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ABSTRACT

Nearest neighbor parameters for estimating the fold-
ing energy changes of RNA secondary structures are
used in structure prediction and analysis. Despite
their widespread application, a comprehensive anal-
ysis of the impact of each parameter on the preci-
sion of calculations had not been conducted. To iden-
tify the parameters with greatest impact, a sensitivity
analysis was performed on the 291 parameters that
compose the 2004 version of the free energy near-
est neighbor rules. Perturbed parameter sets were
generated by perturbing each parameter indepen-
dently. Then the effect of each individual parame-
ter change on predicted base-pair probabilities and
secondary structures as compared to the standard
parameter set was observed for a set of sequences
including structured ncRNA, mRNA and randomized
sequences. The results identify for the first time the
parameters with the greatest impact on secondary
structure prediction, and the subset which should
be prioritized for further study in order to improve the
precision of structure prediction. In particular, bulge
loop initiation, multibranch loop initiation, AU/GU in-
ternal loop closure and AU/GU helix end parameters
were particularly important. An analysis of parame-
ter usage during folding free energy calculations of
stochastic samples of secondary structures revealed
a correlation between parameter usage and impact
on structure prediction precision.

INTRODUCTION

It is increasingly clear that RNA sequences serve many es-
sential roles aside from their functions in the expression of
proteins. Non-coding RNAs (ncRNA), functional RNAs
that are not transcribed into protein, perform diverse func-
tions, including regulation of gene expression as siRNA or
miRNA (1), reaction catalysis as ribozymes (2), metabo-
lite detection as riboswitches (3) and target identification as
guide RNAs (4).

The functions of many RNAs are determined by their
structure. RNA structure is hierarchical (5). The primary
structure is the linear sequence of nucleotides, connected
by covalent bonds. The secondary structure is the canoni-
cal base pairing between nucleotides in the RNA, and these
base pairs are organized as A-form helices. The tertiary
structure is the positions of all atoms in the RNA in three
dimensions, which is organized by hydrogen bonds and base
stacking. The secondary structure generally forms faster (6)
and is generally more thermostable (7,8) than tertiary struc-
ture, therefore secondary structure can be predicted inde-
pendently of tertiary structure.

To estimate the free energy change of folding to a
secondary structure from random coil, a set of parame-
ters called the nearest neighbor parameters can be used
(9). These parameters approximate the folding free energy
change of a secondary structure as the sum of the energies of
neighboring structural motifs, and they were derived using
linear regression on a database of folding stabilities deter-
mined by optical melting data of small model RNA struc-
tures (10). These parameters are used widely in software
programs for RNA secondary structure prediction (11–13).
Additionally, methods that infer folding parameters from
the set of sequences with known structure also generally use
the same functional forms (14–16). The nearest neighbor
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database (NNDB) provides the set of current RNA folding
parameters and also provides examples for their use (17).

Most prior work benchmarking nearest neighbor param-
eters focused on the accuracy of secondary structure pre-
diction (9,11,18–20). Another aspect that has received less
attention is how uncertainty in the values of parameters
results in implicit uncertainty in structure prediction, i.e.
the precision of structure prediction. In one study, parame-
ters were adjusted within experimental uncertainty to gen-
erate alternative secondary structures with the goal of pro-
viding alternative hypotheses for the structure to improve
the structure prediction of a given sequence (21). Another
study showed that randomly perturbing all the thermody-
namic parameters simultaneously results in different pre-
dicted structures, and that highly probably base pairs, as de-
termined by partition function calculations, are more robust
to changes in thermodynamic parameters (22). A recent
parametric analysis of the multibranch loop initiation pa-
rameters demonstrated that overall RNA branching topol-
ogy is not sensitive to changes in the three multibranch loop
parameters (23).

In this work, a sensitivity analysis was performed to de-
termine the extent to which errors in the estimates of the
nearest neighbor parameters result in uncertainty in RNA
structure prediction, focusing on the estimates of ensem-
ble base pairing probability from partition function calcu-
lations. The sensitivity analysis was performed by varying
each parameter, one at a time, up or down in value. The
magnitude of the change for the parameter was either re-
lated to the experimental uncertainty of the parameter or
to a flat fixed value across all parameters, which facilitated
the comparison of sensitivity across parameters. The uncer-
tainty was then quantified as a root mean squared devia-
tion (RMSD) of the base pairing probability estimates as
compared to those calculated using the current, reference
parameters or as changes in structure prediction. In order
to identify factors that determine the impact of a given pa-
rameter, the relative frequencies of use for the different near-
est neighbor parameters in probable RNA secondary struc-
tures were determined. This comprehensive analysis of the
contribution to the uncertainty by each parameter on the
variability of the pair probability estimates and secondary
structure predictions identified parameters and functional
forms that should be refined by future experimental studies.
The analysis also identified the most significant parameters
that need to be determined precisely for the precise model-
ing of RNA secondary structures with modified alphabets,
e.g. synthetic nucleotides or modified nucleotides. This anal-
ysis is the first performed on the nearest neighbor parame-
ters that has systematically quantified the impact of each
individual parameter on structure predictions. It is also the
first that has been done using experimental uncertainties for
all parameters because not all the uncertainties in the loop
parameters have been reported previously.

MATERIALS AND METHODS

Software

Calculations were performed using the RNAstructure pack-
age (13). Specifically, partition function (program partition)
(24), stochastic sampling (program stochastic), ProbKnot

(25), secondary structure comparison (program scorer) and
the folding free energy calculator (program efn2) were used.

Tabulating RNA thermodynamic parameter standard errors

This work used the 2004 set of folding free energy param-
eters. For the loop parameters, these were previously re-
ported to tenths of a kcal/mol precision (9,17). For this
work, these parameters were recalculated to a higher pre-
cision, i.e. to hundredths of a kcal/mol. Additionally, er-
ror estimates for each parameter were determined through
the propagation of errors, calculation of the standard er-
ror of means or the standard error from a regression anal-
ysis, as appropriate. Experimental errors were determined
by approximating the uncertainty in change in enthalpy as
12% of the measured �H◦ and the uncertainty in the change
in entropy as 13.5% of the measured �S◦, following (26).
The uncertainty in the measured folding free energy is then
determined by propagating those uncertainties through the
free energy calculation, taking into consideration the corre-
lation between enthalpy and entropy (26). When a parame-
ter is a mean of up to five experiments, errors are propagated
using the error propagation method:

σ 2 =
∑
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σ 2
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where � is the error estimate in the nearest neighbor pa-
rameter �G◦, �i is the error estimate for experiment i, and
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i is the free energy from experiment i. For means, the
error propagation reduces to:
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for N experiments. For five parameters, the parameter is the
mean of six or more experimentally determined values and
the standard error of the mean is the estimated error. For the
parameters determined by linear regression, the standard
error of the regression is the estimated error.

Parameters used by RNAstructure are stored in plain
text files, organized by parameter classes. Files exist for
the following classes: helical stacking for canonical base
pairs, dangling ends, terminal mismatches, coaxial stack-
ing, loop initiation, hairpin loops with stability not well
modeled by generic terms and with length 3, 4 or 6 un-
paired nucleotides (triloops, tetraloops and hexaloops),
coaxial stacking for stacks without an intervening mis-
match, mismatch-mediated coaxial stacking with an inter-
vening mismatch, multibranch loop terminal mismatches,
hairpin loop terminal mismatches, internal loop terminal
mismatches, 1 × n internal loop terminal mismatches, 2 ×
3 internal loop terminal mismatches, 1 × 1 internal loops,
1 × 2 internal loops and 2 × 2 internal loops. In addition,
there are a number of implicit parameters that do not ap-
pear in the final tables themselves but are used to gener-
ate other parameters that are included. For example the
table used to lookup energies for internal loop first mis-
match terms has a total of 96 parameters. However each
parameter is simply a combination of AU/GU closure,
GA or AG first mismatch, GG first mismatch or UU first
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mismatch terms. In total, there are 13 254 parameters ei-
ther explicitly or implicitly included in the data tables. The
NNDB (http://rna.urmc.rochester.edu/NNDB) defines the
structure classes, provides the tables, and also provides in-
struction for using the parameters (17).

For this project, the set of independent parameters, i.e.
the set of adjustable parameters, was identified. This is a
smaller set of 291 parameters. The total parameters (13
254) include duplicate parameters due to symmetry, pre-
calculated approximations (using the implicit parameters),
and redundant parameters used in functional forms that are
not implemented. For symmetry, the tables have redundant
entries, where the same entry appears in two strand orienta-
tions. For example, in the base pair stack table, the stability
for a stack of a GC base pair followed by a GC base pair
is the same as CG base pair followed by a CG base pair. In
the former case, the consecutive Gs are oriented in the top
strand, and, in the latter, the two Cs are oriented in the top
strand. The unimplemented functional forms are those that
are implemented in software, but not used by the 2004 near-
est neighbor parameters. For example, RNAstructure sup-
ports different parameter values for terminal mismatches in
multibranch and exterior loops, but these are identical using
the current nearest neighbor rules.

A compilation of the nearest neighbor parameters,
grouped by parameter class and their error estimates are
provided in an Excel file in the Supplementary Data. In-
cluded in the file are all the calculations that were required
to derive the parameters as well as the list of references from
which the optical melting data were sourced.

New data table formats

For this project, the 2004 nearest neighbor parameters were
implemented in an improved data table format for RNAs-
tructure. The new data table format removed unnecessary
entries and made the tables more human and machine read-
able.

In addition, for this project, another data table format
was implemented that allowed for the propagation of pa-
rameter values. The second data table format allowed pa-
rameters to be defined based on the values of other param-
eters, making explicit the relationships between parameters.
This allows parameters to remain consistent (such that sym-
metric parameters are always equal to each other) and for
changes in parameters to propagate through the dependent
parameters. This ensured that changing the value of a stack-
ing term will always also change the value of the symmetric
stack. This also ensured that the values of the pre-calculated
approximations are updated when the value of an implicit
parameter is changed.

Sequence archive

There were 1663 sequences used in this analysis. The se-
quence families in this archive include 5S rRNA (309 se-
quences), 16S rRNA (21 sequences), 23S rRNA (4 se-
quences), tRNA (484 sequences), tmRNA (462 sequences),
Group I Introns (25 sequences), Group II Introns (3 se-
quences), RNase P RNA (15 sequences), SRP RNA (91 se-
quences), mRNAs (100 sequences), telomerase RNA (37 se-
quences) and randomly shuffled sequences (100 sequences).

The structural RNA sequences were previously assembled
for structure prediction accuracy benchmarks (25). The
mRNAs were from the RefSeq database and included 5’ and
3’ UTRs (27). The mRNAs were randomly selected from
∼90 000 human mRNA sequences, limited to those that
were <1.5 kb in length. The shuffled RNA sequences were
randomly selected from the archive and shuffled such that
the dinucleotide frequency was maintained. The shuffled se-
quences were generated using the Python module uShuf-
fle, which implements the Euler algorithm to randomly per-
mute a sequence while maintaining k-let frequencies for an
arbitrary k (28).

Sensitivity analysis

The sensitivity analysis was performed by perturbing each
independent parameter with perturbations ranging from
−3 � to +3 �, in increments of one �, where � is either
the standard error for the parameter or a flat value of 0.5
kcal/mol. Using standard error reveals those parameters
that have a large impact on structure prediction relative to
how well defined that parameter is, suggesting parameter
classes that can be the focus of future experiments. Using
a flat value allows a comparison of the impact of different
parameters, identifying those parameters whose precise val-
ues are the most important to determine for non-standard
nucleotides.

The standard error for a parameter is the estimate of the
magnitude of the error for the mean of the parameter, and
the standard error scales with the reciprocal of the square
root of the number of measurements (29). The standard er-
ror is the proper estimate of the error for a parameter be-
cause the major source of error is random experimental er-
rors; therefore taking multiple measurements reduces the
error in the parameter estimate. Standard deviation, in con-
trast, is an estimate of the width of the distribution of a pa-
rameter and is a reflection of the magnitude of the random
errors. As such, standard error is used throughout the sen-
sitivity analysis.

Using the perturbed parameter sets, new data tables for
RNAstructure were generated following the rules outlined
in the NNDB (17). This ensured that symmetric parameters
for base pairs and internal loops always had equivalent val-
ues. Additionally, the precalculated approximations, such as
those for unmeasured 1 × 1, 2 × 1 and 2 × 2 internal loop
parameters are updated to reflect the perturbed parameter
values. The perturbed data tables were then used to calcu-
late the pair probability of each possible base pair of each
sequence in the archive using the programs partition and
ProbabilityPlot. The program ProbabilityPlot outputs the
probability of all possible base pairs, which are those base
pairs that can form an allowed pair (A-U, G-C, G-U) and
can form a run of two or more base pairs.

RMSDs of the pair probabilities were calculated for each
sequence, comparing pair probabilities calculated from
each of the perturbed data tables to the probabilities calcu-
lated with unperturbed data tables (the reference parameter
set):

RMSD =
√∑

All BP (PN − PR)2

NBP

http://rna.urmc.rochester.edu/NNDB
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where NBP is the number of possible base pairs, PN is the
base pair probability calculated with the perturbed data ta-
bles and PR is the base pair probability calculated with the
reference data tables. NBP is the sum, for each sequence, of
the total number of possible canonical (AU, CG and GU)
pairs for that sequence, where pairs are also required to be
able to form a helix with at least two stacked base pairs.

Structures were predicted from the pair probabilities
(both perturbed and reference parameter sets) using Prob-
Knot (25). ProbKnot is a method to predict maximum ex-
pected accuracy structures (14). It assembles structures with
base pairs of nucleotides that are mutually maximal base
pairing partners. Thus, i is paired with j if and only if the
nucleotide with highest pairing probability with i is j and
the nucleotide with the highest pairing probability for j is i.

To quantify the difference in predicted structures between
a perturbed data set and the reference data set, a sensitiv-
ity defect and a positive predictive value (PPV) defect were
calculated for the secondary structures predicted using per-
turbed parameter tables as compared to secondary struc-
tures predicted using the reference-parameter tables. Sensi-
tivity defect and PPV defect were defined as a measure of
the difference in the two predicted structures:

Sensitivity Defect = 100 ×
(

1 − NBP with both tables

NBP with reference tables

)

PPV Defect = 100 ×
(

1 − NBP with both tables

NBP with perturbed tables

)

where NBP with both tables is the number of pairs that appear in
both predicted structures, NBP with perturbed tables is the num-
ber of pairs in the structure predicted with the perturbed
tables and NBP with reference tables is the number of base pairs
predicted with the standard nearest neighbor rules. A sen-
sitivity defect of 0 indicates that all pairs predicted by the
reference parameters are also predicted by the perturbed
parameters. A PPV defect of 0 indicates that all the pairs
predicted by perturbed parameters are also predicted by the
reference parameters. Base pairs were considered identical
even if one of the nucleotides in the pair was shifted by up
to one nucleotide in either direction. Therefore, pair i-j for
one set of parameters would be considered the same pair as
i–j, (i + 1) − j, (i − 1) − j, i − (j + 1) or i − (j − 1). This is
because thermal energies are sufficient for pairs to fluctuate
in this manner (30,31).

Parameter usage counting by stochastic sampling

To calculate how frequently each parameter is used for esti-
mating folding free energies for probable structures, 10 000
secondary structures were sampled from the Boltzmann en-
semble for each sequence in the archive using the program
stochastic, based on calculations using unperturbed data ta-
bles (32). Then, parameter usage was counted while the free
energy change of each of the secondary structures in the
stochastic sample was calculated using a free energy change
calculator, efn2.

efn2 was modified with the addition of a custom data type
that returns a parameter value while also counting how of-
ten that parameter value was called. Both multibranch and

exterior loops can adopt multiple potential configurations
of coaxial stacks, terminal mismatches, and dangling ends.
The functions calculating the folding free energies of multi-
branch and exterior loops use recursive algorithms to de-
termine the energy of the optimal configuration and had
to be modified so that parameter usage counts were not in-
cremented during recursive calculations and only counted
during the traceback steps of those functions. Additionally,
efn2 was modified to increment the counts of those param-
eters that are used in a multiplicative fashion by the multi-
plier. For example, the multibranch loop per helix penalty
needed to be counted once per branching helix.

RESULTS

One-at-a-time sensitivity analysis with experimental param-
eter errors

To determine the impact of experimental uncertainty in in-
dependent parameter values on the precision of pair prob-
ability estimation, single independent parameters were ad-
justed from their reference values by ±3, ±2 or ±1 �, where
� is the experimentally-derived standard error for each pa-
rameter, resulting in perturbed parameter sets. Partition
function calculations were performed to estimate base pair-
ing probabilities for each of 1663 sequences for each param-
eter set. Mean base pair probability RMSD was calculated
for each of these single parameter changes as compared
to the reference parameters. The estimated base pairing
probabilities were then used to predict a secondary struc-
ture for each sequence using ProbKnot, which predicts a
maximum expected accuracy secondary structure, includ-
ing those with pseudoknots (25). To quantify the change in
predicted secondary structure as compared to the reference
parameters, two structural defect metrics (Sensitivity Defect
and PPV Defect) were calculated for each sequence.

This analysis illustrates the impact of each parameter on
the precision of base pairing probabilities relative to how
well defined that parameter is. The average base pair proba-
bility RMSDs for each independent parameter are shown in
Figure 1A for ±3 standard errors. The same trends were ob-
served for parameter sets with a single parameter adjusted
by ±2 or ±1 standard errors, with smaller magnitudes of
RMSDs, sensitivity defects and PPV defects. These data
are available in an Excel file provided in the Supplementary
Data.

A high linear correlation was observed between RMSD
and sensitivity defect (R2 = 0.989, Supplementary Figure
S1) and also between sensitivity defect and PPV defect (R2

= 0.998, Supplementary Figure S2). The correlations de-
pend on the RNA family being studied, and the correlations
for each family are available in the Excel file in the Supple-
mentary Data.

Parameters whose errors had the greatest impact on esti-
mated base pair probabilities include canonical pair stack-
ing in helices (stacking parameters in Figure 1), multibranch
loop terms (miscellaneous loop parameters in Figure 1),
hairpin and bulge loop initiations (loop initiation in Figure
1) and coaxial stacking parameters. Parameters with mini-
mal impact on the estimated base pair probabilities include
hairpin loop folding free energies for specific sequences and
specific internal loop parameters.
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Figure 1. Sensitivity analysis. In each panel, independent parameters are
along the x-axis, organized by motif type and with a key below the plot. (A)
Mean base pair probability RMSD for the entire sequence archive except
randomized sequences for ±3 standard errors. The RMSDs for +3 stan-
dard errors are shown above the x-axis, while the RMSDs for −3 standard
error are shown below the x-axis. (B) The sensitivity analysis using flat er-
rors across all parameters. The analysis was performed as in Figure 1A,
except a � value of 0.5 kcal/mol was used for each parameter instead of
using the experimentally determined errors. (C) The counts of parameter
use. Use counts for each parameter were tabulated for folding free energy
calculations for secondary structures sampled from the Boltzmann ensam-
ble. This measurement was performed for all sequences. The counts for the
dependent parameters were attributed to the independent parameters on
which the dependent parameters depend.

One-at-a-time sensitivity analysis with flat parameter errors

The comparison of the magnitude of effects of perturbing
individual parameters was complicated by the varying mag-
nitudes of experimental errors across the parameters. For
example, the mean standard error for stacks of Watson–
Crick pairs is 0.07 kcal/mol, but the mean standard error
for all independent parameters is 0.38 kcal/mol, with vari-
ation from 0.03 to 1.47 kcal/mol. Therefore, to compare
the influence of each parameter relative to other parame-
ters, sensitivity analysis was repeated using a flat � value of
0.5 kcal/mol for each parameter. The average RMSDs from
this analysis are shown in Figure 1B.

Compared to the results using experimental errors for
each parameter, the flat errors resulted in several differences.
Notably, the stacking parameters had a greater effect on

base pair probability estimate precision with the flat errors,
which is not surprising considering the relatively low esti-
mated errors for those parameters. In addition, loop initi-
ation parameters and the implicit internal loop parameters
had larger impacts on base pair probabilities with the flat
error value compared to the results using the experimental
errors, reflecting the relatively low experimental uncertainty
(0.05–0.31 kcal/mol) for these parameters.

Increasing the stability of the internal loop asymmetry
parameter by subtracting 1.5 kcal/mol resulted in a num-
ber of sequences for which there is no predicted secondary
structure. This is because the asymmetry term became fa-
vorable, making increasingly large asymmetric loops domi-
nantly favorable. As a result, ProbKnot does not predict any
helices as long as the default minimum allowed helix length
(3 bp) and all the base pairs are thus removed. For the af-
fected sequences, the PPV defect was set to 100%. Approx-
imately 2.5% of the sequences exhibited this behavior for
this particular parameter set. No other parameter sets were
affected.

Parameter usage counting

One method to track parameter usage is to track the num-
ber of times that a parameter is called by the partition func-
tion. However, due to the recursive nature of the dynamic
programming algorithm used by the partition program, this
approach would only return the explicit usage counts, ig-
noring the implicit parameter usage caused by recursion to
prior calculated values as part of the dynamic programming
algorithm. Instead, the energy calculator program efn2 was
instrumented to track the total number of times each near-
est neighbor parameter was used in the calculation of free
energy changes for secondary structures stochastically sam-
pled from the Boltzmann distribution (32). This approach
returns the parameter usage for a set of secondary struc-
tures representative of the ensemble. The cumulative pa-
rameter usage counts were tracked for the entire sequence
archive (Figure 1C). The most-used parameters were the he-
lical stacking parameters, AU/GU helical end terms, multi-
branch loop parameters, internal loop asymmetry, single
nucleotide bulge loop initiation and the mismatch-mediated
coaxial stacking parameter.

Figure 2 shows a plot of logarithm of RMSD from the
analysis using flat errors, as a function of logarithm of pa-
rameter usage count for all parameters. This plot demon-
strates that the effect on pairing probability estimate pre-
cision for a thermodynamic parameter varies as a function
of the number of uses of that parameter. Parameters used
more often to evaluate the free energies in the folding en-
semble are associated with higher RMSD.

The average change in pair probability with parameter per-
turbation is a function of pair probability

To test whether the magnitude in change in pairing proba-
bility depended on the pairing probability, the mean abso-
lute value of pairing probability change as function of pair-
ing probability was plotted (Figure 3A). In this analysis, all
possible base pairs across all sequences were binned (in in-
tervals of 1%) according to their probability estimated us-
ing the reference thermodynamic parameters. The set of all
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Figure 2. Parameter usage counts correlate with RMSD. The log10 of
RMSD as a function of the log10 of the thermodynamic parameter us-
age count for calculating folding energies of a stochastic sample across all
sequences. RMSD was calculated using a flat error estimate of +3� (1.5
kcal/mol). A best fit line is shown and the linear correlation coefficient,
R2, is 0.8983.

Figure 3. The sensitivity of base pairing probability to parameter change
is a function of the probability of the pair. (A) The mean absolute value of
change in pairing probability plotted as a function of pairing probability.
The change in each base pair probability in the entire sequence archive was
averaged over every independent parameter change of −3 standard errors.
The changes were then averaged for every pair probability bin. (B) A plot
of the pair probability distribution. Shown is a histogram of the reference
base pair probabilities. Note that ∼98% of the pair probabilities have a
value <1%; the y-axis was limited to 50 000 counts per bin (the number of
counts for the 0–1% bin is 17.44 million and the number of counts in the
1–2% bin is 69 865).

possible base pairs are all base pairs that can form a canon-
ical base pair (A-U, G-C, G-U) and can also form a helix of
two or more stacked base pairs. Then the mean of the abso-
lute value of the change in pairing probability was averaged
for all perturbed parameter sets for pairs in each bin. This
analysis found that the base pairs with intermediate pairing
probability tend to fluctuate the most in probability as the
parameter values are changed.

Additionally, the number of pairs in each pairing prob-
ability bin was plotted (Figure 3B). As expected, a large
number of pairs had low pairing probability (close to zero).
Starting at a pairing probability of about 20%, the bin pop-
ulation increased as the pair probabilities decreased. This is
expected because the total number of possible pairs grows
with the square of the sequence length, but the number of
pairs with high probability can only grow linearly with se-
quence length. Thus, most of the possible base pairs must
have low formation probability. At the same time, the bin
population increases as the pairing probability increases
above 90%.

Because the ratio of probable base pairs to low proba-
bility pairs (close to zero) is proportional to the reciprocal
of the sequence length, it is difficult to compare base pair
probability RMSDs between RNA families, which can vary
in length. In fact, the slope of a linear fit of sensitivity de-
fect as a function of pair probability RMSD for the different
RNA families is dependent on mean family sequence length
(Supplementary Figure S3). A corrected RMSD value can
be calculated by limiting the mean to base pairs with rele-
vant probability:

cRMSD =
√∑

Relevant BP (PN − PR)2

NRelevant BP

Assuming that base pairs with relevant probability will
dominate the total base pair probability and that the num-
ber of significant base pairs is the square root of the number
of total potential base pairs, then the corrected RMSD re-
duces to:

cRMSD =
√∑

All BP (PN − PR)2

√
NBP

On average, the top
√

NBP potential base pairs account
for ∼85% of the total base pair probability (Supplementary
Figure S4). By correcting for the number of probable base
pairs, the length dependence for the ratio of mean sensitiv-
ity defect and mean cRMSD is removed (Supplementary
Figure S5).

DISCUSSION

This work provides several new insights into the prediction
of RNA secondary structure. First, there are parameters
that are crucial for high-quality base pair estimates, and
these parameters should be the focus of additional exper-
iments to improve the accuracy and precision of secondary
structure prediction. Second, there are nearest neighbor pa-
rameters for which errors in the estimates have little impact
on the precision of base pairing probability estimates (Fig-
ure 1). This means that these parameters do not need to be



6174 Nucleic Acids Research, 2017, Vol. 45, No. 10

precisely determined for robust structure prediction. For ex-
ample, in a set of folding nearest neighbor parameters de-
veloped for modified chemistries, these parameters could be
estimated based on fewer experiments than were used with
RNA, without compromising the precision of base pairing
probability estimates. Third, the imprecision of base pairing
probability estimates varies across pair probabilities. High
and low probability pairs are less prone to imprecision in
the parameters (Figure 3).

From the sensitivity analysis using a flat � value, a num-
ber of parameters were highlighted as being particularly im-
portant for predicting RNA secondary structure with high
precision. As expected, the helical stacking parameters are
important for precise RNA structure prediction. However,
there are a number of other parameters that are observed to
be just as important, such as multibranch loop parameters
(indices 85–86 in Figure 1), the terminal AU/GU penalty
(index 87 in Figure 1), bulge loop initiations (indices 94–95
in Figure 1) and the AU/GU closure of 1 × n internal loops
(index 236 in Figure 1). Also important are the hairpin and
internal loop initiation energies.

Other parameters appear to have little impact on the
estimates of pair probabilities when perturbed. These in-
clude the parameters for specific triloops, tetraloops and
hexaloops sequences, as well as many of the internal loop
parameters. The parameters with least impact are those pa-
rameters that apply to specific sequences. For example, the
tetraloop parameter tables contains the folding free energy
change of 16 tetraloops that are known by experiment to be
poorly predicted using the standard hairpin loop parame-
ters. These tetraloops are 6 nt long (including the sequence
of the closing base pair) and therefore a specific tetraloop
stability would not apply in calculations for sequences in
which the 6-mer motif is not found.

Figure 1C shows the tally for the parameter usages when
calculating folding free energy changes for a stochastic sam-
ple. This is an estimate for the importance-weighted use
of each parameter when calculating the partition function.
The most frequently called parameters are those for coax-
ial stacking, helical stacking, AU/GU end penalties, multi-
branch loop initiation parameters and bulge loop initia-
tions. Figure 2 plots the logarithm of the mean RMSD
from the sensitivity analysis using flat errors as a function
of the logarithm of the parameter usage for each parame-
ter, clearly showing the correlation between the two. How-
ever, there are parameters whose effects on structure pre-
diction are poorly predicted by parameter usage (Supple-
mentary Figure S6). Examples include the parameters for
bulge loop initiations, AU/GU end penalty, AU/GU clo-
sure of internal loops, internal loop asymmetry and the
multibranch loop per helix penalty, which all have greater
effects on structure prediction than other parameters with
similar parameter usage counts. The bulge loop initiation
parameters with the greatest impact are the loop initiation
terms for bulge loops of two and 3 nt. The initiation pa-
rameters for bulge loops of 4–6 nt are linear extrapola-
tions of those two parameters, while the initiation terms for
bulge loops >6 are extrapolated from the initiation of 6 nt
bulge loops using polymer theory (9). This means pertur-
bations in terms for bulge loops of 2 and 3 nt are propa-
gated for estimates of larger bulge loops. One effect is that

Figure 4. The sensitivity to parameter changes is family dependent. The
scatter plots show the sensitivity defect from changing a parameter by +3
standard errors for specific RNA families as a function of the average for
all sequences (where the average is the mean of the per family RMSDs).
Therefore, this plot has one point per family for each of the independent
parameters. If the sensitivity defect for a parameter for an individual RNA
family is identical to the average across all families, it would fall on the
diagonal line (shown in black). The mRNA and shuffled RNA sequences
experience a greater sensitivity defect than the average (their points are
generally above the diagonal line), while 5S rRNAs and tRNAs have a
lower sensitivity defect than the average (the points generally fall below
the line).

for some perturbed parameter sets, the slope of the extrap-
olation changes, making larger bulge loops more favorable
than small bulge loops and this artifact explains why per-
turbation of bulge loop initiation parameters stand out.
The AU/GU helix end penalty is a case where the ther-
modynamic model changed since the 2004 nearest neigh-
bor rules. In the most recent parameter derivation (33), the
GU helix end term is set to 0 in light of new data, indicat-
ing that the parameter is not being correctly applied in the
2004 parameter set used here. This might also hold for the
parameter for AU/GU closure of internal loops. Similarly,
it is known that the functional form that is used to calcu-
late multibranch loop energies in the dynamic programming
algorithm poorly models the measured experimental data
(34,35). Therefore, parameters for which the mean RMSD
is larger than expected for the number of uses of the parame-
ters appear to identify parameters for loop nearest neighbor
models that do not model folding stability as well as other
loop models.

The impact of perturbing parameters depended on iden-
tity of the RNA family being analyzed. RNA families such
as 5S rRNA and tRNA, were more resistant to changes
in the parameters than the average for all sequences, while
other RNA families such as mRNA and randomly shuf-
fled sequences were more sensitive to parameter changes
than the average for all sequences (Figure 4). However, it
should be noted that other structured ncRNA, like 23S and
16S rRNAs, behaved similarly to mRNA and randomized
RNAs (Interactive plot in the Excel file included in Supple-
mentary Data), indicating that RNA structure was not the
only factor that determined this response.



Nucleic Acids Research, 2017, Vol. 45, No. 10 6175

When the average change in base pair probability was
plotted against the initial base pair probability calculated
from unperturbed data tables, highly probable base pairs
were found to be resistant to changes in a single thermody-
namic parameter (Figure 3A). This suggests that the pairs
predicted with greatest confidence in RNA secondary struc-
ture prediction are also robust to errors in estimates of pa-
rameters (24). Additionally, the low probability base pairs
were also resistant to changes in pair probabilities with
changes in a single parameter. One reason for this is that,
as shown in Figure 3B, there is a large set of pairs that have
little to no probability of forming. As parameters are per-
turbed, it is simply unlikely that change in a single param-
eter would dramatically increase the pairing probability for
these unlikely pairs.

Another observation is that there is a general asymme-
try of the effects of parameter deviations, with changes that
make a parameter more stable tending to have a greater
impact than changes that make the parameter less stable
(Supplementary Figure S7). For example, the helical stack-
ing parameters have 40% greater impact on RMSD when
perturbed by −3 standard errors than by +3 standard er-
rors. Additionally a plot of the difference between the aver-
age probability changes between −3 and +3 standard error
changes as a function of initial base pair probability shows
that the −3 standard error parameter sets disproportionally
affect the base pair probabilities of more likely base pairs
(Supplementary Figure S8).

An important use of this sensitivity analysis is to pro-
vide focus on the parameters that need the most immediate
attention of additional experiments to refine the parame-
ters or improve the underlying models. The parameters that
stand out as most in need of additional attention are bulge
loop initiations, multibranch loop parameters and the heli-
cal stacking parameters with GU base pairs. Interestingly,
some of these categories have already been addressed by ad-
ditional experiments performed after the parameters were
last assembled in 2004. For example, bulge loops and GU
pairs have been studied with additional optical melting ex-
periments (33,36–39). The results here show the importance
of integrating the new data into the complete set of nearest
neighbor parameters in current use.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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