
biomolecules

Article

Promoter Hypermethylation of Tumor-Suppressor
Genes p16INK4a, RASSF1A, TIMP3,
and PCQAP/MED15 in Salivary DNA as a Quadruple
Biomarker Panel for Early Detection of Oral
and Oropharyngeal Cancers

Chamikara Liyanage 1 , Asanga Wathupola 1 , Sanjayan Muraleetharan 1, Kanthi Perera 2,
Chamindie Punyadeera 3,4 and Preethi Udagama 1,*

1 Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka;
chamikara1@live.com (C.L.); awathupola@zoology.cmb.ac.lk (A.W.); muraly_3@yahoo.com (S.M.)

2 National Cancer Institute of Sri Lanka, Maharagama 10280, Sri Lanka; kanthiperera3@gmail.com
3 The School of Biomedical Sciences, Institute of Health and Biomedical Innovation,

Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
4 Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia;

chamindie.punyadeera@qut.edu.au
* Correspondence: preethi@zoology.cmb.ac.lk; Tel.: +94-71-441-6050; Fax: +94-11-250-3148

Received: 17 March 2019; Accepted: 8 April 2019; Published: 12 April 2019
����������
�������

Abstract: Silencing of tumor-suppressor genes (TSGs) by DNA promoter hypermethylation is an
early event in carcinogenesis; hence, TSGs may serve as early tumor biomarkers. We determined
the promoter methylation levels of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs in salivary
DNA from oral cancer (OC) and oropharyngeal cancer (OPC) patients, using methylation-specific
PCR coupled with densitometry analysis. We assessed the association between DNA methylation
of individual TSGs with OC and OPC risk factors. The performance and the clinical validity
of this quadruple-methylation marker panel were evaluated in discriminating OC and OPC
patients from healthy controls using the CombiROC web tool. Our study reports that RASSF1A,
TIMP3, and PCQAP/MED15 TSGs were significantly hypermethylated in OC and OPC cases
compared to healthy controls. DNA methylation levels of TSGs were significantly augmented
by smoking, alcohol use, and betel quid chewing, indicating the fact that frequent exposure to risk
factors may drive oral and oropharyngeal carcinogenesis through TSG promoter hypermethylation.
Also, this quadruple-methylation marker panel of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15
TSGs demonstrated excellent diagnostic accuracy in the early detection of OC at 91.7% sensitivity
and 92.3% specificity and of OPC at 99.8% sensitivity and 92.1% specificity from healthy controls.
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1. Introduction

Oral and oropharyngeal squamous cell carcinomas (OSCC and OPSCC) are the most common
types of head and neck squamous cell carcinoma (HNSCC) ranked as the sixth most common cancer
type and the eighth most common cause of cancer death worldwide [1,2]. Annually, cancers in the lip
and oral cavity account for more than 130,900 new cases and 74,500 deaths for males in developing
countries [2]. Oral cancer (OC) and oropharyngeal cancer (OPC) record a high age-standardized
incidence rate (ASIR) in Sri Lanka [3]. Despite the advances in treatment, no significant improvement
was witnessed in the five-year survival rate of OC patients in Sri Lanka over the past several decades,
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where survival remains at 50–55% [4,5]. Tobacco smoking, alcohol consumption, and betel quid
chewing are considered as established risk factors for OC and OPC, while there is a dramatic increase
in the incidence of OPC attributable to human papillomavirus (HPV) infections [6,7].

Cancer is a disease which evolves from the successive accumulation of genetic and epigenetic
alterations [8]. Hypermethylation of cytosine/guanine (CpG) islands in the promoter regions of
tumor-suppressor genes (TSGs) cause loss of expression leading to cancer initiation [9]. Research
reported that many TSGs are epigenetically silenced by promoter hypermethylation in the OC cell
genome [10–13]. Increasing evidence is mounting that age, race, and tobacco, alcohol, and betel quid
carcinogens are capable of inducing promoter hypermethylation in TSGs, which may ultimately induce
oral malignancies [14–17].

Successful screening and surveillance approaches consider the collection of genomic material
using minimally invasive approaches. Aberrant DNA methylation can be detected in DNA from
serum, sputum, bronchial lavage fluid, urine, and ductal fluids from patients with many different
types of cancers [10,18–21]. Saliva is a complex and important body fluid which is already used for
screening cancers in the upper aero-digestive tract, as well as OC and OPC [10,22–26]. Early screening
of oral lesions using salivary biomarkers is very promising because saliva is in direct contact with the
oral mucosa and cancerous lesions with a low background of inhibitory substances [27]. Methylation
array analysis of DNA allowed interrogating cancer-related genes that are specific and sensitive for
the early detection of cancer [28]. The methylation-specific polymerase chain reaction (MS-PCR)
method provides a highly sensitive, economical, and time-efficient method to detect relatively low
concentrations of methylated sequences in salivary rinses [29–32].

Early detection efforts using molecular markers have the potential to decrease the disease
burden and play a significant role in the successful clinical treatment of any cancer [27]. In the
current study, we aimed to determine whether promoter methylation of p16INK4a, RASSF1A, TIMP3,
and PCQAP/MED15 TSGs in DNA derived from saliva can serve as a diagnostic marker panel in the
early detection of OC and OPC. This study focused on two objectives: (1) to determine the promoter
methylation levels of TSGs using the MS-PCR method combined with densitometry analysis to assess
their association with established and emerging risk factors of OC and OPC, and (2) to evaluate the
clinical performance of this methylation marker panel in discriminating OC and OPC subjects from a
healthy control cohort using CombiROC analysis.

2. Materials and Methods

2.1. Ethical Approval

This study received the consent of the Ethics Review Committee (ERC) of the Faculty of Medicine,
University of Colombo, Sri Lanka (EC-16-125) for the collection of biological samples and socio-economic
and demographic details of OC and OPC patients, and of healthy controls.

2.2. Study Subjects and Data Collection

Newly enrolled, treatment-naive cancer patients with primary cancer in the oral cavity (N = 54)
and oropharynx (N = 34) or patients with loco-regional metastasis with oral/oropharyngeal origin who
gave voluntary consent were enrolled in this study as case/test subjects, from the National Cancer
Institute, Sri Lanka. An interviewer-administered questionnaire was used to collect demographic data
and risk factors associated with OC and OPC. Medical information of patients was retrieved from their
pathology report with the pathological staging of the tumor and histopathological classification of
the tumor grade. Age- and gender-matched healthy individuals (N = 60) with no personal history of
cancer were recruited as normal healthy control subjects.
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2.3. Sample Collection

Saliva samples from case and control subjects were collected at baseline. Patients who volunteered
to take part in the study were requested to sit in a comfortable upright position. After rinsing the
mouth with saline water to remove food debris, subjects were asked to tilt their head down for 5 min to
pool saliva in the mouth. A volume of 2 mL of saliva was collected into sterile containers. Dry ice was
used to transport sample containers. Samples were centrifuged at 1200× g for 10 min at 4 ◦C to isolate
cellular pellet collection [11,33,34]. Sample collection was carried out for 12 months. DNA extraction
was performed within seven days of the date of sample collection.

2.4. DNA Extraction and Human DNA Confirmation

The DNeasy Blood and Tissue kit (QIAGEN, Hilden, Germany; Cat no: 69504) was used according
to the manufacturer’s instructions to extract DNA from cell pellets of saliva samples. PC03 and KM38
primers were used on extracted DNA samples to amplify a 167-bp region of the human β-globin
housekeeping gene to confirm the presence of human DNA [35]. PCR-positive samples were used for
further analyses.

2.5. HPV-L1 DNA Detection

GP5+/GP6+ primer sequences were used to amplify a 150-bp region of the HPV-L1 gene [36]
(Table 1). The reaction mixture was prepared with the Promega GoTaq Flexi DNA Polymerase PCR
kit. Each PCR reaction contained 2.5 mM MgCl2, 0.2 mM deoxyribonucleotide triphosphate (dNTP),
and 0.5 µM primers. PCR conditions were set up as follows: initial denaturation at 94 ◦C for 3 min,
40 cycles of denaturation at 94 ◦C for 45 s, primer annealing at 42 ◦C for 45 s, primer extension at 72 ◦C
for 45 s, and a final extension at 72 ◦C for 5 min. Each PCR reaction panel included an HPV-positive
control and a negative PCR control. PCR products were visualized on 2% agarose gels with ethidium
bromide (EtBr) staining [37].

Table 1. Primer sequences used in the study.

Gene Primer Sense (5′–3′) Primer Antisense (5′–3′) PCR Product
Size (bp)

β-globin PC03:
ACACAACTGTGTTCACTAGC

KM38:
TGGTCTCCTTAAACCTGTCTTG 167

HPV-L1 GP5+:
TTTGTTACTGTGGTAGATACTAC

GP6+:
GAAAAATAAACTGTAAATCATATT 150

p16INK4a (MI) GAGGAAGAAAGAGGAGGGGTTG ACAAACCCTCTACCCACCTAAATC 274
p16INK4a (M) GAGGGTGGGGCGGATCGC GACCCCGAACCGCGACCG 143
p16INK4a (U) TTATTAGAGGGTGGGGTGGATTGT CAACCCCAAACCACAACCATAA 145

RASSF1A
(MI) GGAGGGAAGGAAGGGTAAGG CAACTCAATAAACTCAAACTCCC 260

RASSF1A (M) GGGGGTTTTGCGAGAGCGC CCCGATTAAACCCGTACTTCG 203
RASSF1A (U) GGTTTTGTGAGAGTGTGTTTAG ACACTAACAAACACAAACCAAAC 172

TIMP3 (M) GCGTCGGAGGTTAAGGTTGTT CTCTCCAAAATTACCGTACGCG 116
TIMP3 (U) TGTGTTGGAGGTTAAGGTTGTTTT ACTCTCCAAAATTACCATACACACC 122

PCQAP 5′ (M) GTTTTGTGATTGAGGYGGCGGC AAAAATCCCACAATCCAACCC 167
PCQAP 5′ (U) GTTTTGTGATTGAGGYGGTGGT AAAAATCCCACAATCCAACCC 167

MI: methylation-independent primers; M: methylation primers; U: unmethylation primers.

2.6. DNA Bisulfite Conversion

EpiTect Plus DNA Bisulfite Kit (QIAGEN, Hilden, Germany; cat No.: 59124) was used for DNA
bisulfite conversion according to the manufacturer’s instructions. The bisulfite reaction mix was
prepared at room temperature using 20 µL (1 µg/µL) of thawed DNA. Bisulfite-converted DNA
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(50 ng/µL) in elution buffer was immediately used for the MS-PCR or stored at −20 ◦C. DNA purity
and the concentrations were assessed using a NanoDrop™-1000 Spectrophotometer (Thermo Scientific,
Wilmington, DE, USA).

2.7. Target Gene Selection

A panel of four genes with tumor-suppressor activities was selected to examine methylation
abnormalities in promoter regions. These TSGs were described as targets for epigenetic silencing
in diverse human cancers. Among these, p16INK4a is involved in cell-cycle control, RASSF1A in
apoptosis, TIMP3 in cell invasion, and PCQAP/MED15 in transcription regulation [10,12,13,26]. These
TSGs were already evaluated in other studies, and our plan was to validate them in a different
geographical population [22,26,38]. Initially, p16 promoter hypermethylation was discovered to be
involved in the pathogenesis of oral pre-cancerous lesions associated with betel quid chewing in Sri
Lanka [15]. Two previous studies reported that RASSF1A, p16, and PCQAP/MED15 TSG salivary
methylation markers are useful in detecting hypermethylation events in HNSCC patients [11,26].
Similarly, Lim et al. in 2016 showed that a p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 salivary
methylation marker panel offers the potential in detecting early-stage HPV-negative HNSCC tumors [39].
Thus, we presumed that the evaluation of promoter hypermethylation of these four selected TSGs
would be collectively useful as a diagnostic tool for the early detection of OC/OPC.

2.8. Methylation Analysis of TSGs Using MS-PCR Assay

The methylation status of the selected TSGs was detected using the MS-PCR assay for
bisulfite-converted DNA [29]. Specificity of each MS-PCR primer pair used in the current study
(Table 1) was validated by previous studies [10,11,26,31,39]. Both methylation and unmethylation
primer pairs were tested using bisulfite-unconverted DNA to determine their specificity and they
were found not to amplify. Unmethylation PCR was used as a normalizer for the methylation PCR.
Any sample which showed no unmethylation band was either discarded from the analysis or the PCR
was repeated. For each set of MS-PCR, a tumor sample with known hypermethylation was used as a
positive control, while DNase/RNase-free distilled water was used for the negative PCR control.

We used a previously reported nested MS-PCR method to detect the promoter CpG methylation
of p16INK4a and RASSF1ATSGs [26]. Methylation-independent primers of p16INK4a and RASSF1A TSGs
were used at 0.5 µM in a standard PCR (25 µL of reaction volume) using Go Taq DNA polymerase
(Promega, Madison, WI, USA) with 3 µL (150 ng) of bisulfite-converted DNA template (diluted either
three- or five-fold depending on the DNA concentration) and supplied 1× Go Taq Flexi Buffer, 2.5 mM
MgCl2, and 0.6 mM dNTPs (Promega-USA). The following cycling conditions were applied for the
stage-1 PCR: initial denaturation at 94 ◦C for 5 min, 35 cycles of denaturation at 94 ◦C for 30 s, primer
annealing at 60 ◦C for 30 s, primer extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min.
To detect unmethylated or methylated alleles for p16INK4a and RASSF1A genes, stage-2 unmethylation
and methylation touchdown gradient PCR was carried out using 1 µL from the stage-1 product as the
DNA template. Both touchdown gradient PCRs involved an initial denaturation at 94 ◦C for 5 min,
25 cycles of denaturation at 94 ◦C for 30 s, primer annealing with temperature decreasing from 64 ◦C to
56 ◦C in 2 ◦C/5-cycle steps, primer extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min.

For both TIMP3 and PCQAP/MED15 TSGs, specific methylation and unmethylation primer
sets (1 µM) were used in two separate PCR reactions in a standard PCR. For both methylation and
unmethylation reactions, a ratio of 25:1 of the total bisulfite-converted DNA template was taken.
Methylation and unmethylation PCRs of the TIMP3 gene consisted of an initial denaturing stage at
95 ◦C for 5 min, followed by 40 cycles of 30 s at 94 ◦C, 30 s at 54 ◦C, and 30 s at 72 ◦C, and a final extension
at 72 ◦C for 5 min. We used methylation and unmethylation primer sets specific for the CpG islands in
the main promoter region of PCQAP/MED15gene (PCQAP5′). For PCQAP5′, both methylation and
unmethylation PCRs involved an initial denaturing stage at 95 ◦C for 5 min, followed by 35 cycles of
30 s at 94 ◦C, 30 s at 62.5 ◦C, and 1 min at 72 ◦C, and a final extension at 72 ◦C for 5 min.
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2.9. Agarose Gel Electrophoresis and Determination of Gene Methylation Levels

A volume of 5 µL of each PCR amplicon was visualized on 4% agarose gels. Samples that gave
strong consistent bands were exclusively used for the promoter methylation analysis. PCR Fusion SL
gel documentation system (VilberLourmat, Marne la Vallee, France) was used to scan gels, and band
intensities of each sample were determined using ImageJ software (National Institutes of Health,
Bethesda, MD, USA). Finally, the ratio between methylated and unmethylated band intensities
was calculated using Microsoft Excel (Microsoft Corporation, Redmond, Washington, DC, USA).
Quantification of band intensities was carried out by two independent researchers to minimize
observational errors.

2.10. Statistical Analysis

Statistical analysis was performed using SPSS version 20 for Windows (IBM-SPSSStatistics, IBM
Corporation, Armonk, NY, USA) and Graph-Pad Prism (GraphPad Software, Inc., San Diego, CA,
USA) software packages. Comparisons of normally distributed variables of independent samples were
performed using the t-test. Since methylation levels were not normally distributed, non-parametric
Mann–Whitney U test was used to compare methylation levels of normal healthy controls with those
of OC and OPC patients. Chi-square test and binary logistic regression assessed the relationship
(combined effect and the independent effect, respectively) between the presence of OC/OPC and
predictor variables/risk factors. Calculated odds ratios (OR) measured the risk of developing OC
and OPC. Wald statistic was used to determine parameter significance (p-value) in logistic regression
models. All statistical tests were two-tailed, and significant differences between two categorical
variables were marked with * p < 0.05, ** p < 0.001, and *** p < 0.0001.

CombiROC web tool (http://CombiROC.eu) was used to determine the clinical performance of
these four methylation markers in discriminating OC and OPC subjects from healthy controls [40].
Optimal marker combinations and their clinical performance were determined through the
combinatorial analysis of the receiver operating characteristic (ROC) curves provided by the CombiROC
tool. The 10-fold cross-validation (CV) step was used to attain a reliable estimation of the clinical
performance of the best marker combination [40]. This step is crucial as it could avoid the risk of
over-fitting and show how well the panel translates into clinical diagnosis. Analyzing the statistical
significance of the area under the curve (AUC) value is imperative, as the CV procedure could generate
over-optimistic results. Therefore, permutation tests were performed to assess the statistical significance
of AUC values generated by each ROC curve analysis.

3. Results

3.1. Population Characteristics of the Study Cohorts

Both patient cohorts and controls were found comparable in age and gender. Mean age of OC and
OPC subjects and of normal healthy subjects was 62 ± 12.5, 62 ± 10.1, and 60 ± 7.1 years, respectively.
A male preponderance was evident in both OC (90.7%) and OPC (94.1%) cohorts (Table 2). A majority
of the OC (79.7%) and OPC (91.2%) patients were smokers, where most of them consumed more than
five cigarettes daily (Table 2). Higher levels of alcohol consumption (OC = 74.1%; OPC = 91.2%) and
betel quid chewing (OC = 77.8%; OPC = 76.4%) were recorded in patient cohorts, where a majority of
them were habitual consumers for more than 25 years of their lifespan (Table 2).

http://CombiROC.eu
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Table 2. Socio-demographic and tumor characteristics of the study cohorts.

OC (N = 54) OPC (N = 34) Healthy Controls (N = 60)

Demographic characteristics

Mean age 62 62 60
<50 7 (13.0) 3 (8.8) 1 (1.6)

50–59 11 (20.3) 13 (38.2) 29 (48.3)
>60 36 (66.7) 18 (53.0) 30 (50)

Gender
Male 49 (90.7) 32 (94.1) 55 (91.6)

Female 5 (9.3) 2 (5.9) 5 (8.4)

Smoking
Cigarettes/day smoked

Non-smokers 11 (20.3) 3 (8.8) 39 (65.0)
1 to 5 14 (26.0) 11 (32.4) 8 (13.3)

>5 29 (53.7) 20 (58.8) 13 (21.6)

Alcohol use
Number of years in use

Non-drinkers 14 (25.9) 3 (8.8) 31 (51.6)
1–25 14 (25.9) 12 (35.3) 10 (16.6)
>25 26 (48.2) 19 (55.9) 19 (31.6)

Betel quid chewing
Number of years in use

Non-consumers 12 (22.2) 8 (23.5) 41 (68.3)
1–25 16 (29.6) 9 (26.5) 7 (11.6)
>25 26 (48.2) 17 (50.0) 12 (20)

HPV infection
HPV Positive 5 (9.2) 3 (8.8) 1 (1.6)

HPV Negative 49 (90.8) 31(91.2) 59 (98.4)

Tumor characteristics

Anatomic site
Lips 2 (3.7)

Tongue (Front 2/3) 26 (48.1)
Hard palate 1 (1.9)

Buccal mucosa 21 (38.9)
Mouth floor 3 (5.5)
Retromolar 1 (1.9)

Tongue (Back 1/3) 0 (0)
Soft palate 7 (20.6)

Tonsillar pillar 12 (35.3)
Back wall of the throat 15 (44.1)

Tumor grade
Well differentiated (1) 24 (44.4) 17 (50.0)

Moderately differentiated (2) 7 (13.0) 5 (14.8)
Poorly differentiated (3) 0 (0) 2 (5.9)

Undifferentiated (4) 19 (35.2) 6 (17.6)
Unknown 4 (7.4) 4 (11.7)

Tumor stage
Early stage (I, II) 8 (14.8) 2 (5.9)

Advanced stage (III, IV) 23 (42.6) 13 (38.2)
Unknown 23 (42.6) 19 (55.9)

OC: oral cancer; OPC: oropharyngeal cancer; HPV: human papillomavirus. N: Total number of subjects in each cohort.

Regarding the primary tumor site of cancer patients, most of the OC cases were cancers on the front
two-thirds of the tongue (48.1%), while cancers on the back wall of the throat were common in OPC
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cases (44.1%). In addition, grade 1 (well differentiated) tumors were common among cancer patients
(OC = 44.4%; OPC = 50.0%) compared to other tumor grades. Although cancer tumor//node/metastasis
(TNM) stage information was unavailable for all patients, the majority of the recruited patients
(OC = 42.6%; OPC = 38.2%) were in advanced stages of cancer development (Table 2).

3.2. HPV-L1 Analysis

Detecting the presence of the HPV-L1 in salivary DNA samples provides an accurate output on
high-risk HPV strains [36]. In this study, the HPV-L1 was detected in five OC subjects, three OPC
subjects, and a single subject from the normal healthy control cohort (Figure 1).

3.3. Combined and Independent Effect Assessment of Etiologic Agents of OC and OPC

Combined and independent effects of the risk factors of OC and OPC are summarized in Table 3.
Examination of the effects of established risk factors on OC and OPC revealed that smoking, alcohol use,
and betel quid chewing had significant combined effects for both cancer types. Smoking demonstrated
the strongest combined effect for OC (OR = 7.3 (95% confidence interval (CI) = 2.8–18.6)), as well
as for OPC (OR = 19.2 (95% CI = 4.7–89.8)). In addition, a substantial independent effect was also
noted to be driven by smoking for both OC (OR = 7.8 (95% CI = 2.1–28.4)) and OPC (OR = 20.8
(95% CI = 2.4–178.2)). Although the combined effect of HPV infection was not significant for both
cancer types, it exerted a substantially high independent effect for OPC (OR = 19.6 (95% CI = 1.0–146.4))
compared to OC (OR = 6.7 (95% CI = 0.6–123.8)) development.

Table 3. Combined and independent effects of established and emerging risk factors of OC and OPC.

Cancer Type Predictor
Variable/Risk Factor

Crude OR
(95% CI) p-Value a Adjusted ORR

(95% CI) p-Value b

OC

Smoking 7.3 (2.8–18.6) <0.0001 *** 7.8 (2.1–28.4) <0.05 *
Alcohol use 3.1 (1.2–7.3) <0.05 * 0.6 (0.1–2.0) 0.385

Betel quid chewing 7.1 (3.0–19.2) <0.0001 *** 5.7 (2.2–14.3) <0.05 *
HPV infection 6.0 (0.6–140.9) 0.07 6.7 (0.6–123.8) <0.05 *

OPC

Smoking 19.2 (4.7–89.8) <0.0001 *** 20.8 (2.4–178.2) <0.05 *
Alcohol use 11.0 (2.7–51.0) <0.0001 *** 0.8 (0.1–6.7) 0.854

Betel quid chewing 7.0 (2.4–20.7) <0.0001 *** 3.9 (1.2–12.4) <0.05 *
HPV infection 5.7 (0.4–148.9) 0.133 19.6 (1.0–146.4) <0.05 *

OR: odds ratio; CI: confidence interval. Non-consuming/non-infected group was selected as the reference group for
each predictor variable/risk factor. Combined effects of risk factors were assessed using crude OR values derived
by chi-square test a, while independent effects were assessed using adjusted OR values derived by binary logistic
regression analysis b. Adjusted ORR: adjusted for smoking, alcohol use, betel quid chewing, and HPV infection.
Significant effect of each predictor variable is marked with * p < 0.05 or *** p < 0.0001.
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Figure 1. Agarose gel electrophoresis of HPV-L1 analysis. L: 100-bp DNA ladder with 500-bp marker; 
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6–8: oropharyngeal cancer (OPC) patient samples; Sample 9: healthy control sample. 

3.4. Comparative DNA Methylation Analysis of Individual TSGs 

Agarose gels analyzed for the detection of promoter hypermethylation events for all four TSGs 
are presented in Figure 2. Salivary DNA promoter methylation levels of TSGs were comparatively 
analyzed among the three study cohorts (Figure 3). Accordingly, only RASSF1A, TIMP3, and 
PCQAP/MED15 TSGs showed significant promoter methylation (hypermethylation) in saliva 
collected from OC subjects (p < 0.0001, p < 0.05, and p < 0.0001, respectively) and from OPC subjects 
(p < 0.0001, p < 0.001, and p < 0.0001, respectively), compared to normal healthy controls. Conversely, 
there was no significant difference in promoter methylation levels between OC subjects and OPC 
subjects, for any of the four TSGs examined. 

 
Figure 2. Agarose gel electrophoresis of methylation-specific PCR (MS-PCR) analysis of tumor-
suppressor genes (TSGs). L: 100-bp DNA ladder with 500-bp marker; P: positive control; U: 
unmethylated amplicon; M: methylated amplicon; N: negative PCR controls (for unmethylation and 
methylation PCR). Samples 1–3: OC patient samples; Samples 4 and 5: OPC patient samples. 

Figure 1. Agarose gel electrophoresis of HPV-L1 analysis. L: 100-bp DNA ladder with 500-bp marker; P:
positive control; N: negative PCR control. Samples 1–5: oral cancer (OC) patient samples; Samples 6–8:
oropharyngeal cancer (OPC) patient samples; Sample 9: healthy control sample.
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3.4. Comparative DNA Methylation Analysis of Individual TSGs

Agarose gels analyzed for the detection of promoter hypermethylation events for all four TSGs are
presented in Figure 2. Salivary DNA promoter methylation levels of TSGs were comparatively analyzed
among the three study cohorts (Figure 3). Accordingly, only RASSF1A, TIMP3, and PCQAP/MED15
TSGs showed significant promoter methylation (hypermethylation) in saliva collected from OC
subjects (p < 0.0001, p < 0.05, and p < 0.0001, respectively) and from OPC subjects (p < 0.0001,
p < 0.001, and p < 0.0001, respectively), compared to normal healthy controls. Conversely, there was
no significant difference in promoter methylation levels between OC subjects and OPC subjects, for any
of the four TSGs examined.
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Figure 3. Hypermethylation profiles of individual TSGs among OC, OPC, and normal healthy control
cohorts. Whisker-box plots were drawn (on 5–95% percentile) for the methylation signatures of
(a) p16INK4a, (b) RASSF1A, (c) TIMP3, and (d) PCQAP/MED15 in the saliva collected from OC patients
(N = 54), OPC patients (N = 34), and normal healthy controls (N = 60), analyzed using Mann–Whitney
U test. Significant difference in the promoter methylation level between two cohorts is marked with
* p < 0.05, ** p < 0.001, or *** p < 0.0001.

3.5. Association between Promoter Methylation of TSGs and Clinicopathological Parameters of OC and OPC

Clinicopathological variables of OC and OPC patients and their exposure to risk factors were
compared with the promoter methylation levels of individual TSGs (Table 4). Accordingly, promoter
methylation of TSGs indicated no significant association with respect to age and gender. However,
a significant promoter hypermethylation was detected in p16INK4a and RASSF1A TSGs (p16INK4a: p < 0.05;
RASSF1A: p < 0.05) in saliva collected from smokers and alcohol consumers, compared to non-consumers
(Table 4). Also, betel quid chewers demonstrated significant promoter hypermethylation of all four
TSGs (p16INK4a: p < 0.05; RASSF1A: p < 0.05; TIMP3: p < 0.001; and PCQAP/MED15: p < 0.05) compared
to non-consumers (Table 4). Further, we found that p16INK4a, TIMP3, and PCQAP/MED15 TSGs were
significantly hypomethylated (p < 0.001, p < 0.001, and p < 0.001, respectively) in saliva of HPV-positive
subjects compared to HPV-negative subjects (Table 4).

A significant p16INK4a and RASSF1A promoter hypermethylation (p < 0.001 and p < 0.05,
respectively) was observed in advanced OC stages, compared with early/less advanced OC stages
(Table 4). In addition, substantial promoter hypermethylation was noted between p16INK4a and
RASSF1A TSGs (p < 0.05 and p < 0.05, respectively) in high-grade (grades 3 and 4) OC tumors compared
to low-grade (grades 1 and 2) OC tumors. For OPC, p16INK4a, RASSF1A, and TIMP3 TSGs were
significantly hypermethylated (p < 0.05, p < 0.05, and p < 0.05, respectively) in high-grade OPC tumors
compared to low-grade OPC tumors (Table 4).
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Table 4. Association of promoter hypermethylation of tumor-suppressor genes (TSGs) with demographic factors, risk factors, and clinicopathological characteristics.

Variable Category N
p16INK4a RASSF1A TIMP3 PCQAP/MED15

Meth p-Value b Meth p-Value b Meth p-Value b Meth p-Value b

Age ≥62 a 28 13
0.455

12
0.244

18
0.414

21
0.550

<62 a 60 58 54 52 52

Gender
Male 80 63

0.053
61

0.133
69

0.152
66

0.164Female 8 5 4 5 5

Smoking Consumers 74 57
<0.05 *

58
<0.05 *

61
0.199

62
0.240Non-consumers 14 11 7 13 9

Alcohol use
Consumers 71 56

<0.05 *
56

<0.05 *
61

0.665
60

0.060Non-consumers 17 12 9 13 11

Betel quid
Chewing

Consumers 68 51
<0.05 *

52
<0.05 *

61
<0.001 **

57
<0.05 *Non-consumers 20 17 13 13 14

HPV-L1
HPV-positive 8 6

<0.001 **
6

0.061
8

<0.001 **
7

<0.001 **HPV-negative 80 62 54 66 64

Tumor
grade

OC
Grade 3, 4 19 14

<0.05 *
13

<0.05 *
15

0.311
16

0.289Grade 1, 2 31 25 24 28 27

OPC
Grade 3, 4 8 6

<0.05 *
5

<0.05 *
4

<0.05 *
2

0.146Grade 1, 2 22 17 17 21 21

Tumor
stage

OC
Stage (III, IV) 23 18

<0.001 **
17

<0.05 *
17

0.233
19

0.712Stage (I, II) 8 7 6 7 6

OPC
Stage (III, IV) 13 8

0.525
10

0.930
10

0.076
11

0.964Stage (I, II) 2 2 2 2 1
a Mean age; b Mann–Whitney U test; N: total number of patients in each category; Meth: number of patients with methylated gene promoter regions. A significant difference in the
promoter methylation level between two categories is indicated as * p < 0.05 or ** p < 0.001.
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3.6. Performance of the Methylation Marker Panel in Discriminating OC and OPC from Healthy Controls

The CombiROC curve analysis identified the best performing marker combination by evaluating
its clinical performance in discriminating OC, OPC, and healthy control cohorts (Table 5). Intriguingly,
the marker combination of all four markers (quadruple-methylation marker panel) performed well in
discriminating OC patients from healthy controls with an AUC of 0.92 and accuracy (ACC) of 0.92,
with a sensitivity of 91.7% and 92.3% specificity (Table 5; Figure 4a). Furthermore, this marker panel
performed exceptionally well with an AUC of 0.97 and ACC of 0.96, with a sensitivity of 99.8% and
92.1% specificity when discriminating OPC patients from healthy controls (Table 5; Figure 4b). Next,
the performance of the quadruple-methylation marker panel was investigated using a 10-fold CV and
permutation test, aiming for the effective clinical validation of the marker panel. Results of the CV
procedure suggest that the quadruple-methylation marker panel is a perfect fit for the diagnosis of
OC and OPC patients from healthy controls, as the overall accuracy, sensitivity, and specificity were
least affected by the imposed likelihood (Table 5; Figure 4a,b). In addition, we obtained the “real AUC
value” outside the permutated AUC distribution, which signified the high validity of this marker panel
in discriminating OC and OPC subjects from normal healthy controls (Figure 4c,d).Biomolecules 2019, 9, 148 12 of 19 
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Figure 4. Performance of the quadruple-methylation marker panel. CombiROC curve analysis of the
marker panel in discriminating (a) OC patients and (b) OPC patients from normal healthy controls.
Green bar: receiver operating characteristic (ROC) curve of the marker panel for the whole cohort. Gray
dotted bar: 10-fold cross-validation (CV) test of the marker panel. Diagonal line: reference line with
zero discriminating power (0.5 sensitivity and specificity). Density distribution of permutated area
under the curve (AUC) values compared to the normal distribution, illustrating the significance of real
AUC value generated for discriminating (c) OC subjects and (d) OPC subjects from healthy controls.
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Table 5. CombiROC curve analyses and validation tests of the quadruple-methylation marker panel.

AUC ACC

Error
Rate (1
−

ACC)

SE% SP% PPV% NPV%

(a) Performance in discriminating OC from healthy controls
Whole cohort 0.92 0.92 0.08 91.7 92.3 95.7 85.7

10-fold CV 0.85 0.87 0.14 83.3 92.3
Permutated models 0.71 0.71 0.29 69.7 76.0

(b) Performance in discriminating OPC from healthy controls
Whole cohort 0.97 0.96 0.04 99.8 92.1 93.7 98.6

10-fold CV 0.82 0.89 0.11 86.7 92.3
Permutated models 0.60 0.66 0.33 65.1 68.7

(c) Performance in discriminating OC from OPC
Whole cohort 0.65 0.72 0.28 91.7 40.0 61.2 53.3

10-fold CV 0.60 0.56 0.44 33.3 93.3
Permutated models 0.70 0.70 0.30 68.8 73.9

Clinical performance of the quadruple-methylation marker panel in discriminating (a) OC from healthy controls,
(b) OPC from healthy controls, and (c) OC from OPC was determined with respect to all key parameters. AUC:
area under the curve; ACC: accuracy; SE: sensitivity; SP: specificity; PPV: positive predictive value; NPV: negative
predictive value.

4. Discussion

This study evaluated cohorts of OC and OPC patients and matched healthy controls to determine
the utility of the MS-PCR approach combined with a densitometry analysis to assess promoter
methylation levels of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs in saliva-derived DNA.
Conferring to the high diagnostic accuracy detected, the strong potential of this quadruple-methylation
marker panel in discriminating OC and OPC patients from healthy controls was clearly evident.

TSGs analyzed in our study were found to be associated with common oncogenic transformation
pathways and cellular functions that are frequently dysregulated in many cancers including OC and
OPC. The p16INK4a gene encodes for a cyclin-dependent kinase 4 (CDK 4) inhibitor which regulates
the retinoblastoma (Rb) pathway and arrests the cell cycle [41]. Hence, its inactivation may lead
to disruption of cell cycle control ultimately inducing tumorigenesis in various cancers including
OC [42–46]. However, no significant p16INK4a promoter methylation was observed in both OC and
OPC salivary rinses, although this gene was reported to be highly methylated in previous HNSCC
studies [15,26,44,47,48]. A recent study of OSCC patients in a south Indian population reported
significant p16 promoter hypermethylation (38%) [49]. This contradiction of detecting different
methylation frequencies can be explained by the differences in sampling methods, the sensitivity of the
detection method, location and length of investigated CpG repeats, and cohort composition.

Ras association domain family 1 isoform A (RASSF1A) acts as a downstream negative effector of
the Ras protein which induces growth arrest of cells (apoptosis) [50]. Recent evidence suggests that
RASSF1A expression is dependent on angiogenic signaling events during cancer progression [51]. It is
well documented that the RASSF1A TSG is frequently inactivated in primary oral tumors by de novo
methylation of promoter CpG islands, subsequently triggering OC initiation [26,39,52]. Significant
RASSF1A promoter hypermethylation detected by our study in both OC and OPC salivary rinses
suggests its strong association with OC and OPC risk.

Tissue inhibitor of metalloproteinases (TIMPs) is known as an inhibitor of cellular invasion,
metastasis and angiogenesis [53]. Loss of TIMP expression by TIMP3 TSG promoter hypermethylation
is speculated specifically with HNSCC neoplastic evolution [38,54]. Our study reiterates previous
reports that evidence the positive correlation between TIMP3 promoter hypermethylation in oral
malignancies [12,38,55,56].



Biomolecules 2019, 9, 148 13 of 19

Similarly, we observed a substantial PCQAP/MED15 hypermethylation in both OC and OPC,
which is in line with previous studies on HNSCC [11,39]. Although PCQAP/MED15 methylation in
HNSCC was identified and validated recently, it is frequently implicated in prostate and endometrial
cancer etiologies [11,42]. The PC2 glutamine/Q-rich-associated protein (PCQAP) is identified as a
transcriptional co-activator mediator, responsible for the transcriptional regulation of ligand-activated
proteins which plays a pivotal role in cellular regulation, proliferation, and differentiation [11,57].

Age- and sex-specific differences in promoter hypermethylation of p16INK4a and RASSF1A TSGs
were previously reported [58]. Conversely, no direct association was observed between TSG promoter
methylation with age and sex in both cancer types, in agreement with a few previous reports [39].
It is well known that p16INK4a and RASSF1A promoter methylation status is strongly correlated with
the cancer stage [59,60]. By confirming these findings, our study established a significant p16INK4a

and RASSF1A promoter hypermethylation in advanced stage of OC subjects, suggesting that these
alterations may occur late in the carcinogenesis of the oral cavity. Also, we found significant promoter
hypermethylation in high tumor grades of OC for p16INK4a and RASSF1A and of OPC for p16INK4a,
RASSF1A, and TIMP3, suggesting the correlation between promoter hypermethylation of tumor-related
genes and poor prognosis of OC and OPC [26,61,62].

Our results strengthened the notion that smoking and alcohol consumption are strong predictors
of p16INK4a and RASSF1A promoter hypermethylation [63–65]. Carcinogens in tobacco smoke could
drive genetic and epigenetic mutations in frequently exposed tissues [66]. Tobacco smoking also
induces DNA methyltransferase (DNMT) activity, thereby causing de novo methylation on disposed
loci on a gene-specific basis [67,68]. Significant promoter hypermethylation observed in OPC subjects
compared to OC subjects may be attributed to the higher independent risk of smoking observed in
OPC subjects. In addition, it is well established that betel nut, as well as betel quid, with or without
tobacco, is carcinogenic to HNSCC [69,70]. Betel quid chewing is critically associated with high-risk
pre-cancerous oral lesions [15,71]. Furthermore, recent studies report that silencing of RASSF1A and
p16INK4a gene expression by promoter hypermethylation may play a critical role in betel-associated
oral carcinogenesis [15,72]. In agreement with prior findings, we describe a strong association between
betel quid chewing and promoter hypermethylation of all four TSGs studied.

HPV is recognized as an additional independent risk factor for the development of OSCC,
particularly OPSCC, confirmed by our risk analysis [73–75]. In addition, we report that p16INK4a,
TIMP3 and PCQAP/MED15 promoter regions were hypomethylated in HPV-positive cases compared
to HPV-negative cases. This result seems to be paradoxical since HPV infection appears to have a
greater association with promoter hypermethylation of TSGs, due to the over-expression and increased
DNMT activities induced by HPV oncoproteins (E7) [76–78]. This contradiction may be caused by
differences in sampling methods, ethnic origin of the subjects, and by the HPV genotype.

It follows that lifestyle factors contribute to tumorigenesis through revocable epigenetic
dysregulations, thus holding great promise in disease prevention and treatment [79]. In addition,
methylation profiles of TSGs in combination with clinicopathological characters would be useful in
predicting the behavior of OC and OPC. The significance of the association between clinicopathological
characteristics and promoter methylation of TSGs evaluated by the current study led us to hypothesize
the degree of effect of risk factors that may have affected the performance of the quadruple-methylation
marker panel. For instance, the higher AUC and sensitivity in detecting OPC patients compared to OC
patients may be attributed to the substantial effect of risk factors on the development of OPC compared
to OC.

Early detection of cancer, at a stage where it is localized and treatable, will substantially reduce
mortality owing to the disease. For this reason, diagnostic tumor biomarkers are now an imperative
field pursued in biomedical engineering [80]. It is now well established that individual biomarkers may
not be sufficiently accurate in diagnosing tumors, as heterogeneity of individual tumors is triggered by
specific molecular alternations in different tumor-related genes [81]. Therefore, combined biomarker
panels are developed to attain significant specificity and sensitivity values for effective translation into
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diagnostic settings [22,54]. Our results suggest that p16INK4a methylation alone should not be considered
as a tumor marker for OC or OPC, since no significant methylation was found in normal and tumor
samples. However, hypermethylation of p16 was found to be a promising diagnostic and prognostic
biomarker for recurrence-free survival of OC and OPC [82–84]. Hence, CombiROC analysis allowed us
to develop a better performing combination of independent methylation markers, by lowering the risk
of missing p16 marker. We defined the high performance of this quadruple-methylation marker panel
which outperformed the previous individual markers and other marker combinations substantiated
by previous studies in different ethnic groups [26,39,54,81,85]. We further strengthened our study by
analyzing the performance, robustness, and consistency of the marker panel, through cross-validation
and permutation tests, as such features of this panel would be decidedly useful as a robust diagnostic
and screening tool.

The high performance of this marker panel prompts one to study its prognostic potential which
could be useful during disease surveillance following treatment or with high-risk cohorts, such as
smokers and alcohol users. Notably, evaluating the accuracy of genetic screening tests for oral HPV
infections is a promising area of research. However, a genetic screening method for oral HPV infections
is yet to be approved by the Food and Drug Administration (FDA); hence, it is rarely practiced in
developing countries. A previous study reported the high accuracy of a methylation marker panel
in discriminating HPV-positive HNSCC cases from HPV-negative counterparts [39]. Given the low
prevalence of HPV-positive OC/OPC cases in our study, the current marker panel was not assessed for
its performance in discriminating HPV-positive cancer cases from their HPV-negative counterparts. The
low prevalence of HPV in our analysis (9.1%) is probably explained by the abundance of squamous cell
carcinomas of the oral cavity (61.4%) among our samples, in agreement with previous reports [86,87].

Since its introduction, the MS-PCR method progressively gained favor as a preferred tool for
detecting the DNA methylation status of CpG islands. Nevertheless, some studies showed that
it was prone to overestimate methylation prevalence, leading to a high number of false positives
(i.e., low specificity) due to incomplete bisulfite conversion [88,89]. Also, it cannot distinguish the
methylation status between normal epithelium and tumor cells. This explains the different methylation
levels observed in the current study compared to available literature. A previous study, validating TSG
methylation markers for diagnosing OSCC, showed that quantitative methylation-specific PCR analyses
(Q-MSP) may be a better choice in improving the level of detection. Alternatively, pyrosequencing
technology emerged as a robust and versatile platform in global DNA methylation quantification,
which may overcome the limitations of MSP-based methods [90,91]. Several studies evaluated both
the accuracy and precision of pyrosequencing for the analysis of DNA methylation in heterogeneous
mixtures of tumor DNA samples [92,93].

Our work clearly emphasizes the need for assessing other promising genes in saliva to improve
the sensitivity and specificity of this current marker panel. The optimized marker panel will finally
be evaluated for performance in prospective trials to depict its clinical efficacy. Validation of this
panel is expected to involve screening of high-risk populations followed by clinical assessment using
biopsy tests for individuals whose methylation profile expresses the highest risk for OC or OPC.
Our findings highlight the potential of this marker panel comprising epigenetically silenced TSGs
in saliva, which can be used for the earliest possible identification of OC/OPC incidence, permitting
careful monitoring to guide immediate intervention and further evaluation.

5. Conclusions

We report that frequent exposure to established risk factors such as smoking, alcohol use, and betel
quid chewing may drive oral and oropharyngeal carcinogenesis through promoter hypermethylation
of TSGs. Essentially, we established the exceptional diagnostic accuracy of the methylation marker
panel consisting of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs in the early diagnosis of OC
and OPC.
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