs protein associated
with IS were involved in regulation of apoptotic, positive
regulation of molecular function, and regulation of cell
proliferation process, and PI3K-Akt signaling pathway may
closely involve in mechanism of action of DQs proteins

associated with IS. This find is consistent with the previous
studies [26, 27], which confirmed the neuroprotective effect
of DHI via the PI3K-Akt pathway, since the specific inhibitor
of PI3K-Akt pathway could weaken the neuroprotective
effect on brain damage due to ischemic reperfusion in the
rats with the middle cerebral artery occlusion.

To make further investigation, we find core module and
hub node in PPI network by using DC and BC values in our
work. Casp9, Hsp90AA1, and MCL1 were identified from
the core module involved in PI3K-Akt signaling. HSP90AA1
was the hub node since highest DC and BC. To verify this,
molecular docking simulation was used to predict the
binding interaction of compounds in reporter’s binding
pocket. The results shown that most compounds docked well
with all three targets. PKB/Akt can mediate resistance to
hypoxia-ischemia through survival and inactivation of ap-
optosis-associated proteins [28]. HSP90AA1 as the hub node
of DHI for the treatment of IS, which could protect Akt
kinase activity from dephosphorylation [29]. The active Akt
subsequently regulate various targets, including caspase-9
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with IS was annotated with red border; blue ellipse nodes indicate putative targets of DHI, and targets of DQs annotated with blue border.

and myeloid cell leukemia-1 (MCL-1) [30-33]. MCL-1 in-
volved in proapoptotic function and led to the activation of
the downstream caspase cascade [34-36]. Finally, our label-
free mass spectrometry results show that Hsp90aal may be
modulating apoptosis via modulation of PI3K/Akt signaling.

Therefore, our results indicated that DHI and its major
category DQs effectively exert antiapoptosis functions by
regulating HSP90AA1-induced PI3K/Akt signaling and
other downstream molecules like MCL-1 and caspase-9

(Figure 8). In summary, our findings offer new insights on
future DHI research and its applications in IS treatment.
However, some shortcomings of our study should be con-
sidered. Apoptosis is a complicated process regulated by
multitargets. Although our results were verified using label-
free mass spectrometry and transcriptome RNA-sequencing,
the experimental work with large sample size and multiple-
time-point will be done in future study to find more
evidence.
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5. Conclusion

Here, we used network pharmacology to investigate the
potential mechanisms underlying DHI effects on IS. Our
data show that DHI is antiapoptotic via multifaceted activity.
DHI, especially the main category (diterpenoid quinones),
appears to promote cell survival effects via PI3K-Akt sig-
naling. It targets on both upstream and downstream of the
PI3K-Akt signaling, which may be its main mechanism
against IS. These results offer rationale for future DHI re-
search and applications in treating IS.
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