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Abstract 
Lipids are primary metabolites that play essential roles in multiple cellular pathways. 

Alterations in lipid metabolism and transport are associated with infectious diseases 

and cancers.  As such, proteins involved in lipid synthesis, trafficking, and modification, 

are targets for therapeutic intervention. The ability to rapidly detect these proteins can 

accelerate their biochemical and structural characterization. However, it remains 

challenging to identify lipid binding motifs in proteins due to a lack of conservation at 

the amino acids level. Therefore, new bioinformatic tools that can detect conserved 

features in lipid binding sites are necessary. Here, we present Structure-based Lipid-

interacting Pocket Predictor (SLiPP), a structural bioinformatics algorithm that uses 

machine learning to detect protein cavities capable of binding to lipids in experimental 

and AlphaFold-predicted protein structures. SLiPP, which can be used at proteome-

wide scales, predicts lipid binding pockets with an accuracy of 96.8% and a F1 score 

of 86.9%. Our analyses revealed that the algorithm relies on hydrophobicity-related 

features to distinguish lipid binding pockets from those that bind to other ligands. Use 

of the algorithm to detect lipid binding proteins in the proteomes of various bacteria, 

yeast, and human have produced hits annotated or verified as lipid binding proteins, 

and many other uncharacterized proteins whose functions are not discernable from 

sequence alone. Because of its ability to identify novel lipid binding proteins, SLiPP 

can spur the discovery of new lipid metabolic and trafficking pathways that can be 

targeted for therapeutic development. 
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Introduction 
As the main components of cell envelopes, lipids are essential building blocks 

of life that provide a barrier to the cell. In higher-order organisms, the composition of 

lipids in membranes enclosing organelles is crucial for the identity and function of 

those organelles. Lipids also serve as a source of energy, and they and their 

derivatives function as signaling molecules. Mis-regulation of lipids leads to several 

human diseases, including Niemann-Pick disease1, Farber’s disease2, Barth 

syndrome3, Wolman’s disease4, and more. Furthermore, altered lipid metabolism is a 

hallmark of cancer5, as increased lipid synthesis and uptake is critical for the rapid 

growth of cancer cells. Lipid acquisition and metabolism is also important in infectious 

diseases6-8, particularly in the context of infections mediated by pathogenic bacteria 

that lack the machinery for de novo lipid synthesis or use host lipids during colonization. 

The former include spirochetes such as Borrelia burgdorferi9 and Treponema 

pallidum10, while the latter includes the intracellular pathogen Chlamydia 

trachomatis11,12. Despite the relevance of lipids in biology, there is a limited set of 

available tools for large scale identification of proteins that engage with these 

molecules. Whereas chemoproteomics13,14 and gene expression15,16 studies have 

been powerful for revealing lipid interactomes, they are limited to culturable systems 

and require highly specialized tools (e.g., modified lipids as probes and mass 

spectrometers). Additionally, these methods may not accurately detect lipid interacting 

proteins that are present in low abundance in biological samples. In theory, 

bioinformatics can aid in overcoming these challenges, but the principles that govern 

the recognition of lipids remain poorly defined. 

Historically, the prediction of protein function relied on protein sequence 

similarity. The commonly used Basic Local Alignment Search Tool (BLAST)17 was first 

developed in 1990 and infers functional homology through sequence homology. 

Similarly, the hidden Markov model18, introduced in 1998, categorizes protein families 

to further imply the shared functions. With the emergence of machine learning and 

neural networks, newer models including ProteInfer19, ProLanGO20, DeepGO21, and 

DeepGOPlus22, have been developed. These methods all rely solely on protein 

sequence similarity to infer functional homology. Recently, other methods leveraging 

the structure prediction capabilities of AlphaFold23 have attempted to use structure to 

predict protein function. For example, ContactPFP24 predicts protein functions through 

contact map alignment, and DeepFRI25 is a convoluted neural network model trained 
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with contact map and a protein language model. However, these methods use the full 

structures rather than structural sites that could reveal insights into ligand binding. 

Furthermore, the accuracy of their prediction is limited by poor annotation within the 

databases. 

Currently, there are limited computational tools that can detect lipid interacting 

proteins precisely. González-Díaz et al. developed LIBP-Pred26 to predict lipid binding 

proteins by using the electrostatic potential of residues within a coarse segmentation 

of the protein. However, LIBP-Pred is limited to experimental structures and does not 

first determine the putative ligand binding sites within the protein. Furthermore, the 

method does not tolerate disordered regions within proteins due to its use of coarse 

segmentation. A second predictor,  MBPpred27, was reported by Nastou et al. This 

method predicts membrane binding proteins using profile hidden Markov models. 

However, MBPpred often predicts membrane protein interactions with lipids driven by 

the hydrophobic surfaces of the protein embedded within lipid bilayers. Finally, 

Katuwawala et al. developed DisoLipPred28, a multi-tool predictor where the tool first 

identifies disordered regions within the protein and the second tool uses neural 

networks to predict the probability that the disordered residues interact with lipids. 

Even with these tools, the key challenge is a poor understanding of essential 

drivers of molecular recognition between proteins and lipids. There are numerous 

examples of distinct proteins that recognize the same lipid, and examples of lipid 

transport proteins with broad substrate scopes. It appears that, to an extent, 

hydrophobic interactions with amino acids are important for stabilizing the hydrophobic 

tails of lipids, and hydrogen bonding may be necessary for engagement with the polar 

heads of the lipids. Given that multiple amino acids can participate in hydrophobic 

interactions and hydrogen bonding, it is difficult to assign protein motifs that enable 

the recognition of lipids. 

We have an interest in identifying lipid binding proteins in the proteomes of 

pathogenic bacteria that acquire lipids from their hosts. Focusing on sterol lipids, we 

realized that there are few proteins in bacteria with canonical sterol sensing domains, 

despite the fact that pathogenic bacteria acquire host sterols9, commensal gut 

microbes modify host cholesterol29-31, and primitive bacteria make sterols32,33. This 

finding suggested that bacteria may have evolved a machinery for handling sterols 

that is distinct from those found in eukaryotes. Reports of a divergence in sterol 

synthesis in the bacterial domain lent credence to the idea32, and our recent 
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identification of novel sterol binding domains in bacteria further supported this 

hypothesis34. As anticipated, the molecular recognition of sterol lipids by bacterial 

proteins is not mediated by a particular class of amino acids but by amino acids with 

shared physical and chemical properties. We reasoned that these features could be 

used to detect the presence of lipid binding sites in protein structures. 

Because there are currently no efficient structural bioinformatics tools to spur 

the discovery of novel lipid interacting proteins on proteome-wide scales, we 

developed SLiPP (Structure-based Lipid-interacting Pocket Predictor; Fig. 1). SLiPP 

works by identifying ligand binding pockets within experimental and computational 

protein structures (predicted by AlphaFold) and uses a machine learning model to 

detect physiochemical features consistent with lipid binding sites. By focusing on 

physiochemical features, SLiPP eliminates the reliance on sequence or protein folds 

and in doing so avoids biasing the discovery to well-characterized lipid binding 

domains. The approach was used to reveal the putative lipid interactome in the 

proteomes of Escherichia coli (E. coli), Saccharomyces cerevisiae (yeast), and Homo 

sapiens (human), as well as select pathogenic bacteria (Tables S1-S3). The predicted 

outputs in well characterized proteomes are validated by gene ontology enrichment 

analysis. We posit that this “easy-to-use” tool will vastly accelerate the pace at which 

novel lipid binding domains are discovered.  

 
Results 
Physiochemical properties of ligand pockets 

A set of lipid ligands and non-lipid ligands were selected from the ligand bound protein 

structures in PDB data base to extract the ligand binding site information. For lipids, 

structures of proteins bound to cholesterol (CLR), myristic acid (MYR), palmitic acid 

(PLM), stearic acid (STE), and oleic acid (OLA) were selected (Supporting file 1). 

These lipids were chosen because there were at least 20 entries of each, which we 

posit is important to allow a degree of generalization of their ligand binding pockets. 

Phospholipids, sphingolipids, and glycerolipids were not used due to the limited 

number of available structures, but their structural similarity to the selected lipids 

should ensure that proteins recognizing them can still be identified by SLiPP. For non-

lipid entries, representatives from each primary metabolite group were selected: 

adenosine (AND) for nucleosides, b-D-glucose (BGC) for saccharides, and cobalamin 

(B12) and coenzyme A (COA) for common cofactors. The ligand binding pockets were 
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identified using the dpocket module of fpocket,35,36 which typically predicts pockets 

with ligands (“true” pockets) in addition to pockets that share no overlap with the ligand 

(“pseudo-pockets”). Dpocket uses 17 properties as pocket descriptors, and these 

descriptors can be divided into 4 categories: size-related, hydrophobicity-related, 

alpha sphere-related, and miscellaneous. To understand the physiochemical space of 

ligand binding pockets, we performed principal component analyses (PCA) on all the 

pockets extracted from the PDB structures (Fig. 2).  

The PCA (Fig. 2A) reveals a clear separation of lipid binding pockets (LBPs) 

from non-lipid binding pockets (nLBPs) and pseudo-pockets (PPs), suggesting that it 

is possible to build a classifier that describes LBPs. The difference between LBPs and 

nLBPs is more pronounced in the second principal component (PC2), which is 

dominated by hydrophobicity-related properties (Fig. 2C). The observation is 

anticipated, as the key distinguishing feature between the lipid ligands and non-lipid 

ligands in this dataset pertains to hydrophobicity (Fig. S1); this characteristic is also 

reflected in the amino acid composition of ligand binding pockets. When comparing 

PPs and ligand binding pockets, we also observed a difference in the first principal 

component (PC1), with PPs exhibiting lower values compared to the ligand binding 

pockets (Fig. 2C). The clear distinction of size and hydrophobicity-related properties 

for the three classes of pockets should permit the use of machine learning to create a 

classifier for LBPs. However, no such distinction is apparent when considering the 

individual lipids, which suggests that the pocket properties described by fpocket are 

not sufficient to detect differences between the selected lipids (Fig. 2B).  

 

Construction of a classifier 

Deep learning has gained a lot of attention due to potential applications in 

biomedicine. However, it requires significantly large datasets that are not available for 

many ligand-protein interaction. As such, we built a classifier using machine learning, 

where the algorithm first learns patterns from the dataset and then uses those patterns 

to make predictions. This approach is ideal for small datasets where generalizable 

patterns exist. To build the classifier, we first identified a suitable machine learning 

algorithm for the dataset (Fig. 3A). Six commonly used algorithms were tested: support 

vector machine (SVM), logistic regression (Log), k-nearest neighbors (kNN), naïve 

bayes (NB), decision tree (DT), random forest (RF). The performance of each 

algorithm was assessed in 25 independent iterations of stratified shuffle sampling. To 
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assess the performance, 6 metrics were calculated: area under receiver operating 

curve (AUROC), accuracy, F1 score, specificity, sensitivity, and precision (see 

Methods). These tests revealed RF performed best with a F1 score of 0.775, area 

under receiver operating curve (AUROC) of 0.980, and accuracy of 99.1%. Following 

these tests, the RF algorithm was selected to construct our classifier because of its 

performance. Because of the highly imbalanced nature of the dataset (vide infra), the 

sensitivity for all algorithms is low (ranging from 42.0% to 68.2%) while the specificity 

is much higher (ranging from 95.0% to 99.9%). Of note is that naïve bayes is the least-

performing algorithm for our dataset because of the large number of false positives it 

produces. This may be due to the fact that naïve bayes is a probabilistic model, and 

its use with highly imbalanced datasets like ours makes it such that the prior 

probabilities severely affect the posterior probability. 

The pocket detection algorithm has the propensity to detect a high number of 

PPs (relative to LBPs and nLBPs), thereby leading to a highly imbalanced dataset 

which could decrease the sensitivity of the classifier. The original full dataset contains 

1,783 LBPs, 3,000 nLBPs, and 70,644 PPs. In an attempt to test whether the 

sensitivity could be improved, we sampled different numbers of PPs to include in the 

dataset; this produced datasets with various levels of imbalance (Fig. 3B). To correctly 

assess the effect of these more balanced datasets, the performance was cross 

validated using a set of test data not previously used in the training dataset. With this 

new approach, a dataset with 20-fold more PPs than LBPs performed the best, 

revealing an accuracy of 99.2% and F1 score of 0.797. The dataset with 5-fold more 

PPs and the full unbalanced dataset performed similarly to the 20-fold dataset, while 

the equally balanced dataset performed the worst. The precision scores followed a 

trend similar to the accuracy and F1 scores, wherein the full unbalanced dataset 

yielded a more precise model and the equally balanced dataset had a precision score 

of 42.9%. As anticipated, use of the highly imbalanced dataset lowers the sensitivity 

(85.9% in the equally balanced dataset and 69.2% in the full dataset). Together, these 

results suggest that the classifier model has learnt the population distribution of LBPs 

and PPs from an unbalanced dataset and therefore classifies more pockets, including 

the majority of PPs, as nLBPs. SLiPP is much more stringent when classifying LBPs, 

and this is reflected in the high precision and specificity scores. On the other hand, the 

predictor is more forgiving when trained with a more balanced dataset, leading to high 

sensitivity but low precision. Because the classifier was created as a tool to spur the 
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discovery of novel lipid binding proteins, we reasoned that it is best to prioritize the 

sensitivity and thereby produce more hits that can be validated with additional 

bioinformatics and biochemical methods. As such, the dataset with five-fold excess of 

PPs was used to train and optimize the model. 

A second approach to improve the model’s performance was focused on fine-

tuning its hyperparameters (see Methods). To do this, we first performed a random 

search on hyperparameters to maximize the F1 score. Following that, we did a fine 

grid search around the hyperparameters chosen in the previous round. While the 

performance was not substantially improved after two rounds of optimization (Fig. S2), 

the optimized hyperparameters resulted in a more computationally expensive model. 

Therefore, we decided to retain the default hyperparameters from the sklearn37 

package. 

 

Performance of the classifier 

After generating the classifier model, the performance was assessed with a 

subset of the data not used in the training of the classifier model (the independent test 

dataset, Fig. 4A). The model performed well with this test dataset (Table 1) and 

revealed a AUROC of 0.970, an accuracy of 96.8%, a F1 score of 0.869, a precision 

of 92.6%, and a sensitivity of 81.8%. To perform an additional assessment of the model, 

we assembled another dataset of ligand-free (apo) structures of selected ligand 

binding proteins (Supporting file 2) and AlphaFold (Supporting file 3) predicted models 

of ligand binding proteins. Given that these structures are all free of ligands, we used 

fpocket to predict pockets. All pockets predicted by fpocket were then applied to the 

classifier to detect proteins, those are capable of binding lipids; these pockets would 

receive prediction scores higher than those unlikely to bind to lipids. The detection of 

low scoring pockets would indicate that the protein is not a lipid binding protein, and 

vice versa. 

The results from this exercise revealed the AUROC of apo PDB (Fig. 4B) and 

AlphaFold (Fig. 4C) datasets are 0.828 and 0.851, while the F1 scores of the two test 

datasets are 0.726 and 0.643. These two metrics indicate a lower performance of the 

classifier model when testing with the external datasets (Table 1). A closer inspection 

of the performance reveals that the precision was less affected (89.1% and 91.8% 

(compared with 92.6% in the original dataset) but the sensitivity decreased (from 

81.8% to 61.2% in the PDB structures and 49.5% in the AlphaFold models). This 
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reduction in the performance can be explained by the inaccuracy of fpocket in 

accurately identifying ligand-binding pockets: the incorrect identification of ligand-

binding pockets results in misclassification of the protein as a non-lipid binding protein. 

This inaccurate identification of pockets is more pronounced for LBPs than for nLBPs 

and PPs. A critical pocket identification feature of fpocket is its alpha sphere clustering 

algorithm. However, the algorithm sometimes separates large, continuous pockets into 

several small pockets that are no longer predicted to be LBPs. One example is the 

sterol binding protein BstC34 (Fig. S3), where a continuous pocket is predicted to be 

two separate pockets that each have low SLiPP scores. Despite the reduced sensitivity, 

the high precision of SLiPP suggests that it could become a powerful tool to aid the 

discovery of novel LBPs. 

 

Detection of putative lipid binding proteins in the Escherichia coli, Saccharomyces 

cerevisiae, and Homo sapiens proteomes 

With a classifier model in hand, we investigated its ability to predict lipid binding 

proteins in several well-annotated proteomes. To do this, we leveraged AlphaFold 

predicted structures, as they are readily available for most proteomes. Because 

AlphaFold models include signal peptides that could result in inaccurate pocket 

detection, these moieties were identified via SignalP38 and removed from the models 

prior to the prediction. To reduce the computational time, proteins containing less than 

100 amino acids were filtered out, as we considered these unlikely to form sufficiently 

large binding pockets to accommodate lipids. Additionally, low confidence AlphaFold 

models (pLDDT < 70) were removed (Fig. 1). 

 

The Escherichia coli proteome 

E. coli proteome has 4403 proteins. Of these, 606 were removed because of their 

small size, and 77 were removed because of poor confidence in the AlphaFold 

prediction. Of the remaining 3720 proteins, 159 proteins were assessed as having a 

SLiPP score of 0.5 or higher, indicating that they might bind lipids (Supporting file 4). 

This fraction corresponds to 3.6% of the proteome (Fig. 5A and S4). An inspection of 

the top ten scores revealed the presence of already annotated LBPs such as the 

apolipoprotein N-acyltransferase Lnt, and the phospholipid transport system MlaC 

(Table 2). Also in this top tier are the two ubiquinol binding proteins: cytochrome bd-II 

ubiquinol oxidase AppB and AppC. Given the structural similarity of ubiquinol and polar 
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lipids, it is plausible that the predictor detects ubiquinol sites as capable of 

accommodating lipids. Additionally, the top hits include three potential lipid binders that 

are not yet to be experimentally verified: AsmA, YceI, and YhdP (Fig. 6A-C). AsmA 

and YhdP are inferred to be involved in lipid homeostasis through gene deletion 

studies39,40, whereas YceI is thought to be an isoprenoid-binding protein because of 

its similarity to TT1927b from Thermus thermophilus HB8; an isoprenoid-bound 

structure exists for TT1927b41. Surprisingly, there are 3 proteins of unknown function 

in the highest scoring tier: YajR, YfjW, and YchQ (Fig. 6D-F). A crystal structure of YajR 

shows that it has a morphology typical of a major facilitator superfamily transporter but 

has an extra C-terminal domain; the function and substrate of YajR remains unknown42. 

YfjW is a completely uncharacterized protein that shares no sequence homology with 

any protein family. The AlphaFold predicted model shows a unique b-taco fold for the 

soluble domain; this fold is seen in some lipid transport systems such as the 

lipopolysaccharide transport (Lpt) system and the AsmA-like proteins. YchQ is 

annotated to belong to the unknown function protein family SirB43. There are limited 

studies on the family; however, given that SirB is within the neighborhood of KdsA44 

(an enzyme involved in lipopolysaccharide biosynthesis), and predicted to be a 

membrane protein, we posit that it is a putative lipid transporter. In conclusion, SLiPP 

has correctly identified several well-known and putative lipid binding proteins in a well-

characterized bacterial proteome and additionally hints at the function of other proteins 

whose roles to date remain a mystery. 

 

The Saccharomyces cerevisiae proteome 

In S. cerevisiae proteome, among 6060 proteins, 416 were filtered out because 

of their small size, and 1536 were excluded from the prediction due to low pLDDT 

scores (Supporting file 5). The prediction yielded 273 hits, which corresponds to 4.5% 

of the proteome (Fig. 5A and S4). A gene ontology (GO) enrichment analysis of the 

hits showed that the top 7 biological processes enriched are all lipid-related processes. 

These include transport, localization, metabolism, and biosynthesis of lipids (Fig. 5B). 

Interestingly, the GO terms that follow the top 7 are related to cation homeostasis and 

ion transport, which suggests that lipids might play a role in the regulation of ion 

transporters. For molecular function GO terms (Fig. 5C), the two most enriched terms 

are lipid transporter and O-acyltransferase activity. The analysis also showed 
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enrichment of heme binding proteins - while we reason that the structural resemblance 

of heme and lipids might be sufficient to account for this misidentification, we cannot 

rule out a regulatory role for heme in lipid related processes. Heme does contain a 

porphyrin with two carboxylic acid groups, making it somewhat amphipathic. As such, 

heme binding pockets might share physical-chemical features with lipid binding 

pockets. 

 

The Homo sapiens proteome 

The human proteome contains 20406 proteins. A total of 7346 proteins were 

excluded from the prediction due to their small sizes or low pLDDT scores (Supporting 

file 6). The model predicts 935 hits, or 4.6%, of the proteome as putative LBPs (Fig. 

5A and S4). GO enrichment analyses similar to those performed on the yeast 

proteome revealed that the top 7 biological process GO terms are assigned to lipid-

related processes (Fig. 5D) while the molecular function GO terms enriched are 

related to transport processes (Fig. 5E). Using information provided in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database45, many of the hits are 

protein machineries involved in the biosynthesis of unsaturated fatty acids, steroid 

hormone biosynthesis, glycerolipid metabolism, and fatty acid metabolism. The data 

provides additional confidence that SLiPP correctly identifies lipid binding proteins 

annotated in public databases.  

Additional analysis of the SLiPP hits from the human proteome revealed several 

proteins linked to diseases, including neurological, metabolic, and developmental 

diseases (Fig. S5). One hit is GDAP2 (SLiPP score of 0.93), a ganglioside-induced 

protein (Fig. 7). GDAP2 is associated with spinocerebellar ataxia, a 

neurodegenerative disorder of cerebellum46,47. The protein is composed of two 

domains: an N-terminal macro domain and a C-terminal CRAL-TRIO domain (Fig. 7A). 

The macro domain is thought to be an ADP-ribose or poly(ADP-ribose) binding domain; 

however, the macro domain of GDAP2 is different in that it only binds to poly(A) but 

not ADP-ribose derivatives48. CRAL-TRIO domains in other proteins have been 

characterized as lipophilic ligand binding domains with affinity for tocopherol49 and 

phospholipids50. However, there are few biochemical studies on GDAP2. 

Within the CRAL-TRIO domain of GDAP2, SLiPP identified a LBP with a size 

of 2034 Å3 (Fig. 7B). Most amino acids making up the pocket are hydrophobic (Fig. 

7C, D and Supporting file 7). An analysis of single nucleotide polymorphisms using the 
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NCBI’s dbSNP server revealed that the four pathogenic variants of GDAP2 have 

mutations in the CRAL-TRIO domain. These include the Q316 nonsense mutation, the 

deletion of residues 316-497, and the H400R and S436V variants (Fig. 7E) – given 

that these all co-localize with the SLiPP-detected lipid binding site, it is plausible that 

lipid binding is functionally relevant for GDAP2. 

 

Importance of pocket descriptors in SLiPP 

To understand what the model learned from the training dataset, the importance 

of the pocket descriptors in the model were assessed using two methods. One 

measures the importance of a descriptor by calculating the mean decrease in 

impurities of each feature (Fig. 8A); the other assesses the importance by calculating 

the decrease in F1 scores when permutating each feature (Fig. 8B). Of the 17 pocket 

descriptors provided by fpocket, the features deemed most important are the 

hydrophobicity-related features. In particular, the hydrophobicity score and mean local 

hydrophobicity density were critical. This result is further manifested by the significant 

difference of hydrophobicity score and mean local hydrophobicity density of LBPs 

compared to the binding pockets of other ligands or PPs (Fig. S1). Interestingly, the 

permutation importance suggests that the surface area is the third most important 

feature, although we observed no obvious difference in surface area between non-

lipid binding pockets and lipid binding pockets. This could be because the selected 

nLBPs are of ligands similar in size to the set of lipid ligands used in the training 

dataset. 

The reliance of the classifier model on hydrophobicity provides a plausible 

explanation for why heme binding pockets are common false positives (vide infra the 

discussion of hits in the yeast proteome). Most heme binding pockets have 

hydrophobicity scores similar to both lipid and non-lipid binding pockets (Fig. 8C); a 

similar trend was also observed for other hydrophobicity-related parameters. This 

overlap is even more striking when heme binding pockets are included in the PCA plot: 

they evenly distribute across both lipid binding and non-lipid binding pockets (Fig. 8D). 

Therefore, it can be challenging to distinguish heme binding pockets from lipid binding 

pockets using hydrophobicity-related pocket descriptors, and inclusion of heme 

binding proteins in the training dataset did not resolve this problem (Fig. S6). However, 

a post-prediction filtering of hits using one of several heme binding protein predictors 
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(HemeBIND51, HeMoQuest52, or HEMEsPred53) should allow the removal of heme 

binding proteins from the list of SLiPP hits. 

 

Discussion and conclusion 

Historically, the discovery of lipid binding proteins has been low-throughput and 

relied on biochemical or genetic methods. Phenotypic screens and chemoproteomics 

using lipid probes have enabled the identification of proteins involved in lipid binding, 

but these approaches are limited to culturable and/or genetically tractable organisms 

and require specialized equipment and expertise. Several bioinformatic-based 

approaches have been developed to aid the discovery of novel LBPs, but all have 

limitations. This has slowed the pace at which these proteins are discovered, despite 

their involvement in a host of critical cellular functions. SLiPP, which can detect lipid 

binding sites within experimental and computational three-dimensional protein 

structures, should accelerate the discovery of these proteins. In particular, we 

anticipate that the use of SLiPP will facilitate the curation of lipid binding proteins in 

the proteomes of pathogenic bacteria known to engage with host lipids, thereby 

revealing new protein targets for the curtailment of bacterial infections. 

SLiPP was constructed from a classifier model that uses physiochemical 

properties of amino acids to identify lipid interacting pockets in proteins. By focusing 

on the physical and chemical properties of amino acids that make up the binding 

cavities, we aimed to reduce bias of the classifier for only identifying proteins that 

share homology with well characterized lipid binding domains. As such, the classifier 

model may expedite the discovery of novel lipid handling domains. While the model’s 

performance metrics are considered good, there are some notable limitations. A key 

one is the pocket detection algorithm’s use of alpha spheres, which then results in the 

detection of spheroid-like pockets that are large and hydrophobic. Given the 

amphiphilic nature of the of the ligands, and to an extent the pockets, it might be 

possible to train a model to extract information about the orientation of ligands. 

Additionally, the inclusion of higher resolution pocket descriptors could allow the model 

to distinguish pockets that accommodate different classes of lipids. These 

improvements may enhance the model’s performance. 

A second key limitation is that the model only identifies LBPs that are embedded 

within monomeric proteins. If a lipid binds to the protein’s surface (such as with ApoA1 

and ApoE), or if the binding site is formed upon the oligomerization of one or more 
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subunits (an example is the recently reported MCE transport system54), the classifier 

is unable to detect these as LBPs. Regardless, the high precision suggests that SLiPP 

is well suited as a tool to facilitate the identification of novel lipid interacting proteins 

and complements existing low-throughput discovery methods. Its ability to reveal 

several proteins of unknown function in the well-studied E. coli proteome as putative 

lipid binders bodes well for its utility in fueling discoveries in poorly studied organisms.  
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Methods 
General software and packages 

The fpocket35,36 package was used either directly in the terminal or incorporated in 

python under biobb_vs v4.0.055 package. Machine learning was accomplished with 

the scikit-learn v1.3.137 package. Other python packages used in the study are: 

pandas56,57, numpy58, matplotlib59, seaborn60, Biopython61. The AlphaFold models and 

fpocket outputs were visualized with PyMOL62 and ChimeraX63. 

 

Construction of datasets 

The PDB database was retrieved on April 27th, 2023. The training dataset was 

composed of four different sets of pockets: 1) pseudo-pockets (PP), 2) non-lipid 

binding pockets (nLBPs), 3) lipid binding pockets (LBPs), and 4) heme binding pockets. 

PDB entries having adenosine (ADN), cobalamin (B12), b-D-glucose (BGC), 

coenzyme A (COA) as standalone ligands in proteins were retrieved to extract the non-

lipid binding pockets. PDB entries having cholesterol (CLR), myristic acid (MYR), 

palmitic acid (PLM), stearic acid (STE), oleic acid (OLA) as standalone (i.e., not 

covalently bound) ligands were retrieved to extract lipid binding pocket. To eliminate 

the possibility of identifying surface-bound lipids, structures having fewer than 10 

residues within 8 Å of the ligand center-of-mass were filtered out. PDB entries with 

hemes (HEM) as standalone ligands were retrieved to extract heme binding pocket. 

The dpocket module from the fpocket package was used to extract ligand pockets in 

these ligand-bound structures. The pockets were defined by 17 descriptors: pocket 

volume (pock_vol), number of alpha spheres (nb_AS), pocket surface area (surf_vdw), 

pocket polar surface area (surf_pol_vdw), pocket apolar surface area (surf_apol_vdw), 

hydrophobicity score (hydrophobicity_score), mean local hydrophobic density 

(mean_loc_hyd_dens), proportion of apolar alpha sphere (apol_as_prop), proportion 

of polar atoms (prop_polar_atm), mean alpha sphere solvent accessibility 

(mean_as_solv_acc), alpha sphere density (as_dens), maximum distance of alpha 

spheres (as_max_dst), volume score (volume_score), polarity score (polarity_score), 

charge score (charge_score), flexibility (flex). A total of 3,333 non-lipid binding pockets 

were extracted from 1,006 non-lipid bound PDB structures, 1,981 lipid binding pockets 

were extracted from 780 lipid bound PDB structures, and 429 heme binding pockets 

were extracted from 240 heme bound PDB structures. While dpocket can extract the 
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ligand binding pockets, it also outputs unliganded pockets (identified by fpocket) – 

these unliganded pockets we defined as pseudo pockets. The pseudo pockets were 

used to train the machine learning model to assure that the classifier distinguishes 

lipid binding pockets from pseudo pockets predicted by fpocket. A total of 90,232 

pseudo pockets were identified from 2,026 PDB structures. The full dataset was 

obtained by combining non-lipid binding pockets, lipid binding pockets, and pseudo 

pockets. To evaluate the effect of different datasets, an independent dataset was 

sampled from the full dataset and included heme binding pockets using stratified 

sampling with a 10% fraction size.  

 

Selection of the machine learning algorithm 

Six algorithms were used to in the study: support vector machine, logistic regression, 

k-nearest neighbors, naïve bayes, decision tree, and random forest. The selection of 

the final algorithm was based on an assessment of their performance with the full 

dataset. The cross validation was done with the stratified shuffled sampling method in 

sklearn with a 90:10 ratio. 25 random stratified samples were performed to measure 

the average performance. 

 

Selection of dataset 

Four datasets with different ratios of lipid binding pockets and pseudo-pockets are 

assessed. The full dataset consists of lipid binding pockets, non-lipid binding pockets, 

and all pseudo pockets. The five-fold and twenty-fold datasets reduced the number of 

pseudo pockets by sampling the pseudo pockets with five or twenty times of the 

number of lipid binding pockets. The balanced dataset was assembled by sampling 

the pseudo pockets to match the number of lipid binding pockets. Assessment of the 

effect of the more balanced datasets was done using the test dataset. 

 

Tuning of the hyperparameters 

The tuning was done on the five-fold dataset and aimed to maximize the F1 score. 

The first round of tuning was done with the random search method in sklearn. The 

following hyperparameters were tuned by randomly searching within the range 

indicated in the parentheses: number of estimators (100, 1000), maximum features (2, 

4), maximum depth (10, 100), minimum samples to split (2, 10), minimum samples in 
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leaf nodes (1, 4), bootstrap (True, False). The search was done for 100 iterations and 

cross-validated with three-fold cross validation. 

The second round of tuning was done with the grid search method in sklearn 

by examining all possible combinations of hyperparameters with the options in 

parentheses: number of estimators (100, 200, 400), maximum features (2, 3, 4), 

maximum depth (50, 70, 90), minimum samples to split (2, 5, 10), minimum samples 

in leaf nodes (1, 2, 4), bootstrap (True). The options were selected to calibrate the 

result perform of first optimization. The search was done for 100 iterations and cross-

validated with three-fold cross validation. The performance of each model was 

assessed through cross validation, which was done with stratified shuffled sampling 

method in sklearn with a 90:10 ratio. 25 random stratified sampling was done to 

measure the average performance. 

 

Assessment of models 

All classifier models were assessed using six metrics: area under receiver operating 

curve (AUROC), accuracy, F1 score, sensitivity, specificity, and precision. AUROC is 

defined as the area under curve of the receiver operating curve where plots the 

sensitivity against 1-specificity at different threshold, where AUROC of 1 is the perfect 

classifier and AUROC of 0.5 is the worst classifier. Accuracy is defined as the 

proportion of correctly labeled samples to rest of the samples; F1 score is defined as 

the harmonic mean of sensitivity and precision, ranging from 0 to 1; sensitivity is 

defined as the proportion of correct classification within the positive class; specificity 

is defined as the proportion of correct classification within the negative class; and 

precision is defined as the proportion of correct classification within the predicted 

positive samples. The equation for calculating each metrics are defined down below. 

True positive (TP) is the count of LBPs correctly predicted as LBPs. True negative (TN) 

is the count of nLBPs correctly predicted as nLBPs. False positive (FP) is the count of 

nLBPs incorrectly predicted as LBPs. False negative (FN) is the count of LBPs 

incorrectly predicted as nLBPs. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	

𝐹1	𝑠𝑐𝑜𝑟𝑒	 = 	
2

1
sens. +

1
𝑝𝑟𝑒𝑐.

 

 

Workflow for proteome prediction 

The AlphaFold models were downloaded from the database. 

(https://alphafold.ebi.ac.uk) The fasta sequences were retrieved from UniProt. The 

fasta sequences were then uploaded to SignalP 6.0 web server38 to predict the 

existence and cleavage sites of signal peptides, which were removed from the 

structure models if detected. Two filters were used to reduce the computation burden: 

any model containing less than 100 amino acids was removed, and models with 

overall pLDDT scores less than 70 were eliminated. The remaining models were fed 

into the fpocket algorithm, and all pockets predicted by fpocket were subjected to 

prediction by the classifier. The pocket with the highest prediction score was reported 

as the score for the entire protein. 

 

Gene ontology analysis 

The gene ontology (GO) analysis was done with the ShinyGO 0.77 web server64. The 

false discovery rate (FDR) cutoff was set at 0.05. The GO terms shown for yeast were 

selected with top 10 FDR and the gene numbers in the term is at least 20 but no more 

than 1000. The GO terms shown for human were selected with top 10 FDR and the 

gene numbers in the term is at least 20 but no more than 2000. 
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Fig. 1. Flowchart describing the approach used by SLiPP to predict lipid interacting 

proteins. 
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Fig. 2. PCA analyses of pockets using the 17 physiochemical properties detected by 

dpocket. (A, B) Score plots of the first two principal components, which describe 40.9% 

and 18.3% of the variance respectively. The datapoints were colored by class labels 

(A) and ligand identity (B). (C)  A plot showing the contribution of each property to the 

first two principal components. 
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Fig. 3. (A) Assessment of machine learning algorithms used for the classifier model. 

The performance was assessed with 25 random seedlings. Boxes were plotted from 

first quartile to third quartile, while the whiskers extend to demonstrate the whole range 

of the data except for outliers. Outliers were defined as the datapoints outside of 1.5 

times the interquartile range from the first and third quartiles. (B) Optimization of 

datasets for the classifier. The performance was assessed with an independent test 

dataset. 
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Fig. 4. Receiver operating curves for (A) the test dataset, (B) the apo PDB dataset, 

and (C) the AlphaFold dataset. The curves were plotted as the sensitivity vs (1 – 

specificity) at different thresholds. 
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Fig. 5. (A) Prediction results of the E. coli, yeast, and human proteomes. The 

prediction scores are ranked from high to low. The dotted line indicates the prediction 

threshold with probability > 0.5. Gene ontology analyses of the top 10 biological 

process (B) and molecular function GO terms (C) in yeast and human (D, E).  The size 

of the dot indicates the number of genes for the GO term while the color indicates the 

false discovery rate (FDR).  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.26.577452doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 6. SLiPP-predicted pockets (blue spheres) within the AlphaFold models of (A) 

AsmA (UniProt P28249), (B) YhdP (UniProt P46474), (C) YceI (UniProt P0A8X2), (D) 

YajR (UniProt P77726), (E) YfjW (UniProt P52138), and (F) YchQ (UniProt Q46755).  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.26.577452doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 7. GDAP2 SLiPP prediction analysis. (A) Domain representation of GDAP2. (B) 

SLiPP-predicted pocket in GDAP2. (C) Hydrophobicity-colored surface of GDAP2 with 

the hydrophobic surface colored in yellow and the hydrophilic surface colored in cyan. 

(D) Amino acids defining the pocket are shown as orange sticks. (E) Pocket residues 

modified in pathogenic variants are depicted. 
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Fig. 8. The importance of pocket property was assessed by (A) the decrease in 

impurity and (B) the decrease in F1 score when the feature is permutated. The 

permutation was done in 10 repeats, with error bar indicating the standard deviation 

of the 10 repeats. (C) Violin plots of hydrophobicity scores with different ligand 

occupancies. The white dot represents median and the box plots from first quartile to 

third quartile. (D) Score plots on PCA analyses with the addition of heme binding 

pockets to the full dataset; heme binding pockets are shown as purple dots with white 

boarders.  
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Table 1. Performance metrics of SLiPP from different test and validation datasets. 

METRICS Test pockets Apo PDB AlphaFold 

AUROC 0.970 0.828 0.851 

Accuracy 0.968 0.735 0.664 

F1 score 0.869 0.726 0.643 

Sensitivity 0.818 0.612 0.495 

Precision 0.926 0.891 0.918 

Cohen’s kappa 0.850 0.486 0.376 

 
Table 2. Top 10 SLiPP hits in the E. coli proteome. No description is provided for 

proteins not yet biochemically characterized. 

GENE NAME DESCRIPTION Ligand 
Lnt Apolipoprotein N-acyltransferase glycerophospholipid 

AsmA  likely phospholipid 

YceI  likely isoprenoid 

AppC Cytochrome bd-II ubiquinol oxidase ubiquinol 

MlaC Phospholipid transport system phospholipid 

YajR  unknown 

YfjW  unknown 

AppB Cytochrome bd-II ubiquinol oxidase ubiquinol 

YhdP  likely phospholipid 

YchQ  unknown 
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Supporting figures 
 

 
Fig. S1. Violin plots showing representative pocket descriptors of LBPs, nLBPs, and 

PPs. Hydrophobicity score is based on an arbitrary scale suggested by Monera et al.1, 

where glycine is defined as 0 and phenylalanine as 100. 
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Fig. S2. Hyperparameters optimization for the classifier model. The performance was 

assessed with 25 random seedlings. The boxes were plotted from first quartile to third 

quartile, while the whiskers extend to demonstrate the whole range of the data with 

the exception of outliers. 
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Fig. S3. fpocket predicting pockets within BstC (PDB 7T1S). AlphaFold model is 

colored in beige and the predicted pocket is colored in blues. Different shades of blue 

indicate separate pockets predicted by fpocket. 
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Fig. S4. The probability distribution function of SLiPP scores from the E. coli, yeast, 

and human proteomes. The dashed line indicates the hit threshold prediction score for 

SLiPP. 
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Fig. S5. SLiPP hits in the human proteome. (A) Pie chart showing the proportion of 

SLiPP hits that are associated with one or more diseases in UniProt. (B) Graph 

revealing the specific disease categories that SLiPP hits are associated with. 
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Fig. S6. Optimization of datasets with or without heme binding proteins. The 

performance of the classifier was assessed with a 10% left-out test dataset. 
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Supporting tables 

Table S1. Top 10 SLiPP hits of putative lipid binding proteins in Borrelia burgdorferi 

B31. Descriptions are annotations provided by UniProt. 

GENE  DESCRIPTION 
Lgt, BB_0362 Phosphatidylglycerol-prolipoprotein diacylglyceryl transferase 

Lnt, BB_0237 Apolipoprotein N-acyltransferase 

YajC, BB_0651 Sec translocon accessory complex subunit 

BB_0584 Conserved hypothetical integral membrane protein 

BB_0597 Methyl-accepting chemotaxis protein 

BB_0368 Glycerol-3-phosphate dehydrogenase 

BB_0117 UPF0073 membrane protein 

BB_0747 Oligopeptide ABC transporter, permease protein 

DnaJ, BB_0517 Chaperone protein 

ResT, BB_B03 Telomere resolvase 
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Table S2. Top 10 SLiPP hits of putative lipid binding proteins in Treponema pallidum 

pallidum. Descriptions are annotations provided by UniProt. 

GENE  DESCRIPTION 
TP_0671 Sn-1,2-diacylglycerol cholinephosphotransferase 

TP_0175 Uncharacterized protein 

TP_0229 Type-4 uracil-DNA glycosylase 

TP_0324 Uncharacterized protein 

TP_0789 Uncharacterized protein 

YidC, TP_0949 Membrane protein insertase 

TP_0515 LptD C-terminal domain-containing protein 

TP_0022 Uncharacterized protein 

TP_0447 Uncharacterized protein 

TP_0481 Uncharacterized protein 
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Table S3. Top 10 SLiPP hits of putative lipid binding proteins in Chlamydia 

trachomatis. Descriptions are annotations provided by UniProt. 

GENE  DESCRIPTION 
CT_850 Integral membrane protein 

CydA, CT_013 Cytochrome Oxidase Subunit I 

MenG, CT_428 Demethylmenaquinone methyltransferase 

Lnt CT_534 Apolipoprotein N- 

CT_131 Possible Transmembrane Protein 

CT_573 Uncharacterized protein 

MraY, CT_757 Phospho-N-acetylmuramoyl-pentapeptide-transferase 

UppS, CT_450 Isoprenyl transferase 

Aas, CT_776 Acylglycerophosphoethanolamine Acyltransferase 

BrnQ, CT_554 Amino Acid (Branched) Transport 
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