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Abstract

Motivation: Identification of system-wide causal relationships can contribute to our understanding of long-distance,
intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover
coordinated biological processes between organs. However, many existing dynamic transcriptome studies are char-
acterized by sparse and often unevenly spaced time points that make the identification of causal relationships across
organs analytically challenging. Application of existing statistical models, designed for regular time series with
abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing
research interest in biological time series data, there is a need for new statistical methods that are able to determine
causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger)
causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of
Arabidopsis thaliana in response to a nitrogen signal.

Results: This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds
functions from the domain of engineering that allow to adapt the model’s dependence structure to the specific sam-
pling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is
then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for
Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interac-
tions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the
predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes
encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384
are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly
involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subse-
quent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in
long-distance nitrogen signalling.

Availability and implementation: The method was developed with the R statistical software and is made available
through the R package ‘irg’ hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a run-
ning example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the
original data set are made available in the package as an example to apply the method and the complete A.thaliana
data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE97500.

Contact: amymc@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Time series data are important for understanding the biological
processes that are activated at different times and for inferring caus-
ality (Bar-Joseph et al., 2012). Many time series studies are designed
to capture both dynamic and stationary phases in response to pertur-
bations, which result in unevenly spaced time points, with dense
sampling early and sparse sampling at later time points (Colón
et al., 2010; Gargouri et al., 2015; Krouk et al., 2010; Spellman
et al., 1998; Zhu et al., 2000). In biology, this is a commonly used
sampling scheme to efficiently capture transient transcriptional and
metabolic responses for example. However, the analysis of this ir-
regular data is challenging, among others, since traditional time-
lagged or cross-correlation analyses, designed for regularly spaced
intervals, cannot be used. To date, it can be argued that no statistical
approach has been able to comprehensively account for these unique
features common to many biological time series (see e.g. Rehfeld
et al., 2011).

Among the current approaches, methods designed for time-
independent or regularly-spaced processes have been used to analyse
unevenly-spaced time series data. For example, ‘static-based’ cluster-
ing methods like hierarchical clustering and K-means have been
used to organize and identify genes differentially expressed over de-
velopmental time in Zea mays (Chen et al., 2014), or in response to
drought stress in Arabidopsis thaliana (Bechtold et al., 2016).
However, clustering methods are not suitable to predict causal rela-
tionships between genes. Hence, other employed approaches in-
clude, among others, the transformation of irregularly sampled data
into evenly spaced time series (Hamilton, 1994), in which the irregu-
larity of the time interval can be approximated by forced regular
intervals (Maller et al., 2008), or (resampling) strategies that esti-
mate missing data points to fill in lags between observations
(Broersen and Bos, 2006; Remondini et al., 2005; Thiebaut and
Roques, 2005). Other methods directly address the irregular nature
of the processes but do not consider the multivariate dependence
and, consequently, the causal relation between signals (see e.g.
Erdogan et al., 2005; Eyheramendy et al., 2018). These approaches
have different drawbacks (Eckner, 2014) including: (i) an inability
to capture the variable nature of multivariate dynamic transcrip-
tome experiments; and (ii) resampling strategies often change the
(Granger) causal relationship of the multivariate time series
(Bahadori and Liu, 2012). All of these approximations can lead to
incorrect correlations and predictions, and are unable to determine
causal relationships within or between time series. Another com-
monly used approach in the analysis of (biological) time series is to
perform a correlation analysis which however often does not ac-
count for non-stationary features of the data (Gargouri et al., 2015;
Zhao et al., 2006). Indeed, the latter form of analysis can be highly
misleading if, for example, the mean and/or variance of the series
change over time which can often be the case for many experimental
settings.

In response to the above limitations, this work puts forward a
statistical approach that provides a general framework to determine
Granger-causality (Granger, 1969) for (short) irregularly sampled
bivariate signals. Broadly speaking, a time series (say x) ‘Granger-
causes’ the other (say y) if the prediction of future values of y, based
only on its passed values, is significantly improved when also using
passed values of x. Considering this intuitive definition, existing
approaches have been proposed to perform Granger-causal analysis
in (unevenly sampled) biological (and other) signals for stationary
networks (Shojaie and Michailidis, 2010; Zhang et al., 2010) or for
dynamic models (Carlin et al., 2017; Fujita et al., 2010; Zhang
et al., 2010). However, for the specific purposes of this work, these
existing methods either (i) lack the dynamic component (e.g. the de-
pendence structure changes based on the distance between observa-
tions), or (ii) do not include statistical inference tools to ascertain
significant relationships or (iii) do not include information on the
sign, delay and intensity of the detected causal relationship (or do
not address a subset of these issues). As a result, the proposed ap-
proach tackles the problem of detecting Granger-causal relation-
ships in dynamic transcriptome studies for plants by addressing all
of the above points. While in this work it is employed for dynamic

transcriptome studies, this approach can be applied broadly to dif-
ferent problems dealing with causal relationships such as ‘omics’
data sampled irregularly over time, allowing researchers to uncover
and explore causal relationships between same signals (e.g. gene-
gene, metabolite-metabolite) separated in space (e.g. roots and
shoots of the same plant), but also different signals in the same or
different spaces (e.g. gene-protein, gene-metabolite, protein-
metabolite). This can be relevant for the increasing prevalence of
scRNA-sequencing or, more specifically, for the multiplexed fluores-
cence in situ hybridizations.

As stated earlier, in this work we specifically use this approach
to describe causal gene-gene relationships from above- (shoot) and
below- (root) ground organs of A.thaliana in response to a nitrogen
signal. Through identification and bioinformatic exploration of the
detected causal relationships, we achieve a greater understanding of
the underlying molecular and biochemical pathways involved in the
nitrogen-signal response. This increase in understanding of nitrogen-
responsive biochemical pathways in different plant tissues may help
to predict emergent plant properties under nitrogen sufficiency and
deficiency. Further testing of model-predicted causal relationships
may uncover new molecules, pathways, and processes involved in
the root-to-shoot-to-root nitrogen-signal relay, providing biological
insight into complex, whole-plant nitrogen response.

2 Granger-causal analysis for irregular data

An irregularly spaced time series is a sequence of observations that
are observed in time in a strictly increasing manner but where the
spacing of observation times is not necessarily constant. More for-
mally, let

ðti : i ¼ 1; . . . ; nÞ 2 Tn;

denote a strictly increasing time sequence of length n where:

Tn ¼ fðt1 < � � � < tnÞ : ti 2 R;1 � i � ng:

In addition, let ðXti
: i ¼ 1; . . . ; nÞ 2 R

n and ðYti
: i ¼ 1; . . . ; nÞ 2

R
n denote two sequences of real-valued random variables such that

we can denote a bivariate irregularly spaced time series with n time
points, as ðti;Xti

;Yti
: i ¼ 1; . . . ; nÞ, where ti denotes the time at

which Xti
and Yti

are to be observed. In the context of this paper, we
focus on those random sequences that are observed at the same
points in time (i.e. the sequences ðti : i ¼ 1; . . . ; nÞ correspond for
both series). However, as discussed further on, this condition can
also be relaxed as a result of the research developed in this work.

As highlighted previously, the literature on irregularly spaced
time series is not abundant and methods available to practitioners
for estimation and inference in these cases are lacking as well. In this
section we therefore put forward a pertinent statistical model that
we will denote as F ¼ fFh : h 2 H � R

pg, with h being the vector
containing the parameters of this model. The latter model needs to
deal with irregularly spaced bivariate time series and should allow
to test for Granger causal links between the series themselves. In

order to achieve this goal, we firstly define lðxÞi and lðyÞi as the
expected values of Xti

and Yti
, respectively. These quantities repre-

sent, in the case of dynamic transcriptome data, the natural (deter-
ministic) variation in gene expressions due, for example, to changes
in environmental conditions or natural cycles and would remove all
external effects that would generate correlation between the signals
(as opposed to correlation induced by the idiosyncratic signal behav-
iours which is the aim of a Granger-causal analysis). In addition,
removing the mean allows to make the signals (mean) stationary
and to employ models and reliable inference frameworks for such
settings. In the latter sense, if we were considering evenly spaced
observations, it would appear reasonable to consider the class of
AutoRegressive Moving Average (ARMA) models to describe the
variations of ðXti

Þ around its mean (see e.g. Box et al., 2015, for
details). A commonly used model within this class, especially when
dealing with small sample sizes, is the first-order autoregressive
model, i.e. an AR(1), which is defined as
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Xti
� lðxÞi ¼ q

�
Xti�1

� lðxÞi�1

�
þWti

;

where q represents the parameter which explains the dependence be-
tween consecutive observations and Wti

is an independent sequence
of random variables with a certain (finite) variance r2. This model
allows to approximate many covariance structures delivering a be-
haviour that is often reasonable for many biological and natural
phenomena. In order to determine whether another time series (sig-
nal) has an impact on the time series under consideration, the above
model can be extended to the following:

Xti
� lðxÞi ¼ q

�
Xti�1

� lðxÞi�1

�
þ k
�

Yti�1
� lðyÞi�1

�
þWti

;

where k therefore represents the impact that the time series ðYti
Þ has

on the time series ðXti
Þ. In general terms, we can say that ðYti

Þ
Granger-causes ðXti

Þ if the latter model explains the behaviour of
ðXti
Þ better than the previously defined AR(1) model that only

depends on the sequence ðXti
Þ. The concept of Granger-causality

was introduced in Granger (1969) and the goal of the biological
study considered in this work would therefore be to perform a statis-
tical test to confirm the stronger explanatory power of the second
model over the first.

However, these models are not well-adapted to irregularly
spaced time series that are the focus of this work. For example the
parameter q, that measures the relation between consecutive obser-
vations, remains constant regardless of the distance in time between
Xti

and Xti�1
(as well as the parameters k and r2). For this reason,

the next sections put forward a new framework for these settings.

2.1 The proposed model
The first step required to address the problem of modelling irregu-
larly spaced time series consists in integrating the distance in time
between observations within the model specification. Firstly, one
needs to assume that an appropriate technique is used to estimate

lðxÞi , such as parametric approaches (e.g. linear regression) or other
semi- or non-parametric approaches such as splines or techniques
such as functional data analysis. (The use of functional data analysis
would appear particularly pertinent for the considered setting since
it could also provide information on strength and sign of association
through the required shift and alignment needed to register the
irregularly-sampled patterns. This avenue of investigation is left for
future research and the authors thank one of the reviewers who put
forward this idea.) Given this, we denote the centred observations as
~Xti

:¼ Xti
� lðxÞi and the distance in time as dti

:¼ ti � ti�1, with

dti
2 R

þ by definition. Based on this, the AR(1) model for irregularly
spaced data can be represented as follows:

~Xti
¼ f ðdti

Þ ~Xti�1
þWti

;

where f ð�Þ is a deterministic function, possibly known up to some
parameter values, that plays the same role as the constant q but
takes into account the distance between observations. For different
reasons, among which estimation feasibility, the independent se-
quence ðWti Þ is usually considered as being Gaussian (although
other distributions can be considered). Without loss of generality,
we will make this assumption and therefore state that Wti

�
Nð0; gðdti

ÞÞ with gð�Þ being another deterministic function. Both the
functions f ð�Þ and gð�Þ need to respect certain properties which will
be discussed further on. The above model could be extended in sev-

eral ways, for example, by considering a dependence between ~Xti

and ~Xti�j
with j>1 or between ~Xti

and Wti�j
as in general ARMA

models (as well as considering non-Gaussian distributions for Wti
as

mentioned earlier). However, given the small sample sizes usually
encountered in dynamic transcriptome and metabolome studies, it is
rather unlikely that more complex models can be appropriately esti-
mated and the above model is a very reasonable approximation for
more general dependence structures.

Considering the extension of AR(1) processes to irregularly
spaced settings, we can consider the same extension when modelling
the joint behaviour of two time series. For this purpose we define
the following bivariate model, which is a natural extension of a vec-
tor AR(1) model for irregularly spaced data:

Zi ¼ Aðdti
ÞZi�1 þ V i; (1)

where

Zi :¼ Xti
� lðxÞi

Yti
� lðyÞi

" #
; Aðdti

Þ :¼ f1ðdti
Þ h1ðdti

Þ
h2ðdti

Þ f2ðdti
Þ

� �
;

and where hð�Þ is another deterministic function (which may depend

on unknown parameters). In addition, we have V i :¼ ½Wti
;Uti
�>

with ðVti
; i ¼ 1; . . . ; nÞ 2 R

2�n denoting a bivariate independent se-
quence with distribution Vti

� Nð0;RiÞ, with 0 being a two-
dimensional zero vector and

Ri ¼
g1ðdti

Þ 0
0 g2ðdti

Þ

� �
: (2)

It can be observed how the matrix Aðdti
Þ plays the main role in

describing the dependence ‘within’ and ‘between’ the two time ser-
ies. Indeed, on one hand the functions f1ðdti

Þ and f2ðdti
Þ determine to

what extent the time series depend on themselves to describe the be-
haviour of their future observations while the functions h1ðdti

Þ and
h2ðdti

Þ, on the other hand, determine the degree of dependence be-
tween the two time series. Also within this setting it is possible to
recognize the idea of Granger-causality where one is interested in
assessing whether past values of a certain time series can significant-
ly increase the explanation of the behaviour of another time series.
In general, this assessment is based on statistical tests which are typ-
ically related to characteristics of the matrix Aðdti

Þ. In fact, if this
matrix is diagonal, this implies that the two time series are inde-
pendent from each other (under the Gaussian assumption) while if it
is full this entails that the two time series are also inter-dependent.
Moreover, if the matrix is upper or lower triangular, this would
imply that only one of the series depends on itself and on the other
series (the latter therefore only depending on itself).

Remark: The above-defined modelling framework can be applied also to

settings with a different number of observations as well as different

measurement times between pairs, requiring an ‘adaptive’ definition of

the matrix A (i.e. a different structure of A at each time point of either

signal), while the currently considered setting allows to explicitly define

and write out the model for all pairs. More complex models and the in-

clusion of more signals (e.g. triplets of signals or more) can also be con-

sidered but this would require a much larger number of observations per

signal and increased computational resources since the number of model

parameters would increase exponentially.

Considering the above modelling framework, there is a need to esti-

mate the unknown parameters in the model and test whether the esti-

mated models appear to explain the data sufficiently well to draw reli-

able conclusions. Firstly, to estimate these kind of models we propose a

likelihood approach based on the assumption of a jointly normal distri-

bution of the observations which, for the bivariate series, gives the fol-

lowing conditional distribution:

ZijZi�1 � Nð~li;RiÞ; (3)

where Ri is defined in (2), and

~li :¼
f1ðdti

Þ ~Xti�1
þ h1ðdti

Þ ~Y ti�1

h2ðdti
Þ ~Xti�1

þ f2ðdti
Þ ~Y ti�1

2
4

3
5:

If we denote the unconditional distribution of Zi as lðZiÞ, then the likeli-

hood function is given by
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LðhÞ ¼ lðZ1Þ
Yn
i¼2

lðZijZi�1Þ; (4)

where, using (3), we have

lðZijZi�1Þ ¼
1

2pjRij1=2exp � 1
2 ðZi � ~l iÞTR�1

i ðZi�~liÞ
� �

:

Applying the logð�Þ function to LðhÞ and fixing lðZ1Þ as constant

(neglecting constant terms) we obtain the following estimating equation

which defines the maximum likelihood estimator (MLE):

ĥ ¼ argmin
h2H

QnðhÞ; (5)

where

QnðhÞ ¼
1

n� 1

Xn

i¼2

log ðRiÞ þ ðZi � ~l iÞTR�1
i ðZi � ~l iÞ:

Under a set of conditions (see Section S1 in the Supplementary

Material), the estimator defined in (5) has appropriate statistical

properties. Among these conditions there are constraints on the deter-

ministic functions that characterize the dependence structure of the

model defined in (1). For this reason, we define these functions ac-

cordingly taking from the domain of (navigation) engineering (see

e.g. Titterton et al., 2004). In the latter field, a model that is often

used is the discrete-time first-order Gauss-Markov model that can be

defined as:

~Xti
¼ exp � dti

/

� �
~Xi�1 þWti

; (6)

where / 2 R
þ is a parameter that determines the ‘range’ of dependence

in the data and

Wti
� N 0;r2 1� exp �2dti

/

� �� �� �
:

Having been mainly proposed to deal with time series measured at dif-

ferent frequencies, the idea behind this model is very close to the struc-

ture of an exponential model for spatial data (see e.g. Ripley, 2005).

Indeed, the latter explains the dependence in space through an exponen-

tial structure and roughly corresponds to the above-mentioned Gauss-

Markov process when considering dti as a measure of Euclidean distance.

The above model therefore gives an explicit form to the functions f�ð�Þ
and g�ð�Þ mentioned earlier but of course other explicit forms can be

envisaged.

While the above defined functions characterize the dependence of a

time series on itself, it is still necessary to give an adequate form to the

function h�ð�Þ that describes the behaviour of a signal based on another.

Given the short time series available, we decide to impose a reasonable

structure to this behaviour which allows the dependence of a signal on

the other signal to grow exponentially over time (reaching its maximum)

and then decay exponentially. Indeed, while we consider the impact of

past values of a time series on its future values as a function only of their

distance in time, we postulate that the impact of another time series is

not constant but increases and then decreases as a function of the dis-

tance in time over the chosen experimental time-frame. This behaviour

can be justified from a biological point of view since genes have been

shown to influence the expression of other genes in a ‘hit and run’ man-

ner (Doidy et al., 2016). The causal gene physically interacts with the

target gene then dissociates, but the transient target gene’s expression

continues to be affected after the dissociation. For this reason, we pro-

pose to use the following function:

hðdti
Þ :¼ w exp �ðdti

� cÞ2

g

" #
;

where w 2 ð�1;1Þ is a parameter that describes the ‘intensity’ and ‘direc-

tion’ of the dependence of a time series on the other while c 2 R
þ

denotes the distance in time at which the dependence of a time series on

another is maximal. Finally, g 2 R
þ plays a similar role to / in the previ-

ously defined function h�ð�Þ.
As stated earlier, other explicit (more complex) forms can be defined

for these functions. However, other forms would probably require more

parameters to characterize them and would be complicated (if not im-

possible) to estimate in practice given the small sample sizes collected in

many experimental settings such as the one considered in this work.

Hence, in order to respond to the need to balance model complexity

with practical feasibility, we will consider the above functions to under-

stand the relationship between different root and shoot signals since they

can be considered as appropriate approximations to the underlying de-

pendence structure.

2.2 Testing procedure
Once the model is defined, the goal of this work is therefore to
understand which structure of the matrix Aðdti Þ in (1) best describes
the observed data (e.g. diagonal, lower/upper triangular). In this per-
spective, we are interested in making a decision on the following set
of hypotheses:

H0 : Aðdti
Þ is diagonal:

HA : Aðdti
Þ is lower triangular:

Hence, the null hypothesis H0 states that neither signal has an
impact on the other (i.e. no Granger-causality in the bivariate
time series) while the alternative HA states that the first signal
Granger-causes the second. This alternative can of course be
changed to ‘Aðdti

Þ is upper triangular’ therefore reversing the dir-
ection of dependence. In the setting of this work, one could also
consider the alternative hypothesis stating that ‘Aðdti

Þ is a full ma-
trix’, implying that both signals Granger-cause each other.
However, rejecting the null H0 in favour of the latter alternative
would not be able to conclude on whether only one signal
Granger-causes the other, therefore requiring more computational
time (as described further on) to also test the two ‘triangular’
alternatives. On the other hand, if the null hypothesis under a ‘tri-
angular’ alternative were rejected, this would suggest that the null
would be rejected also with the ‘full’ alternative (with high prob-
ability) thereby supporting the use of two ‘triangular’ tests for
each bivariate time series.

The MLE defined in (5) allows to estimate the parameters of the
proposed model using the likelihood function in (4). Based on the
latter, a commonly used test to determine the performance of a
more ‘simple’ model (such as the one considered in the null hypoth-
esis stated above) with respect to a more ‘complex’ model (such as
the one in the alternative hypothesis) is the likelihood-ratio test
whose statistic is given by

LRT :¼ �2 log
L ĥ0

� 	
Lðĥ1Þ

 !
¼ 2

�
Qnðĥ0Þ �Qnðĥ1Þ

�
;

where ĥ0 and ĥ1 represent the estimated parameters of the models
under the null and alternative hypothesis respectively. In order to
perform this test one needs to derive the distribution of the LRT
statistic under the null hypothesis which is asymptotically chi-
squared with p? degrees of freedom, where p? represents the num-
ber of extra parameters contained in h1 2 R

p1 with respect to
h0 2 R

p0 (i.e. p? :¼ p1 � p0). Using this distribution and the
observed LRT statistic one can then reject or not the null hypoth-
esis thereby concluding whether or not a signal Granger-causes
the other.
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2.3 Implementation
As highlighted before, the sample sizes coming from target biologic-
al applications are typically small (i.e. 5 < n < 20 time points) and
it therefore seems unreasonable to make use of asymptotic proper-
ties in these cases. For this reason, Monte-Carlo-based techniques
appear to be a natural alternative that are able to consider the small
sample distribution of the test statistics of interest. More specifically,
we propose to use parametric bootstrap to derive the small sample
distribution of the LRT statistic under the null hypothesis as
described in Algorithm 1.

Step 2 of Algorithm 1 requires the simulation of a bivariate time
series under a Gaussian assumption. To do so, using the estimated

parameters under the null hypothesis ĥ0, one first simulates the inde-
pendent bivariate Gaussian variables ðV�m; . . . ;V0;V1; . . . ;VnÞ
where m 2 N

þ represents the number of observations to use for the
‘burn-in’ phase (usually m	 n). Then one replaces Zi�1 and V i in
(1) with V�m and V�ðm�1Þ respectively in order to obtain Z�ðm�1Þ. In

the next step one then again replaces Zi�1 and V i in (1), but this
time with Z�ðm�1Þ and V�ðm�2Þ respectively, to obtain Z�ðm�2Þ and

continuing in this manner until one obtains Zn. In the end, one only
keeps the bivariate time series ðZ1; . . . ;ZnÞ as the simulated series
for step 2 of the algorithm. Instead of simulating from a parametric
model (as defined in (1)), one could also envisage non-parametric
resampling techniques such as the block-bootstrap (see e.g. Kunsch,
1989) but, aside from not being well suited for irregularly sampled
observations, these are only usable and/or reliable on longer signals
than those considered for this work where a parametric approach
would indeed be more reliable if the signals are actually generated
from the considered model (or a model with a similar dependence
structure).

Among the advantages of using the parametric bootstrap ap-
proach in this setting, there is also the good approximation (for large
H) that it delivers for the LRT statistic distribution under the null
hypothesis. Indeed, by using the empirical distribution of the

LRT
ðhÞ
boot values, it is possible to obtain an approximate P-value (see

Davison and Hinkley, 1997) as follows

p� value 
 1

H þ 1

�
1þ

XH
h¼1

1fLRT
ðhÞ
boot

>LRTg

�
:

If this P-value is smaller than a chosen level of significance a, then
we can reject the null hypothesis H0 that there is no Granger-causality
in favour of the specific alternative hypothesis HA being tested.

Given this testing framework, there are a couple of issues that
need to be considered, the first of which is the computational burden
of Algorithm 1. In fact, the above defined P-value needs to be com-
puted for all possible bivariate signal combinations and alternative
hypotheses resulting in 2�NX �NY tests, where NX and NY are
the number of gene expressions measured in the roots and shoots,
respectively (while n remains the number of measurements included
in each signal for each expression). Considering that the computa-
tional complexity to obtain the above p-value for each pair, given

our assumptions, is approximately of order OðnHÞ, the final algo-
rithmic complexity of the entire procedure would be of order

OðnHMÞ with M ¼ NX �NY and NX;NY 	 103. This implies that
the time required to obtain the results can be considerable (roughly
30 seconds for a test on each pair on a standard laptop computer
when choosing H¼100). Another issue consists in the multiple test-
ing framework this procedure entails, which therefore has conse-
quences in terms of False Discovery Rate (FDR). Indeed, each ðXti

Þ
signal is tested 2NY times (and vice-versa for the ðYti

Þ signals) which
would require to compare the p-value to the level a=ð2NXNYÞ if
applying, for example, a Bonferroni correction. If the sizes NX and
NY are considerable, this would require to increase the number of
simulations H in a proportional manner consequently increasing the
computational burden. Unless one uses the asymptotic approxima-
tion to obtain a P-value (which would be highly unreliable for the
small sample sizes used in these settings), there is currently no way
of avoiding such a computational bottleneck. A screening approach
could be envisaged, for example using the method in Carlin et al.
(2017), but this would nevertheless need to be run on all gene pairs
and would therefore probably require a similar total computational
time considering the following use of the proposed approach after
the screening (however such a two-step screening approach can in-
deed be advantageous and is left for future work). (As an additional
result, although not generally comparable, we have run a simulation
study in Section S2 of the Supplementary Material comparing the
proposed approach with that put forward in Carlin et al. (2017) to
understand how our approach performs in detecting Granger-causal
relationships.)

3 Results and discussion

The described approach was applied to the time-evolved transcrip-
tome of Arabidopsis roots and shoots (the ðXti

Þ and ðYti
Þ signals, re-

spectively) whose measurements were made through an
experimental setup described more in detail in the Supplemental
Material along with the chosen pre-processing (Section 3); addition-
al descriptions of the individual nitrogen-responsive root and shoot
time series as well as ‘within’ organ analysis can be found in Varala
et al. (2018). This dataset consisted of 568 differentially expressed
root genes and 2173 differentially expressed shoot genes, and both
gene lists were enriched for nitrogen metabolic processes. These sig-
nals, each of length n¼10 and collected at higher frequencies in the
initial experimental phase, generate M¼1, 234, 264 possible gene
pairs from significantly differentially expressed root and shoot

genes. Using H ¼ 103, we apply the procedure described in Section
2 which produces a final list of 3078 gene pair interactions whose
details are listed in Table 1, Section S4 of Supplementary Material.
Given the exploratory nature of this study and the discrete nature of
the bootstrap P-value, we choose not to strictly control for FDR but
to consider small P-values (a ¼ 0:05) in order to suggest biologically
justifiable future avenues of research. Nevertheless, in the following
sections we mainly discuss the detected Granger-causal relationships
whose P-value is below 0.2% (meaning that the null is not rejected
at most once among the 103 bootstrap replicates). Out of the total
interactions tested, 2012 had a predicted root-to-shoot direction of
influence meaning that the root gene was identified as being the
(Granger) causal gene, or the influencer on the expression of the
shoot gene. The remaining 1066 interactions had a predicted shoot-
to-root direction of influence. In addition, using the hat symbol to
denote the MLE estimates, the approach predicted 1616 positive

interactions (i.e. ŵ > 0) and 1462 negative interactions (i.e. ŵ < 0).
Due to the limited and irregular number of samples across time, we
choose to classify the time of influence at which the maximum influ-
ence between two genes occurred (measured by the ĉ parameter)
into three general groups: Early (0–15 min), Middle (20–45 min)
and Late (60–120 min). Based on this, among the 3078 interactions,
2,502 occur Early, 548 occur during the Middle time frame, and 28
occur Late. In the following paragraphs we analyse only some of the
model-predicted interactions in terms of their known properties
and/or based on how they have a coherent biological interpretation.

Algorithm 1: Parametric Bootstrap for LRT Statistic

Result: Estimated LRT distribution under H0.

initialize h¼0, H � 100 and a zero vector LRTboot of dimen-

sion H;

while h � H do

1. h ¼ hþ 1;

2. Simulate a bivariate time series ðZðhÞi Þ of the same sam-

ple size as the original signals from the model Fĥ0
;

3. Estimate h0 and h1 from the simulated sample ðZðhÞi Þ to

obtain ĥ
ðhÞ
0 and ĥ

ðhÞ
1 respectively;

4. Compute LRT
ðhÞ
boot ¼ 2

�
QnðĥðhÞ0 Þ �QnðĥðhÞ1 Þ

�
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To do so, we will use the term ‘causal’ to indicate genes that impact
another gene, the latter being referred to as ‘target’.

3.1 Global analysis of model-predicted interactions re-

veal links between biological processes and pathways
Gene Ontology (GO) term analysis was performed to understand
what pathways and processes are influenced across tissues over time
(see Section S3 in Supplementary Material for more details). As
highlighted also in Figure 1, at early time points (0–15 min), causal
root genes reflect the early response to the nitrogen stimulus, while
at later time points there is a shift in metabolism in which causal
root genes are involved in hormone response (20–45 min) followed
by regulation of mRNA catabolic processes (60–120 min) (GO en-
richment P-value < 0.01). Target shoot genes at early and middle
time points are enriched in GO terms for cellular nitrogen com-
pound metabolic process and peptide biosynthesis (see Tables S2
and S11, Section S4 of Supplementary Material) (GO enrichment P-
value < 0.01), while late time points shoot target genes are enriched
in sugar/carbohydrate response and signalling (60–120 min) (GO en-
richment P-value < 0.01) (see Tables S3, S4, S12 and S13, Section
S4 of Supplementary Material). GO analysis of the causal shoot
genes reflect the synthesis of shoot-derived signals, such as peptides
and hormones, while the identified target root genes are involved in
phosphorus metabolic processes (0—15 minutes), lateral root devel-
opment (15–45 min), and response to cytokinin (45–120 min) (see
Tables S5–S10, Section S4 of Supplementary Material). This analysis
reflects much of the current knowledge about long distance nitrogen
signalling between roots and shoots (Ko and Helariutta, 2017;
Poitout et al., 2018; Ruffel et al., 2011).

3.2 Model predictions are supported by in planta

observations
A gene network was constructed where nodes (1322 nodes) repre-
sent genes and edges (3078 edges) constitute the model-predicted
interactions described above (see Section S3 in Supplementary
Material). Network analysis revealed that the gene interaction net-
work with model-defined edges closely follows a power law distri-
bution (R2 ¼ 0:92), indicative of a scale-free biological network
(Albert, 2005; Barabási, 2003). The validity of this finding was sup-
ported by a simulation of 103 randomly generated networks using
the same number of nodes and edges whose R2 values for the power
law distribution were all between 0 and 0.35 (see Fig. 2). While
being scale-free is not a ubiquitous feature of all biological networks
(Broido and Clauset, 2019), comparison of the R2 values between
the 103 random networks and the model-predicted network showed
that the proposed model appears to detect relationships in a non-

random manner. Network analysis for out-degree identified causal
hub genes that are predicted to be highly influential in the temporal
root-shoot transcriptomes in response to nitrogen treatment. Taking
into consideration directionality, the top ten hubbiest genes in the
network, based on out-degree, include factors previously implicated
in the Arabidopsis nitrogen response: AFB3 (AT1G12820) (Vidal
et al., 2013b, 2014; Xu and Cai, 2019), BT1 (AT5G63160) (Araus
et al., 2016; Sato et al., 2017; Vidal et al., 2013a), and WRKY38
(AT5G22570) (Gaudinier et al., 2018; Scheible et al., 2004) (see
Table S4, Section S4 of Supplementary Material). Other network
hubs include the TF RD21A (AT1G47128) that is involved in
autophagy and senescence which are key nitrogen turnover proc-
esses; and the RNA binding protein CID10 (AT3G49390), which is
a poly(A) binding protein potentially involved in mRNA stability or
degradation (see ‘Supplemental Network File’). Further investiga-
tion of the interaction network revealed a number of previously
identified genes and gene–gene relationships involved in local and
long-distance nitrogen signalling, namely those involved in tran-
scriptional regulation and in long-distance signalling by hormones
and peptides, which are described in detail in the following sections.

3.3 Regulators of nitrogen processes
The transcription factors TGA1 and TGA4 were shown to be
involved in mediating the primary nitrate response in roots by regu-
lating the expression of the nitrate transporters NRT1.1 and
NRT2.2, and also by coordinating the root developmental response
to nitrate (Alvarez et al., 2014). From our analysis, root-expressed
TGA1 is predicted to influence the expression of ten shoot genes,
while shoot-expressed TGA1 is predicted to influence the expression
of four root genes (see Table 1). To further investigate these pre-
dicted relationships, promoter analysis using FIMO from MEME
Suite (Bailey and Machanick, 2012) was performed (as outlined in

Table 1. TGA1 target genes in root and shoot with which genes have a TGA1 motif occurrence of P< 0.0001 from the FIMO promoter ana-

lysis, and genes with which TGA1 has been shown to physically bind to based on DAP-Seq and TARGET experiments

Gene ID Gene description Influence FIMO DAP-seq TARGET

Shoot AT1G55890 Tetratricopeptide repeat (TPR)-like superfamily protein Positive

AT1G71980 Protease-associated (PA) RING/U-box zinc finger family protein Negative Y Y

AT1G73100 SDG19, SUVH3, SU(VAR)3-9 homolog 3 Positive

AT2G15230 ATLIP1, LIP1, lipase 1 Negative

AT3G06780 glycine-rich protein Positive

AT3G17510 CIPK1, SnRK3.16, CBL-interacting protein kinase 1 Negative Y

AT4G21215 unknown protein Negative Y

AT5G04840 bZIP protein Negative

AT5G18640 alpha/beta-Hydrolases superfamily protein Negative Y

AT5G62020 AT-HSFB2A, HSFB2A, heat shock transcription factor B2A Negative Y

Root AT3G01310 Phosphoglycerate mutase-like family protein Negative Y Y Y

AT3G61190 BAP1, BON association protein 1 Negative Y Y

AT4G12290 Copper amine oxidase family protein Positive Y Y

AT5G28770 AtbZIP63, BZO2H3, bZIP transcription factor family protein Negative

‘Y’ indicates existing evidence for a predicted interaction from a specific experiment, whereas empty cells indicate possible avenues of future investigation.

Fig. 1. Selected enriched GO terms for root causal, shoot causal, root target and

shoot target genes
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Section S3 of Supplementary Material). At least one TGA1 binding
motif had a significant occurrence (FIMO P-value < 0.0001) in the
putative promoters of two of the targeted shoot genes: a protease-
associated RING/U-Box zinc finger family protein (AT1G71980)
and HSFB2A heatshock transcription factor B2A (AT5G62020).
The TGA1 motif also had a significant occurrence (FIMO P-value <
0.0001) in the three root target genes: a phosphoglycerate mutase-
like family protein (AT3G01310), BAP1 BON association protein 1
(AT3G61190) and a copper amine oxidase family protein
(AT4G12290). DAP-seq (DNA affinity purification sequencing) is
an experimental technique allowing for the discovery of transcrip-
tion factor binding sites on genomic DNA in vitro. A recent DAP-
seq experiment showed that TGA1 actively binds to three shoot
genes, AT1G71980, CIPK1 (AT3G17510) and an unknown protein
(AT4G21215), as well as the three root target genes from the pro-
moter analysis (O’Malley et al., 2016) (see Table 1). Furthermore,
the model-predicted targets of TGA1, Phosphoglycerate mutase-like
family protein (AT3G01310), and alpha/beta-Hydrolases superfam-
ily protein (AT5G18640) were predicted to be direct targets of
TGA1 in a TARGET (Transient Assay Reporting Genome-wide
Effects of Transcription factors) assay experiment in root proto-
plasts by Brooks et al. (2019). A TARGET assay can identify candi-
date transcription factor targets based on TF-induced changes in
gene expression (Brooks et al., 2019). These in-planta results pro-
vide support for the predicted interactions between TGA1 and some
of its target genes within the same tissue, while unsupported interac-
tions suggest indirect regulation of TGA1 on predicted target genes.
Additional studies will be needed to test if these interactions occur
directly or indirectly between tissues.

3.4 Long-distance signalling by hormones and

peptides
Cytokinin response factors (CRFs): Transcription factors (TF) with
previously described regulatory roles in nitrogen uptake and assimi-
lation include members of the ERF, bZIP, and NLP TF families
(Brooks et al., 2019; Konishi and Yanagisawa, 2013; Krapp et al.,
2014; Varala et al., 2018; Vidal et al., 2015). Of particular interest
are the ERF TFs CRF 1-5. These CRFs were previously implicated in
nitrogen signalling, targeting genes involved in nitrogen uptake and
assimilation (Brooks et al., 2019; Varala et al., 2018). In our ana-
lysis, CRF5 expressed in the shoot was predicted to positively influ-
ence the expression of a heavy metal transport/detoxification
protein (AT5G03380) expressed in the root. Using the webtool
‘Elefinder’ from the Matt Hudson lab (available at http://stan.
cropsci.uiuc.edu/tools.php), CRF5 has been shown to bind to the

GCC-box motif (GCCGCC) (Fujimoto et al., 2000; Liang et al.,
2010; Sakuma et al., 2002) which is over-represented in the 2 kb
promoter region of AT5G03380 (E-value ¼ 5:85 � 10�4, see Section
S3 of Supplementary Material), indicating potential for a physical
protein-DNA binding interaction. Shoot-expressed CRF3 is a pre-
dicted target of the causal root-expressed gene AT4G34419 (an un-
known protein) in which AT4G34419 positively influences the
expression of CRF3. Root-expressed CRF4 is predicted to influence
the expression of the shoot genes SAUR-like auxin responsive pro-
tein family (AT4G34750), and Late embryogenesis abundant
hydroxyproline-rich glycoprotein family (AT3G44380). CRF4 is
predicted to positively influence both of these genes during the early
time interval. Like CRF5, CRF4 binds to the GCC-box motif, and
this motif is over-represented in the 2 kb upstream region of
AT4G34750 (E-value ¼ 1:43 � 10�2, see Section S3 of
Supplementary Material). Root CRF4 is also predicted to negatively
influence the shoot gene Homeobox Protein 6 (HB6, AT2G22430)
during the middle time interval. CRF4 was shown to bind to HB6
via DAP-Seq (O’Malley et al., 2016). HB6 is a known negative regu-
lator of the abscisic acid (ABA) signalling pathway (Fujita et al.,
2011; Himmelbach et al., 2003). The ABA pathway is a phytohor-
mone signalling pathway that was previously implicated in coordi-
nating the long-distance nitrogen response (Guan, 2017; Kiba et al.,
2011). A recent study by Varala et al. (2018) showed that CRF4 tar-
gets the TFs SNZ1 and CDF1, which in turn target HB6. The over-
expression of CRF4 decreased the rate of nitrate uptake and altered
root architecture in response to nitrogen treatment compared to WT
plants (Varala et al., 2018). In CRF4 overexpressors, there was a de-
crease in primary root length and lateral root number under low ni-
trate conditions. Lateral root development has been shown to be
inhibited under low nitrate conditions, which trigger ABA accumu-
lation (Léran et al., 2015; Signora et al., 2001; Sun et al., 2017;
Vidal et al., 2010). Thus, the results of our analysis suggest a coher-
ent type 4 feed-forward loop (Mangan and Alon, 2003) in which
root CRF4 represses shoot HB6 which represses whole plant ABA
signalling (see Fig. 3), and may have physiological consequences for
the observed changes in lateral root formation (Varala et al., 2018).

Arabidopsis response regulators (ARRs): The cytokinin signal-
ling pathway is triggered by nitrogen and has been shown to be
involved in the coordination of both root-to-shoot and shoot-to-
root nitrogen-responses. In the shoots, cytokinins stimulate cell div-
ision and differentiation, whereas in the roots cytokinins reduce the
activity of nitrogen uptake (Sakakibara et al., 2006). Cytokinins
have also been shown to induce the expression of ARRs, which then
regulate cytokinin signalling through feedback (To et al., 2007,
2004). For example, ARR4 (AT1G10470) is a Type-A response
regulator that negatively regulates the cytokinin response (To et al.,
2007). In our study, root ARR4 is predicted to influence the expres-
sion of three shoot genes (see Table 1, Section S4 of Supplementary
Material), including a transmembrane amino acid transporter family
protein (ATAVT1B; AT3G54830). During the middle time interval,
root-expressed ARR4 is predicted to negatively influence the expres-
sion of AVT1 in shoots. Yeast AVT1 homologues have been impli-
cated in the vacuolar uptake of large neutral amino acids including

Fig. 3. CRF4 coherent type 4 feed-forward loop, with flat-head arrows indicating

negative interactions, pointed-head arrows indicating positive interactions, dashed

arrows representing predicted interactions from the model and solid arrows repre-

senting known interactions

Fig. 2. (A) Node degree distribution for the network generated from model predic-

tions (R2 ¼ 0:92). (B) Node degree distribution for one randomly generated net-

work (R2 ¼ 0:18). (C) Histogram of the R2 values for the node degree distribution

of 1000 randomly generated networks (0 � R2 < 0:35). Each randomly generated

network was simulated with the same number of nodes and edges as the predicted

network
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glutamine, asparagine, isoleucine and tyrosine (Russnak et al., 2001;
Tone et al., 2015) where they are stored in the vacuole under high
nitrogen conditions (Sekito et al., 2008). When nitrogen starvation
occurs, several AVT genes are upregulated to facilitate the export of
the stored amino acids from the vacuole to the cytoplasm for protein
synthesis (Fujiki et al., 2017). The analysis detected a relationship
between ARR4 and AVT1B suggesting a potential mechanism by
which cytokinin-induced ARR4 in the root may provide a long-
distance signal to regulate shoot vacuolar amino acid import under
high nitrogen conditions, like those used in this study.

Peptides: Signal peptides have been implicated in the whole plant
response to nitrogen (Oh et al., 2018; Ohkubo et al., 2017; Tabata
et al., 2014). In the present study, seven peptides were uncovered as
causal genes involved in 20 interactions (see Table S16, Section S4
of Supplementary Material). ATPSK4 is a Phytosulfokine 3 precur-
sor and was shown to influence plant growth and cellular longevity,
in particular root growth (Matsubayashi et al., 2006). CLE
(Clavata3/ESR-related) peptides have long been known to be
involved in long-distance nitrogen-signalling in legumes and have
also been shown to be involved in nitrogen-signalling in Arabidopsis
(Bidadi et al., 2014; Okamoto et al., 2016). In the present study,
three CLE peptides are present in the predicted long-distance signal-
ling network; CLE3 (AT1G06225), CLE4 (AT2G31081) and
CLE27 (AT3G25905). CLE3 is a predicted causal gene expressed in
the shoot that influences the root-expressed gene AT5G52530 (den-
tin sialophosphoprotein-related), while CLE4 is a causal root gene
predicted to influence the expression of four shoot-expressed genes
either negatively [AT5G67510 Translation protein SH3-like family
protein; AT1G55890 Tetratricopeptide repeat-like superfamily pro-
tein) or positively (AT3G61620 RRP41, 30-50-exoribonuclease fam-
ily protein; AT5G18640 alpha/beta-Hydrolases superfamily
protein]. Lastly, CLE27 is a Clavata family gene that was previously
shown to be repressed by auxin (Wang et al., 2016). In our study,
CLE27 is a shoot-expressed causal gene predicted to positively influ-
ence the expression of AT5G03380 (Heavy metal transport/detoxifi-
cation superfamily protein) in the root. Devil/Rotundifolia Like
(DVL) peptides are non-secretory peptides, conserved in plants, that
can act as small signalling molecules and influence development in
Arabidopsis (Wen et al., 2004). MTDVL1 was previously shown to
be involved in symbiosis in Medicago truncatula, in which it has a
negative regulatory role in nodulation (Combier et al., 2008). Two
Devil peptides were identified in our analysis: DVL4 and DVL11.
Of the four interactions involving DVL11, root DVL11 is predicted
to be the causal gene influencing three shoot genes. Of these,
DVL11 is predicted to positively influence the expression of ICK1, a
cyclin-dependent kinase inhibitor family protein (AT2G23430).
ICK1 is a known key regulator in development, and can inhibit entry
into mitosis (Weinl et al., 2005). Root DVL4 is also predicted by the
analysis to influence three shoot genes. Specifically, root DVL4 is
predicted to positively influence shoot TCP-1/cpn60 chaperonin
family protein (AT3G13470) at a middle time point. A previous
study explored the transcriptional landscape of a DVL4 overexpres-
sor line and showed that overexpression of DVL4 resulted in the up-
regulation of a number of genes encoding transcription factors
(Larue et al., 2010). Our re-analysis of the microarray data from
this study (see Section S3 of Supplementary Material) revealed that
TCP1 was downregulated in DVL4 overexpressor plants compared
to wild type Arabidopsis plants, providing support for a gene-gene
interaction between DVL4 and TCP1 (see Fig. S2 of Supplementary
Material); however, this needs further exploration in the context of
a nitrogen-signal.

3.5 Model predictions contain an over-representation of

mobile causal gene products
The proposed approach, as stated previously, aims at understanding
if the expression of one gene influences the expression of its target
gene through the notion of Granger-causality. Biologically, this in-
fluence may be direct or indirect. It has previously been shown that
mobile mRNAs that originate from one cell-type or organ can trans-
locate to another cell-type or organ and have functional activity

there (Banerjee et al., 2009; Lough and Lucas, 2006; Luo et al.,
2018). To identify potential direct, long-distance interactions, we
took advantage of two recent publications (Guan et al., 2016;
Thieme et al., 2015) with extensive lists of experimentally deter-
mined mobile mRNAs that travel from root-to-shoot and from
shoot-to-root. The lists of directional, causal genes from our model
were intersected with the mobile transcripts identified by these stud-
ies. This analysis provided support for 204 causal genes involved in
340 predicted root-to-shoot, and 241 predicted shoot-to-root rela-
tionships; meaning that the direction of influence of the causal gene
was the same in our analysis as that experimentally determined by
these studies. An over-representation analysis (see Section S3 in
Supplementary Material) was performed with the following hypoth-
eses: ‘H0: the proposed approach (model) is equivalent to detecting
known mobile transcripts randomly’ and (alternative) ‘HA: the pro-
posed approach (model) detects more known mobile transcripts
than random selection’. In this case, the P-value is 0 allowing us to
reject the null hypothesis and hence the model is able to detect mo-
bile transcripts which are potentially able to interact directly with
their target genes. At least 36 of the total causal genes are known
RNA-binding proteins (Marondedze et al., 2016), and 21 of these
are mobile (see Table S17, Section S4 of Supplementary Material).
In general, RNA-binding proteins can form ribonucleoprotein com-
plexes (RNPs) that facilitate phloem transport and long distance
trafficking of RNA molecules (Ham et al., 2009; Kehr and Kragler,
2018). An additional 79 causal genes involved in 203 relationships
(121 root-to-shoot and 82 shoot-to-root) have not been experimen-
tally shown to be mobile, but are predicted to produce an mRNA
molecule that possesses a t-RNA like motif. Guan et al. (2016) also
have hypothesized that some mRNA have a tRNA-like structure in
their sequence. This allows the mRNA to fold into a tRNA-like
shape that confers some stability to the mRNA strand. This stability
allows the mRNA to move long distances in the plant. These results
suggest that a large proportion of the model-predicted causal genes
have the potential to influence the expression of its target gene (dir-
ectly or indirectly) via long-distance vascular trafficking. One ex-
ample of a model-predicted gene interaction that may function
through interaction of a mobile causal gene with its target is the rela-
tionship between root derived aconitase 2 (ACO2), predicted to
have a negative influence on the expression of malate dehydrogenase
(MDH2) in the shoot. ACO2 is the only isoform of aconitase that is
specifically induced by nitrogen treatment. Root ACO2 is involved
in the TCA cycle, while shoot MDH2 is localized in the mitochon-
dria and involved in gluconeogenesis. One possibility is that a direct
or downstream gene product of root ACO2 represses shoot MDH2,
resulting in possible down-regulation of shoot gluconeogenesis in re-
sponse to a large, transient nitrogen signal. Although the specific
mechanism of this relationship needs experimental exploration, it is
partially supported by existing data describing the tight relationship
between carbon and nitrogen metabolism to maintain whole plant
C:N balance (Goel et al., 2016; Palenchar et al., 2004; Zheng,
2009). Alternatively, aconitase, an iron–sulphur protein, has been
shown to be a bifunctional enzyme/RNA-binding protein that binds
to iron-responsive elements in target RNA to stabilize the transcript
and function in iron homeostasis (Hentze and Argos, 1991). Our
analysis predicted a positive relationship between ACO2 (causal
root) and Ironman 1 (target shoot), an Fe-uptake inducing peptide 3
that is involved in the regulation of iron deficiency response genes
(Grillet et al., 2018). It was previously shown that nitrogen treat-
ment induces the expression of genes involved in iron uptake, trans-
port, and homeostasis in plants (Wang et al., 2000, 2003), and that
the form of nitrogen taken up by roots influences the amount of iron
accumulation in leaves (Zou et al., 2001). There is also a well-
established relationship between nitrogen and Fe pathways since Fe
is a component of many enzymes involved in nitrate assimilation
(Wang et al., 2003).

4 Conclusion

This work puts forward an approach to perform Granger-causal
analysis for (small-sample) irregularly-spaced bivariate signals
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which overcomes existing limitations in the analysis of biological
time series data following this common sampling scheme. Based on
this new framework, (Granger) causal relationships were detected
and whole-organism molecular response to a nitrogen signal were
predicted. The survey of genes with predicted temporal cause-and-
effect relationships enabled discovery of coordinated biological
processes and chemical pathways that communicate the nitrogen-
signal between roots and shoots of plants. These coordinated proc-
esses can now be further investigated to identify potential regulatory
bottlenecks that influence whole plant nitrogen uptake/utilization
efficiency. The abundance of genes involved in the known transcrip-
tional nitrogen-response (nitrogen-transport and assimilation) as
both causal and target genes indicate that the proposed approach
was able to capture whole-plant response to a transient nitrogen-
treatment across tissues. The predicted cross-organ dependencies
provide insights and hypotheses about potential signalling cascades
that are triggered sequentially as the nitrogen-signal propagates
from roots-to-shoots-to-roots. Importantly, regulatory factors that
have not previously been implicated in whole plant nitrogen-
response were highlighted by the proposed approach. While these
possible regulations are assumptions and may even be indirect rela-
tionships, these novel factors can be targets for engineering to en-
hance plant nitrogen uptake/utilization efficiency. The findings from
this research will have implications for predicting causal molecular
relationships that influence intercellular, long-distance nitrogen-sig-
nalling, and the methodological framework proposed in this work is
applicable to researchers struggling with meaningful integration of
dynamic, system-wide transcriptome data.

Data availability

The data underlying this article are available in the Gene Expression
Omnibus of the National Center for Biotechnology Information at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE97500.
The method was developed with the R statistical software and is
made available through the R package ‘irg’ hosted on the GitHub re-
pository https://github.com/SMAC-Group/irg. Sample (test) data are
made available within the package as an example to apply the
method and replicate some results in the paper.
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