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Abstract: COVID-19 infection caused by the newly discovered coronavirus severe acute 
respiratory distress syndrome virus-19 (SARS-CoV-2) has become a pandemic issue across the 
globe. There are currently many investigations taking place to look for specific, safe and potent 
anti-viral agents. Upon transmission and entry into the human body, SARS-CoV-2 triggers 
multiple immune players to be involved in the fight against the viral infection. Amongst these 
immune cells are NK cells that possess robust antiviral activity, and which do not require prior 
sensitization. However, NK cell count and activity were found to be impaired in COVID-19 
patients and hence, could become a potential therapeutic target for COVID-19. Several drugs, 
including glatiramer acetate (GA), vitamin D3, dimethyl fumarate (DMF), monomethyl fumarate 
(MMF), natalizumab, ocrelizumab, and IFN-β, among others have been previously described to 
increase the biological activities of NK cells especially their cytolytic potential as reported by 
upregulation of CD107a, and the release of perforin and granzymes. In this review, we propose 
that such drugs could potentially restore NK cell activity allowing individuals to be more 
protective against COVID-19 infection and its complications. 
Keywords: NK cells, multiple sclerosis, COVID-19

Introduction
Coronaviruses (CoVs) are large positive stranded enveloped RNA viruses that cause 
enteric and mild or severe respiratory diseases in animals and humans.1 

Coronaviruses are named based on their morphology as spherical virions with 
a core shell and surface projections, that are classified into four subfamilies, namely 
alpha, beta, gamma and delta. SARS-CoV-2 belongs to the beta-coronaviruses and 
is closely related to the severe acute respiratory distress syndrome virus (SARS- 
CoV), that emerged earlier this century.2–4 Recently, COVID-19 infection was 
reported to be caused by SARS-CoV-2 in Wuhan, China.5 Additionally, it was 
associated with mortality in a ratio of the patients similar to other previously 
reported CoVs.6 COVID-19 could be transmitted through huge droplets caused by 
coughing and/or sneezing.7

Similar to SARS-CoV, SARS-CoV-2 uses a unique receptor for cell entry, which 
is angiotensin converting enzyme 2 (ACE2).8–11 The clinical symptoms could vary 
from fatigue, fever, headache, dyspnea, nasal congestion and cough, as well as 
gastrointestinal symptoms including nausea, vomiting, diarrhea and abdominal 
pain.2,12 In severe cases, these symptoms are aggravated to shortness of breath 
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and pneumonia that could lead to acute respiratory distress 
syndrome (ARDS) and other complications.13,14 A study 
performed on hospitalized patients with SARS-CoV-2 
associated pneumonia reported that the most common 
symptoms were fever (83%) and cough (82%), followed 
by shortness of breath (31%).15 As part of the inflamma-
tory process, markers such as C-reactive protein, erythro-
cyte sedimentation rate and proinflammatory cytokines are 
elevated.13 The extremely high concentration of cytokines 
“cytokine storm” was recorded in plasma of severe cases 
of COVID-19 patients and was associated with disease 
severity.16 The inflammatory cytokines include granulo-
cyte colony stimulating factor (G-CSF), IL-2, IL-7, IL- 
10, TNFα and the chemokines CCL2, CCL3, and 
CXCL10.16,17

Various current therapeutic agents are currently being 
investigated for treatment of COVID-19. Use of intrave-
nous immunoglobulins has been described to show great 
efficiency especially in severe and deteriorating patients 
infected with SARS-CoV-2.18 Also, anti-viral agents such 
as remdesivir have been examined as potential candidates 
for COVID-19 therapy. Hydroxychloroquine and chloro-
quine have been suggested to inhibit viral replication and 
activity.19 Since antiretroviral drugs previously showed 
efficacy against SARS-CoV, lopinavir/ritonavir may have 
potential therapy in COVID-19 patients.20,21 For instance, 
the JAK inhibitor baricitinib that is used for treating rheu-
matoid arthritis patients was suggested to control viral 
replication and treatment of COVID-19 infection.22,23 

Because many of the drugs used currently in COVID-19 
treatment were primarily used for the treatment of auto-
immune diseases, it was of interest to see if the immuno-
modulatory agents used in multiple sclerosis therapy could 
be utilized for treating of COVID-19 through activation of 
natural killer cells.

Natural Killer Cells
Natural killer (NK) cells are innate immune cells that are 
programmed to protect humans from viral infections and 
cancer.24–26 The main cytotoxic function of NK cells is 
through apoptotic induction and lysis of virally infected 
cells via perforin and granzymes. Also, NK cells are able 
to secrete immunoregulatory cytokines such as IFN-γ and 
TNF-α, that regulate the immune responses.27,28 IFN-γ and 
TNF-α are known to play a critical role in the control of 
viral infections, by indirect stimulation of the cytolytic 
function of NK cells.29 Further, they were reported to act 
as immune-defensive mediators that activate and recruit 

other inflammatory immune cells.30 Also, these cytokines 
were reported to influence the innate and adaptive immune 
cells.31,32

NK cells are CD3− and further divided into two main 
subsets based on the expression of certain markers. 
Accordingly, NK cells that express CD56 but not CD16, 
known as CD56bright, represent about 10–20% of total NK 
cells in the blood, whereas those that express CD16 and 
low CD56, known as CD56dim, represent about 80–90% of 
total circulating NK cells. CD56dim cells have been shown 
to predominantly mediate cytotoxicity, whereas CD56bright 

cells appear to principally secrete cytokines,33 albeit both 
susbsets acquire both activities upon activation.34 NK 
effector function is controlled by a complex network of 
signals, which interact with membrane-expressed inhibi-
tory and activating receptors.35

The inhibitory receptors maintain the immunological 
homeostasis by binding to the major histocompatibility com-
plex (MHC) expressed on healthy cells. Downregulation of 
MHC class I or loss of its expression during viral infection 
lifts the inhibitory signal imposed on NK cells, resulting in 
their activation. These inhibitory receptors include C-type 
lectin-like receptors such as NKG2A, and the killer-cell 
immunoglobulin-like receptors (KIRs). Activation receptors 
recognize stressed ligands on virally infected and tumor cells. 
These receptors include NKG2D, and the natural cytotoxicity 
receptors (NCRs) such as NKp30, NKp44 and NKp46, 
among others.36–40 NK cell activity depends on the balance 
between activation and inhibitory signals; when the threshold 
of the activation signal exceeds the inhibitory ones, then NK 
cells can perform their function, whether cytotoxicity or 
cytokine secretion, in order to eliminate virally infected 
cells.33,37

It is worth mentioning that there are differences among 
human and murine NK cells. For instance, human NK 
cells express CD56 and can be classified into bright and 
dim subsets whereas murine NK cells do not express 
CD56 but instead express CD27.41 Additionally, human 
NK cells express KIR, but murine NK cells express Ly49 
receptors which are not found in humans.42

Search Strategy
Articles were searched in the literature using the key-
words: multiple sclerosis, experimental autoimmune ence-
phalomyelitis, drugs, COVID-19, and natural killer cells. 
These articles were checked thoroughly, and any unneces-
sary or irrelevant information was removed. Subsequently, 
included articles were used to search for a possible link 
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between natural killer cells, COVID-19 and the action of 
various drugs. Research articles and reviews were included 
from those published in the past 15 years from papers 
using the keywords “COVID-19 and multiple sclerosis”, 
“multiple sclerosis and natural killer cells”, “drugs and 
multiple sclerosis and natural killer cells”, or “COVID- 
19 and natural killer cells”.

Role of NK Cells in Viral Infection
NK cells possess distinct ability to recognize and fight 
viruses by performing cytolytic activity against infected 
cells and by producing the antiviral cytokines.43,44 IFN-γ 
affects viral replication and entry into host cells, as well as 
recruiting and activating other effector leukocytes, includ-
ing cytotoxic T lymphocytes and CD4+ T helper type 1 
cells.45 NK cells are crucial in the innate immune response 
against various viruses including human immunodeficiency 
virus, herpesvirus, poxvirus, papillomavirus, hepatitis B, 
hepatitis C, influenza and cytomegalovirus.24,25,46–50 The 
effects of NK cells on several viral infections have been 
previously described and discussed in other papers.51–55 

This article will focus on the possibility that activated NK 
cells might protect against COVID-19 infection.

Status of NK Cells During 
COVID-19 Infection
Upon entry of microbial particles into the respiratory 
mucosa and infection of lung resident cells, a series of 
immune reactions take place corroborated with a cytokine 
storm within the body, resulting in the impairment of the 
coagulation system, and the generation of disseminated 
intravascular coagulation leading to septic shock and 
multi-organ disorder.56 Lymphopenia has been reported 
to be associated with COVID-19 infection, indicating 
that SARS-CoV-2 destroys numerous immune cells and 
hinders the cellular immune responses. This suggests that 
SARS-CoV-2 might primarily act on monocytes and 
T cells, similar to the previously reported SARS-CoV.57

The most crucial antiviral players are the adaptive 
immune system members cytotoxic CD8+ T lymphocytes 
and innate immune NK cells. In persistent/chronic viral 
infections, the functional activity of NK cells is impaired 
and worn out.58 However, the status of NK cells in patients 
infected with SARS-CoV-2 is still under investigation. 
A recent study reported that there is a marked decrease 
in the total number of NK and CD8+ T lymphocytes in 
patients with COVID-19 infection.59 Furthermore, this 

decrease in NK cell count was only observed in the severe 
COVID-19 patients in comparison to the mild cases or the 
healthy controls.59 Additionally, there was an increase in 
the expression of the inhibitory receptor NKG2A on NK 
cells of COVID-19 patients, that was decreased after ther-
apy with lopinavir/ritonavir, chloroquine phosphate, inter-
feron, or antibiotic.59 Hence, downregulation of NKG2A 
expression may be correlated with disease amelioration 
and therapy in COVID-19 patients. Furthermore, NK 
cells of COVID-19 patients displayed impaired functional 
activity as observed by low expression of CD107a and 
granzyme B, the effector molecules of cytotoxicity.59 For 
cytokine secretion, IFN-γ was lower in COVID-19 
patients. This was further supported by other studies 
where interferon responses are highly impaired in patients 
with severe COVID-19 infection, as indicated by low 
levels of interferon and interferon stimulating genes, 
despite the elevation in the inflammatory responses and 
cytokines such as TNF and IL-6.60 IFN-γ is known to have 
antiviral effects, and is efficient against coronaviruses, as 
well as inhibiting SARS-CoV replication in vitro.61 In 
support of this, IFN-γ is among the highly released cyto-
kines during COVID-19 infection.62

The impairment of immune system in COVID-19 was 
further supported by another study where a significant 
decrease in the total number of lymphocytes in COVID- 
19 pneumonia patients was observed.63 Furthermore, NK 
cells were found to be significantly lower in COVID-19 
pneumonia patients. This alteration in the immune popula-
tion and specifically of NK cells was previously reported 
in other pneumonia studies of the same virus family, ie, 
MERS-CoV and SARS-CoV.64,65 Upon classification of 
cases into mild and severe ones, NK cells were found to 
be slightly lower in the severe cases, but this change was 
not statistically significant. Additionally, the percentage of 
NK cells was not restored after 1 week of treating pneu-
monia. These observations provide an insight into NK cell 
exhaustion during COVID-19 infection, and highlighting 
their vital roles in fighting against coronaviruses such as 
SARS-CoV-2.59

As indicated, several reports showed that NK cells are 
impaired in coronavirus infections. For instance, a study 
by the National Research Project for SARS described 
a decrease in the total number of NK cells as well as in 
NK cells and other cells expressing KIR2DL2/L2 
(CD158b) in SARS-CoV patients when compared to 
healthy controls and individuals infected with the bacteria 
Mycoplasma pneumoniae.66 This decline in NK cell 
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numbers was positively correlated with disease severity, as 
severe cases showed a larger decline in the total NK and 
CD158b+ NK cells compared to mild cases. A possible 
explanation for the decline in NK cells could be that these 
cells migrate from the circulation into the sites of infection 
such as the lungs. Alternatively, NK cell death could occur 
directly by SARS-CoV and SARS-CoV-2 as an immune 
evasion strategy. Hence, higher viral load might cause 
more NK cells to be destroyed resulting in more severe 
clinical symptoms.66

NK Cells: Potential Therapeutic 
Target in COVID-19
Since NK cells are key anti-viral players, they could be 
utilized as a therapeutic tool in fighting COVID-19. 
A study by Osman et al reported that NK cells are not 
only important for the viral clearance of SARS-CoV-2 but 
they also limit the severe cytokine storm associated with 
COVID-19.67

CYNK-001 cells are allogeneic, off-the-shelf, cryopre-
served natural killer cell therapy, that are derived from 
placental hematopoietic stem cells. These cells are cur-
rently in clinical trials for treatment of several types of 
cancer including leukemia and multiple myeloma. CYNK- 
001 cells possess NK cell activities as demonstrated by the 
expression of activating receptors NKG2D, DNAM-1 and 
the NCRs which bind stress ligands and viral antigens on 
infected cells. The company “Celularity” has initiated 
a clinical trial to use CYNK-001 cells in a Phase 1/2 
clinical trials done on 86 patients with COVID-19.68,69 

The study aimed at administering NK cells to patients 
with moderate-severe COVID-19 symptoms, thus allowing 
these killer cells to migrate towards active viral infection 
sites in order to aid and stimulate other immune cells. 
Therefore, CYNK-001 could halt the replication and elim-
inate SARS-CoV-2 which could be of benefit to COVID- 
19 patients.

NK cells have been previously modified genetically to 
express specific receptors to target cancer cells known as 
chimeric antigen receptor “CAR” NK cells.70,71 CAR-NK 
cells do not cause cytokine storm unlike CAR-T cells, and 
are relatively safer.72 CAR-NK cells have been suggested 
to be utilized to fight viral infections such as COVID-19. 
These CAR-NK cells were derived from human umbilical 
cord blood expressing the activating receptor NKG2D and 
the entry receptor ACE2 (NCT04324996).73 Consequently, 
a clinical trial using CAR-NK cells was initiated in early- 

stage COVID-19 patients. In addition, there is currently an 
ongoing clinical trial (NCT04280224) by the National 
Institutes of Health (NIH), with the purpose of evaluating 
the safety and efficiency of NK Cells in combination with 
standard therapy for COVID-19 pneumonia patients.

Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune-mediated dis-
order that is likely to affect the central nervous system 
(CNS) including the brain and spinal cord.74 The patho-
genesis of this disease is related to the attacks of the 
myelin sheath that covers the nerve fibers by the immune 
system, leading to nerve demyelination.75,76 These 
immune cells are activated in the periphery by myelin 
antigens followed by the extravasation of CD4+, CD8+, 
B, macrophages and NK cells into the CNS.77,78 Upon 
destruction, the nerve transmission could be impaired par-
tially or completely damaged, affecting the nerval commu-
nications across the human body and causing permanent 
irreversible damage. A hallmark of the immune response 
in MS is the formation of isolated areas of inflammation 
called MS lesions, that may appear both in the white 
matter and in the grey matter of the brain.79 The clinical 
signs and symptoms of MS were previously discussed and 
reviewed in detail.80

There are several forms and types of MS, the most 
common form is the relapsing-remitting MS (RRMS), 
where relapses of disease are separated by remission per-
iods without any clinical progression. When the symptoms 
deteriorate, ie, during relapse phase, there is an active 
inflammation within the CNS. As the relapse period 
ends, the severity of symptoms is reduced and a clinical 
improvement is presented, referred to as remission 
phase.80,81 Other less common subtypes of MS include 
primary progressive MS (PPMS), affecting 15% of MS 
patients, where neurological deterioration is present from 
the onset of the disease.80,81 On the other hand, secondary 
progressive MS (SPMS) occurs when patients experience 
episodes of relapse and remission, followed by a steady 
progression of the disease. Lastly, progressive relapsing 
MS (PRMS) is a rare type of MS that is diagnosed when 
the disease progresses gradually with intermittent flare-ups 
of worsening symptoms without periods of remission.82,83 

Although there is no cure for multiple sclerosis, the avail-
able disease-modifying agents are used in treating MS 
patients with the aim of shortening acute exacerbations 
and diminishing recurrence.84,85
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Role of NK Cells in Multiple 
Sclerosis
The function of NK cells in MS has is controversial, with 
protective and pathogenic roles in MS patients and in 
animal model, the experimental autoimmune encephalo-
myelitis (EAE).77,78,86–89 For instance, blocking the inhi-
bitory receptor NKG2A on NK cells inhibited CNS 
inflammation and caused remission by NK cell lysis of 
autoreactive T cells and microglial cells.90 Additionally, 
NK cells have shown a regulatory role in EAE where they 
can improve disease status.91–93 NK cells possess a key 
regulatory function by suppression of pathogenic autoreac-
tive T-cells that cause inflammation, hence possibly lead-
ing to restoration of the demyelination.77,78,94 On the other 
hand, it was shown that NK cells in MS may contribute to 
CNS damage.95 NK cells in the cerebrospinal fluid (CSF) 
release significant amounts of cytokine and chemokines, 
potentially contributing to the inflammatory process in 
MS.96 It was shown that the NK cell population in the 
CNS consists mainly of CD56bright NK cells, which exhibit 
a higher migratory potential.97,98 Further, NK17/NK1 
cells, a rare subset of NK cells, are abundant in the CSF 
of MS patients.99,100 These cells secrete IL-17 and IFN-γ, 
two highly inflammatory cytokines, which may contribute 
to exaggerating the inflammatory response in the brain of 
MS patients.99,100 In contrast, NK cells express the inhibi-
tory NKG2A receptor which binds MHC class molecule 
HLA-E, and that NKG2A+ NK cells reduce CNS inflam-
mation by lysing T cells and microglial cells, thus improv-
ing the EAE disease state.101 Previous data showed that 
active MS lesions and white matter lesions of MS patients 
have higher expression of HLA-E.102

Interestingly, a recent review suggested that NK cells 
and specifically the CD56bright cells are increased upon 
treatment with various MS therapies such as interferon- 
beta, dimethyl fumarate, and fingolimod.103 Such increase 
in CD56bright NK cells is associated with immunoregula-
tory function and could be used as a potential biomarker 
for treatment response in MS.103

Effects of MS Therapy on NK Cell 
Activity
Glatiramer acetate (GA, Copaxone) is an approved drug 
for the treatment of MS, especially the RRMS.104,105 It is 
made up of four amino acids, namely Glutamic acid, 
Alanine, Lysine and Tyrosine, that are found in myelin. 
It improves MS symptoms by acting as a copolymer that 

binds to MHC molecules and competes with myelin anti-
gens for presentation to T cells.104,106 Additionally, GA 
has been reported to activate in vitro NK cell lysis of 
autologous and allogeneic human immature and mature 
monocyte-derived dendritic cells (DCs),107 and in MS 
patients receiving this drug.108 This activity of NK cells 
may result in impeding auto antigen presentation to auto-
reactive T cells and consequently, halts inflammation. 
Another mechanism of the ameliorating effect of GA is 
the initiation of the anti-inflammatory Th2 immune activ-
ity as shown by the release of IL-5 and IL-13 cytokines,109 

and activation of type 2 monocytes.110 We previously 
reported that the activating NK cell receptors NKp30, 
NKp44, NKp46 and NKG2D were elevated, whereas the 
expression of CD158 receptor was reduced during a one- 
year follow-up of RRMS patients receiving GA therapy.108 

Based on GA robust activity enhancing NK cell activity 
in vitro, in EAE mice and in MS patients receiving this 
drug, we would like to advocate its use in treating 
COVID-19 patients.

Fumaric acid esters are a group of simple structured 
compounds that have been used in the treatment of inflam-
matory disorders including psoriasis and multiple 
sclerosis.111 Dimethyl fumarate (DMF), known as 
Tecfidera, was approved for the treatment of RRMS.85,112 

However, the exact mechanism of action remains 
unknown. DMF and its metabolite monomethyl fumarate 
(MMF) enhance the expression of Nuclear-factor (ery-
throid-derived 2)-related factor-2 (Nrf2), thus showing 
protection of potential oligodendrocytes, glial cells, and 
neurons.112,113 Recent data reported a significant increase 
in NK cell count during two years of DMF treatment, 
highlighting a crucial regulatory effect of NK cells on 
immune system modulation in MS.114

Similar to GA and DMF, monomethyl fumarate 
(MMF) has anti-inflammatory properties due to its ability 
to promote a Th2 immune response as shown by an 
enhanced secretion of IL-4 and IL-5.115 Another common 
feature with GA, MMF decreased the EAE clinical score 
along with an enhanced NK cell lysis of dendritic cells.116 

Additionally, MMF potentiates the killing activity of NK 
cells of several cancer cell lines including K562, RAJI and 
HCT-116.117,118 This occurs with a concomitant increase 
in the expression of the activating receptor NKp46, the 
degranulation marker CD107a and the cytolytic granzyme 
B.118 In addition, CCR10 chemokine receptor was upre-
gulated on NK cells using GA, DMF or MMF,119 leading 
to a higher migration of NK cells towards the chemokine 
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ligands for CCR10, which include CCl27 and CCL28.117 

The latter chemokine is important for protection against 
HIV-1 infection,120 which could plausibly be similar dur-
ing COVID-19 infection. Intriguingly, both DMF and 
MMF exert anti-inflammatory activities, hypermethylating 
gasdermin D and consequently, inhibiting pyroptosis and 
IL-1β secretion from NK cells.121

It has been reported that there is an increase of 
CD56bright NK cells in MS patients treated with DMF, 
which is correlated with a decrease in the number of 
cytotoxic T cells “CTLs”.122 In fact, CD56bright NK cell 
enrichment takes place after six months of DMF 
treatment.123 The relationship between increased NK cell 
number and activity and reduced CTLs is not clear. 
However, it might be plausible that such a process might 
give the opportunity for NK cells to perform a more robust 
function against virally infected cells in the absence of 
other cell types that could impede NK cell activity, 
although such hypothesis has not been examined yet.

The anti-tumor effects exerted by NK cells after pre-
treatment with DMF or MMF, along with the ability of 
these drugs to recruit NK cells towards the sites of inflam-
mation, strongly suggest that they can be used to potentiate 
NK cells against COVID-19-infected cells. The fact that 
DMF or MMF reduced or completely inhibited inflamma-
tion also supports using these molecules in such therapy. It 
is plausible that DMF and MMF not only activate NK cells 
to fight COVID-19 infected cells, but they may also help 
in reducing the cytokine burst, which is the major cause of 
death in COVID-19 patients.

Another risk factor of MS is vitamin D3 deficiency,124 

where it was observed that its administration prevented 
EAE development,125,126 and caused less relapses in MS 
patients.127 On the other hand, another study by Hupperts 
et al indicated that vitamin D3 could lead to a reduction in 
the development of new MS lesions.128 It was also 
reported that MS patients may have increased vitamin D3 

binding proteins, suggesting that such a binding protein 
may halt the activity of vitamin D3 in MS patients.129 

Similar to other drugs used to treat MS patients, it was 
reported that vitamin D3 and its derivative calcipotriol 
enhance NK cell activation and in vitro cytolysis of DCs, 
thus reducing antigen presentation to CD4+ T cells.130 

Vitamin D3 also shifts the immune system towards Th2 
immune response,131 along with an improvement in the 
function of Treg cells in relapsing remitting MS 
patients.132

The drug FTY720 “fingolimod; 2-amino-2-(2-[4-octyl-
phenyl]ethyl)-1,3-propanediol)” is an immunosuppressive 
drug derived from myriocin, a fungal metabolite that is 
similar to sphingosine. This drug has been tried on RRMS 
patients where it showed a reduction in MS lesions and 
relapse rates.133,134 Regarding its activity on NK cells, 
FTY720 upregulated the expression of the activating recep-
tors NKp30, NKp44 and NKG2D on NK cells. Moreover, 
FTY720 enhanced IL-2-activated NK cell lysis of immature 
and mature DCs, impeding autoreactive T cell activation,130 

in addition to activating NK cell lysis of tumor target cells.135 

It is worth mentioning that FTY720 is currently under clin-
ical trial to assess the efficacy of fingolimod for treatment of 
COVID-19 (NCT04280588). Although not yet examined, 
however, it is highly plausible that FTY720 might induce 
robust NK cell activity in COVID-19 patients. This is based 
on FTY720 effects on NK cells described in vitro.130

One of the known and established therapeutic agents 
for MS is interferon-β (IFN- β). IFN-β was found to alter 
the phenotype and activation of NK cells. For instance, 
IFN-β upregulated MHC class I expression, thus increas-
ing the inhibitory signals and reducing NK cell cytotoxi-
city. Additionally, IFN-β expands the CD56bright NK cells 
in the peripheral blood of MS treated patients.136 This was 
accompanied by an alteration in their phenotype as 
reported by a decrease in the expression of the inhibitory 
LILRB1 receptor and an increase of NKG2A receptor.137

Natalizumab (Tysabri), a drug for MS patients, is an 
adhesion molecule inhibitor, that blocks α4β1-integrin, 
a receptor which is crucial in the migration and recruit-
ment of inflammatory activated immune cells into the 
CNS.88 Upon natalizumab treatment, there was 
a reported increase in circulating NK cells,138 as possible 
reduction in their migration capacity into the CNS.

A current drug for MS patients is ocrelizumab, an anti- 
CD20 monoclonal antibody that causes B cell depletion 
similar to rituximab. A possible mechanism of action 
could be upon binding to CD20, ocrelizumab triggers anti-
body-dependent cell-mediated cytotoxicity (ADCC) and 
apoptosis through NK cells.139 Therefore, it is of interest 
to use natalizumab or ocrelizumab for treating COVID-19 
patients where the mechanism of ocrelizumab in COVID- 
19 patients could be similar to its effect in lymphoma 
patients, ie, stimulates NK cell ADCC activity.

Concluding Remarks
In the previous sections, we highlighted the important role 
of NK cells in fighting viral infections especially the 
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coronavirus family. Recent studies have shown that NK 
cells are impaired in number and activity during COVID- 
19 infection. Being important anti-viral effectors, NK cells 
could be vital tools for therapy of COVID-19 patients. 
Hence, robust activation of NK cells may be an important 
factor for subsiding the severity of the disease. We 
hypothesize that drugs used to treat MS patients such as 
GA, vitamin D3, DMF, MMF, natalizumab or ocrelizumab, 

among others could be utilized as tools for boosting NK 
cell activation (Figure 1). Furthermore, studies investigat-
ing whether MS patients undertaking the above medica-
tions are less susceptible and more protected from severe 
complications of COVID-19 infection should be con-
ducted. This strategy should form the basis for new ther-
apeutic approach as the current working medications for 
treatment of COVID-19 include drugs that have been used 

Figure 1 Multiple sclerosis drugs as potential therapeutic agents for COVID-19. Drugs such as glatiramer acetate, vitamin D3, dimethyl fumarate, monomethyl fumarate, 
interferon-β, natalizumab or ocrelizumab, boost NK cell activity that could potentially eradicate SARS-CoV-2 virally infected cells.
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for treatment of other autoimmune diseases such as rheu-
matoid arthritis and systemic lupus erythematosus.
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