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A B S T R A C T   

Peanut kernels, known for their high nutritional value and palatability, are classified as nut food. In this study, 
peanut kernel samples from six distinct cities in Shandong Province, China, were examined to categorize and 
trace their origins. Near-infrared (NIR) spectra of samples were captured using a portable NIR-M-R2 spec-
trometer. After the application of Savitzky-Golay (SG) filtering, the classification was attempted using principal 
component analysis (PCA) plus linear discrimination analysis (LDA). Additionally, maximum uncertainty linear 
discriminant analysis (MLDA) was applied for comparison. A specific number of eigenvectors could respectively 
maximize the classification accuracies, 81.48% for PCA + LDA and 76.54% for MLDA. In order to further 
improve the classification accuracies, Adaboost-MLDA was proposed to develop a stronger classifier. This 
method, after 18 iterations, achieved remarkable effects, achieving a high accuracy of 95.06%. In a similar vein, 
the enhancement with preprocessing techniques multiplicative scatter correction (MSC) + SG and standard 
normal variate (SNV) + SG raised accuracies to 98.77% and 97.53%, respectively. The results of classifying first- 
order and second-order derivative spectra using Adaboost-MLDA were also described, achieving accuracies near 
100%. The experiment demonstrates that integrating Adaboost with NIR spectroscopy offers a highly accurate 
method for peanut kernel classification, promising for practical applications in food quality control.   

1. Introduction 

As a globally cultivated economic crop, peanuts are among the 
principal oilseed crops worldwide (Wadood et al., 2022). In China, 
peanuts are beloved for their rich nutritional value, comprising 44–56% 
high-quality fats, 22–30% protein, 9.5%–19% carbohydrates, as well as 
other substances like dietary fiber, minerals, essential amino acids, un-
saturated fatty acids, vitamin E and resveratrol (Asibuo et al., 2018; 
Norlia et al., 2019). Peanut kernels deliver both macronutrients and 
micronutrients to the human body (Shokunbi et al., 2012). In light of 
this, peanuts have been shown to offer protective benefits against 
various health conditions, such as complications of diabetes (Liu et al., 
2019), cancer (Amba et al., 2019), cognitive impairments (de Camargo 
et al., 2017), and cardiovascular diseases (Jafari Azad et al., 2020). 

Additionally, they possess anti-aging properties, not only reducing 
cholesterol but also maintaining smooth skin, hence peanuts are often 
referred to as “long-life nuts” (de Oliveira Sousa et al., 2011; Yao, 2004). 
Introduced to China during the late Tang dynasty, peanuts have been 
cultivated for over 400 years, and this made China one of the largest 
peanut producers in the world (Yang et al., 2020) as well as an indis-
pensable exporter (Wang et al., 2021), accounting for over 40% of the 
global peanut trade (Wu et al., 2016). In 2018, the peanut cultivation 
area in China reached 4.62 million hectares, with a production of 17.33 
million tons (National Bureau of Statistics of China, 2019), a significant 
share compared to the global cultivation area of 22.67 million hectares 
and an annual production of 35 million tons in 2020 (Yang et al., 2020). 
China has four main peanut-producing regions: the Southeast Coast, the 
Yangtze River region, the Yellow River region, and the Northeast region 
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(Zhang et al., 2017), with Shandong Province in the Yellow River region 
being particularly prominent. Shandong, a major producer of peanuts 
and peanut oil in China, contributes about one-third of the country’s 
total peanut oil output (Dong et al., 2023). The high value of peanuts 
hinges on food safety. Studies by Lu et al. indicate that aflatoxins and 
heavy metal content are primary limiting factors for peanut safety (Lu 
et al., 2013). Peanut kernels from different regions exhibit significant 
variations in quality and nutritional value, leading to their suitability for 
diverse application fields. However, the sale of counterfeit and inferior 
peanut kernels by certain merchants, who resort to illicit practices to 
deceive consumers for substantial profits, is profoundly unethical (Pan 
et al., 2024). Therefore, establishing effective traceability techniques for 
peanuts is crucial for recalling non-compliant products and minimizing 
economic losses, also safeguarding the interests of consumers from a 
commercial standpoint (Deniz et al., 2018). 

Near-infrared (NIR) spectroscopy is an electromagnetic spectrum 
located between the mid-infrared and infrared regions of the visible 
spectrum. This powerful analytical technique is widely used in trace-
ability studies to assess and analyze the molecular composition of ma-
terials through their interaction with NIR light (Jiang et al., 2021; Cheng 
et al., 2022). It offers a small absorption coefficient, fast measurement, 
and a large dynamic range of sample thicknesses (Zareef et al., 2021; 
Sun et al., 2024). NIR spectroscopy has the potential to replace or sup-
plement traditional methods (Guo et al., 2020; Cheng et al., 2023). In 
NIR analysis, the interaction of a sample with incident light causes ab-
sorption at specific wavelengths corresponding to molecular vibrations, 
such as overtone and combination vibrations of fundamental modes. 
These absorption bands provide a unique fingerprint-like spectrum for 
each material, allowing for both qualitative and quantitative analyses 
without extensive sample preparation. In peanuts, the internal structure 
affects the band positions on the spectrum, with regions carrying in-
formation about specific molecular concentrations (Deniz et al., 2018). 
On this basis, Li et al. were able to quantify the content of peanut afla-
toxin B1 using NIR spectroscopy (Li et al., 2023). Variations in the 
spectral characteristics of different peanut classes arise from their 
unique internal structures, formed by varying geological and climatic 
conditions (temperature, rainfall, sunlight, etc.) of their geographical 
origins. These differences result in variations in the concentrations of 
chemical constituents like fats and proteins, providing a reliable basis 
for tracing the origins of peanuts (Holaday and Pearson, 1974; Zhao 
et al., 2013). 

Spectroscopy analysis is widely used in food classification and 
traceability (Wu et al., 2022; Chen et al., 2023). Wang et al. applied 
Fourier transform infrared (FT-IR) spectroscopy for peanut identifica-
tion in Shandong, China. They proved stepwise linear discriminant 
analysis (SLDA) methods are feasible for this purpose (Wang et al., 
2021). Zhang et al. used a portable NIR spectrometer for milk origin 
identification, achieving high accuracy with fuzzy unrelated discrimi-
nant transformation (FUDT) (Zhang et al., 2022). Chen et al. identified 
the origins of roasted green tea using transform near-infrared (FT-NIR) 
spectroscopy and supervised techniques (Chen et al., 2009). Long et al. 
combined NIR spectroscopy with nanocomposites for the origin identi-
fication of lilies, showing promise for food and medicine authentication 
(Long et al., 2022). Chen et al. used NIR spectroscopy for ginseng origin 
identification, demonstrating the effectiveness of the random subspace 
ensemble (RSE) algorithm (Chen et al., 2024). Uríčková and Sádecká, 
2015. determined the origins of alcoholic beverages using ultraviolet, 
visible, and infrared spectroscopy, highlighting the importance of 
spectral range and recognition methods (Uríčková and Sádecká, 2015). 

This paper focuses on NIR spectroscopy analysis, combining Ada-
boost with maximum uncertainty linear discriminant analysis (MLDA) 
for classifying peanut kernels from different cities in Shandong, China, 
to trace their origins. Adaboost-maximum uncertainty linear discrimi-
nant analysis (Adaboost-MLDA) fundamentally entails ensemble 
learning of data, generating stronger classifiers through continuous 
training and voting, thereby improving classification accuracy. This 

study demonstrates the significance of Adaboost-MLDA in the classifi-
cation of peanut kernels incorporation with NIR spectroscopy. 

2. Data acquisition and preprocessing 

2.1. Sample collection 

486 peanut kernel samples were selected, containing six different 
classes for experimentation. These samples, all sourced from Shandong 
Province, a key peanut-producing area in China, were evenly distributed 
among the six classes. Each class consisted of 81 samples from each 
region in Shandong Province, specifically Qingdao (QD), Yantai (YT), 
Heze (HZ), Jinan (JN), Linyi (LY), and Weihai (WH). The samples were 
obtained fresh and raw through local distributors. For each class, 81 
samples were meticulously chosen based on uniform size, good color, 
and smooth surface, ensuring their freshness was preserved for the 
experiments. 

2.2. Apparatus 

In this study, a portable near-infrared spectrometer NIR-M-R2 
(Pynect, Shenzhen, China) was applied to obtain spectral data of pea-
nut kernel samples. The device has a wavelength range of 900–1700 nm 
(11,100 to 5880 cm− 1), a signal-to-noise ratio of 6000:1, a slit size of 1.8 
× 0.025 mm, and a detector material of 1 mm uncooled InGaAs. Its 
optical resolution is typically 10 nm, with a maximum of 12 nm. 
Wavelength accuracy is typically ±1 nm and ranges up to ±2 nm. 

2.3. Spectral acquisition 

Before the experiment, all peanut kernel samples and the spec-
trometer were placed in the laboratory for over 24 h to ensure that the 
environmental conditions of the samples were consistent with those of 
the instrument, thereby minimizing the impact of temperature and hu-
midity on the spectral measurements of the peanut seeds. Each sample 
was carefully cleaned to remove dust, and samples that were shriveled 
or had obvious defects were discarded. The samples selected for mea-
surement were further required to be similar in size and regular in shape. 

Spectral measurements for each class were conducted using the NIR- 
M-R2 spectrometer. Before spectral scanning, the NIR spectrometer was 
preheated for 30 min. The spectrometer was set at a distance of 1–2 mm 
from the samples. Once fixed, spectral data were acquired using the 
Column scan configuration (spectral wavelength range of 900–1700 nm, 
digital resolution of 228, and an average of 6 scans per sample) to 
determine the absorption rates of the peanut kernels. Then NIR spectra 
were measured at equidistant intervals along the equatorial region of the 
peanut kernels. Therefore, for each sample, three NIR spectra were ac-
quired, and their average value was taken as the spectrum of that 
sample. For each class of peanut kernels, 81 samples were measured, 
resulting in a total of 486 NIR spectra. 

2.4. Denoising 

To enhance the smoothness of the acquired peanut kernel spectra, 
the Savitzky-Golay (SG) filter was employed to diminish noise in the 
spectral data (Savitzky and Golay, 1964). Primarily used for filtering 
noise from chemical spectrometry data, the SG filter operated on local 
polynomial regression, a principle grounded in Weierstrass’s Theorem 
(Sury, 2011). The SG filter, a finite impulse response kernel, convolved 
with the data to approximate the polynomial for the selected filter 
parameter set (Menon and Seelamantula, 2014). In simpler terms, the 
SG filter employed the least squares method to fit local data segments 
and used the fitted function to estimate the value of each data point, 
thereby achieving smoothing. 

The SG filtering algorithm has rapid computational speed and 
effectively eliminates high-frequency noise, demonstrating strong 
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adaptability to nonlinear signals. However, a notable limitation of this 
algorithm lies in the significant impact of the chosen parameters for the 
fitting polynomial on the filtering outcomes. 

Beyond the solitary application of SG filtering, this study investi-
gated a hybrid technique that combined multiplicative scatter correction 
(MSC) with SG, referred to as MSC + SG. MSC adjusted the spectrum of 
each sample via linear regression, reducing dataset variability and 
enhancing the signal-to-noise ratio to some extent (Shen et al., 2021). 
Similarly, standard normal variate (SNV) was also employed in 
conjunction with SG, known as SNV + SG. SNV standardized sample 
data by first subtracting the mean and then dividing by the standard 
deviation. Mapping data to the origin, followed by comparing the 
spectra of samples on a uniform scale, could enhance the accuracy and 
reliability of further analyses significantly. 

3. Methods of analysis 

3.1. PCA + LDA 

Principal component analysis (PCA), an unsupervised technique, is 
typically customary to favor the principal components that exhibit a 
significant contribution to the spectrum. As the magnitude of contri-
bution increases, a greater amount of component information can be 
retained (Wu et al., 2020). Linear discriminant analysis (LDA) is a su-
pervised learning approach. It efficiently classifies data by projecting it 
into a lower-dimensional space when the number of spectral variables 
meets or exceeds the number of samples (Lasalvia et al., 2022). 

Overall, LDA demonstrates superior classification performance on 
data compared to PCA. To address the limitations of LDA, especially the 
challenge of small sample size problem encountered with high- 
dimensional data (Chen et al., 2000), the solution is a combination of 
PCA and LDA: applying LDA on the data pre-processed by PCA. This 
approach applies LDA to the PCA scores, thereby enhancing the classi-
fication accuracy (Lasalvia et al., 2022). 

Generally, in the PCA stage, spectral data undergo preliminary 
dimension reduction; during the LDA stage, test data can be mapped to 
corresponding discriminant vectors using discriminant information 
extracted from the training data, achieving a second dimension reduc-
tion (Wu et al., 2017). 

3.2. Maximum uncertainty linear discriminant analysis 

Due to the significantly greater estimation errors of non-dominant or 
small eigenvalues compared to dominant or large eigenvalues (Pudil 
et al., 1990) and the impact of PCA principal component selection on 
classification accuracy as well as the quantity of useful discriminative 
information, Thomaz et al. proposed the MLDA method to address these 
issues (Thomaz et al., 2004). The distinguished feature of MLDA is its 
approach, which enlarges the less reliable smaller eigenvalues of the 
pooled covariance matrix in LDA, while it maintains the majority of the 
larger eigenvalues unchanged (Thomaz et al., 2006). MLDA mitigates 
the instability inherent in LDA effectively, leveraging the maximum 
entropy selection method to stabilize the scaling of the identity matrix 
within the within-class covariance matrices (Wu et al., 2023). 

Given a dataset containing n samples, which are divided into c 
classes, let X = {x1, x2, ..., xn} ∈ Rd denote the mean of all samples, x 
represent the mean of the samples in class i, and signify the number of 
samples in class i. The implementation process of the MLDA algorithm is 
as follows (Thomaz et al., 2006; Wu et al., 2023): 

(1)Calculate Sw and Sb according to the aforementioned formula; (2) 
Compute Sp = Sw/(n − c), its eigenvalue diagonal matrix Λ, and eigen-
vector matrix φ; (3) Determine the eigenvalues λ of Sp and the average 
eigenvalue λ; (4) For eigenvalues λ in Λ, which are also smaller than λ, 
replace them with λ to generate a new eigenvalue diagonal matrix Λ∗; 
(5) Calculate the within-class scatter matrix Sw

∗ = Sp
∗(n − c) =

(φΛ∗φT)(n − c), and finally acquire the discriminant transformation 
vectors by S∗

w
− 1Sb. 

MLDA is a validated method. Initially, it computes c− 1 discriminant 
transformation vectors from the training samples, onto which the test 
samples are projected in the next stage. Based on this, classification is 
performed using a K-nearest neighbors (KNN) algorithm. The accuracy 
of this classification serves to evaluate the effectiveness of the 
validation. 

3.3. Adaboost–MLDA 

Adaboost, an acronym for Adaptive Boosting, is an ensemble method 
that transforms multiple weak classifiers into a singular strong classifier. 
Its fundamental principle involves iterative weight adjustments for 
samples, particularly focusing on those misclassified samples in previous 
rounds. This iterative process trains new weak classifiers, each time 
prioritizing previously misclassified samples, and eventually combines 
them into a stronger, more predictive classifier. AdaBoost excels in 
handling the high-dimensional data, minimizing overfitting, and 
showcasing robust performance in diverse classification tasks. 

In this context, the integration of Adaboost.M1 with MLDA, forming 
Adaboost-MLDA, is proposed to develop an effective strong classifier. 
This combination initiates with equal weight distribution across all 
samples. The MLDA classifier then uses this data to compute classifica-
tion errors and adjust weights accordingly. Misclassified samples receive 
increased weights, while those correctly classified samples get reduced 
weights. This iterative weight adjustment process, focusing on error- 
prone samples, leads to the creation of several MLDA classifiers. The 
effectiveness of each classifier is enhanced by its ability to concentrate 
on samples that were previously misclassified. In the final combination 
of the Adaboost-MLDA classifier, the influence of each MLDA classifier 
within the ensemble is determined by its classification accuracy. This 
approach ensures that classifiers with the higher accuracy have a more 
significant impact on the overall result. 

3.4. KNN algorithm 

The KNN algorithm is a commonly used supervised learning method 
for regression and classification tasks. In essence, its principle involves 
first calculating the spatial distances between the data to be classified 
and the known data, then identifying the k data points closest in this 
space, referred to as neighbors. Classification of the data in question is 
based on the majority class among these neighbors. It is noteworthy that 
the outcome of the classification is influenced by the value of k, and 
selecting an appropriate k is a crucial prerequisite for promoting clas-
sification accuracy. 

4. Results and discussion 

4.1. Data preprocessing 

In this study, NIR spectra were acquired using the NIR-M-R2 spec-
trometer, which operates in conjunction with the computer software 
DLP NIRscan Nano. The scanning configuration employed was the 
inherent Column method in the system, capturing the absorption rates of 
peanut kernel samples within the wavelength range of 900–1700 nm, 
with each sample having 228 sampling points. The absorption spectra of 
all 486 samples are depicted in a single graph, as shown in Fig. 1(a). 

The processing and evaluation of all raw data in this study were 
performed using MATLAB 2021A (The Mathworks). Fig. 1 shows the raw 
and preprocessed NIR spectra of peanut kernels. The raw peanut kernel 
spectrogram contains some noise, rendering the spectral curves less 
smooth and unfavorable for subsequent classification processes. To 
address this, the SG filter is utilized for noise cancellation, with a 
polynomial order of 2 and a frame length of 25. The filtered spectrogram 
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is presented in Fig. 1(b). It is noticeable that compared to Fig. 1(a), the 
peanut kernel spectra have become smoother, and the overall arrange-
ment of the spectra demonstrates greater consistency. The spectra on 
both the upper and lower ends have converged towards the center, 
becoming more compact, and the few previously extreme data points 
have disappeared. Fig. 1(c) illustrates the results of MSC + SG pre-
processing, where the data appears more concentrated compared to SG 
alone, especially around the wavelength of 1400 nm. Conversely, 
spectra at shorter and longer wavelengths are more dispersed. In Fig. 1 
(d), the spectra processed with SNV + SG are displayed, exhibiting an 
overall shape similar to MSC + SG. The primary distinction lies in the 
vertical axis values being shifted closer to the origin. The merits and 
drawbacks of these three preprocessing methods remain to be evaluated 
by subsequent analyses. 

To enhance the characteristic peaks and improve the resolution of 
the spectra, the first-order derivative (FOD) and second-order derivative 
(SOD) of the raw spectra were calculated, followed by filtering using 
MSC and SNV. The processed NIR spectra are displayed in Fig. 2. 
Differentiating the spectra helps to mitigate the effects of interference, 
and this technique will subsequently be applied to the classification of 
peanut kernels. 

4.2. Analysis of NIR spectra 

Differences in the spectral behavior of samples may be attributed to 
their chemical compositions (Ghosh et al., 2016). The NIR spectroscopy 
measured in experiments reflects the overtones and combinations of 
molecular chemical bond vibrations, which makes some parts of the 
spectrum interesting for the spectroscopy of organic materials (Hakkel 
et al., 2022). Variations in information stemming from differences in 
hydrogen-containing functional groups (X–H, where X represents C, O, 
N, S, etc.). A related study indicates that the wavelength of 900 nm is 
associated with the absorbance of proteins, while 1450 nm corresponds 
to that of starch. The protein in peanut kernels is noted to have a high 
amino group content, with its 1st overtone band spanning 1450–1550 
nm as well as the 2nd and 3rd overtones distributed within 970–1000 
nm. Starch, abundant in hydroxyl groups, corresponds to two spectral 
ranges: 1410–1480 nm and 920–945 nm, aligning with the mentioned 
overtone bands (Sundaram et al., 2009). The peanut kernel samples 
were collected in the 900–1700 nm wavelength range, as illustrated in 
Fig. 1. Notable visual differences in the spectra near 1000 nm and 1550 
nm are identified as arising from overtones. Both amino and hydroxyl 
groups are likely significant factors in determining spectral distinctions, 

Fig. 1. The raw and preprocessed NIR spectra of peanut kernels.  
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owing to the close alignment of their overtone wavelength ranges with 
the characteristic bands. These functional groups, along with chemical 
bond stretching vibrations, are integral to the analytical results pro-
duced by spectrometers, where the number of vibrational absorptions 
correlates with these results. The variations in the quantity of 
hydrogen-containing functional groups in different peanut kernel classes 

lead to distinct absorption peaks. Regardless of the extent of differences 
among samples, NIR spectroscopy remains a viable method for the 
qualitative identification of peanut kernels (Li et al., 2022). 

Fig. 2. NIR spectra preprocessed by FOD, SOD, MSC and SNC.  
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4.3. PCA + LDA 

In this study, PCA was employed to compress the data, selecting ten 
eigenvectors, thereby reducing the original 228-dimensional space data 
to a 10-dimensional space. This compression method effectively pre-
served most of the information of original NIR data, clustering similar or 
identical data together after projection in a specific direction. Within 
these ten dimensions, the first three play a predominant role. This is due 
to the relatively minor values of the subsequent seven dimensions, 
which hold less significance. Take data preprocessed using SG as an 
example, the contribution rates of the first three dimensions are 95.90%, 
2.55%, and 0.93%, respectively, cumulating a total contribution of 
99.38%. In other words, these first three dimensions are the principal 
factors influencing the spectral data after PCA. The PCA plot, con-
structed using these three dimensions as axes, is shown in Fig. 3. NIR 
spectra from peanut kernels originating from the same region are almost 
exclusively grouped. As illustrated in Fig. 3, peanut kernels pretreated 
by SG exhibit a more compact aggregation compared to MSC + SG, and 
SNV + SG pretreatment results in scattered clustering. However, there 
are still noticeable central positional differences in the spectra of the six 
peanut classes, likely attributable to inherent varietal differences in the 
peanuts themselves. We will discuss the merits of each method based on 
their accuracy later. 

In the subsequent phase, LDA is carried out for feature extraction. As 
a supervised method, it is essential to partition the data into training and 
testing sets before extraction. The data, after PCA processing, consists of 
486 instances, each represented in a 10-dimensional space, with each 
class comprising 81 samples in total. Within each class, two-thirds, 
equating to 54 samples, are allocated for training, while the remaining 
27 were set aside for testing. This generates a total of 324 training 
samples and 162 testing samples. Choosing 5 discriminant vectors, the 
samples are trained to yield the 5-dimensional LDA data. 

At this point, the PCA + LDA preprocessing was completed. Finally, 
the KNN algorithm was applied for data classification with the chosen 
value of k being 1. After voting, all the results were computed and stored 
in Table 1, where the classification accuracy under SG is 62.96%. As a 
matter of fact, these are still not particularly impressive results, 
prompting the exploration of an alternative method to enhance classi-
fication accuracy. 

4.4. MLDA 

To address the small sample size problem encountered by classical 
LDA, this study utilizes MLDA, an improved version of LDA. MLDA, 
based on the Fisher criterion, modifies the within-class scatter matrix 
with scalar processing. This modification aims to eliminate the need for 
matrix inversion and guarantees the consistent existence of the matrix in 
various conditions. Furthermore, the algorithm treats scalars as the basic 
units for processing various objects, effectively reducing computational 
load and enhancing operational efficiency. 

The MLDA algorithm first projects the training samples to determine 
the optimal projection direction, which is also where the test samples 
will be projected. The projected test samples are then classified in the 
KNN classifier along with the training samples to obtain the classifica-
tion results. The workflow of MLDA is illustrated in Fig. 4. 

The data processing methodology initially employed the PCA 
approach, followed by scalar processing of the within-class scatter ma-
trix Sw based on LDA, and finally applied KNN classification. After SG 
preprocessing, the final calculation yielded a classification accuracy of 
70.99% for MLDA. Compared to the accuracy of 62.96% utilizing PCA +
LDA, MLDA represents a significant improvement of 8.03%, demon-
strating that MLDA is capable of raising the classification accuracy of 
LDA. 

This result is only for the case when the number of eigenvectors is set 
to 10. To analyze the impact of the number of eigenvectors on the 
classification accuracy of PCA + LDA and MLDA, each number within 

Fig. 3. PCA score plot of six classes of peanut kernels based on SG, MSC + SG 
and SNV + SG preprocessing. 
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the range [10, 228] was selected as the number of eigenvectors to 
calculate the accuracies of both methods. Additionally, the average ac-
curacies of the two methods were calculated for comparison. As shown 
in Fig. 5, PCA + LDA exhibits higher classification accuracy within fewer 
eigenvectors. However, its accuracy decreases with more eigenvectors, 
fluctuating around an average of 63.85%. The maximum accuracy of 
PCA + LDA, 81.48%, occurs at eigenvector numbers 32, 33 and 40, a 
remarkable difference of 17.63% from the average. On the contrary, the 
accuracy of the MLDA method generally increases with the number of 
eigenvectors, though fluctuations still occur. The highest accuracy for 
MLDA, approximately 76.54%, occurs in the interval [139,167], with 
only a 2.68% difference from its average accuracy of 73.86%. Given the 
minor impact of the number of eigenvectors on the classification accu-
racy of MLDA, it is reasonable to slightly sacrifice MLDA accuracy to 
enhance that of PCA + LDA. At this point, selecting 40 eigenvectors is 
deemed optimal in this context, as it allows the classification accuracy of 
MLDA to peak at 81.48%. In contrast, PCA + LDA reaches only 70.37% 
accuracy, which is 6.17% below its maximum and 3.49% below its 
average, yet still within an acceptable range. This selection reflects a 

strategic balance between accuracy and computational efficiency in the 
classification process. Furthermore, the chart indicates that MLDA im-
proves classification accuracy primarily when the number of eigenvec-
tors is either low or high. 

Despite these considerations, in this experiment, the classification 
accuracies of MLDA for the peanut kernel spectrum are still not partic-
ularly high, which might be attributed to certain limitations of MLDA. 
For instance, MLDA tends to have a slightly lower classification accuracy 
compared to PCA + LDA, and its algorithmic performance is more easily 
influenced by the dimensionality of features (Liu and Wang, 2010). On 
account of this, a more accurate classification approach, 
Adaboost-MLDA, has been developed. 

4.5. Adaboost–MLDA 

Adaboost can integrate weak classifiers into a more robust classifier, 
with each iteration potentially improving classification accuracy. In this 
experiment, each class was assigned 54 training data and 27 test data. To 
draw a comparison with Adaboost-MLDA, PCA + LDA and MLDA were 
executed to evaluate their classification accuracies. For the Adaboost- 
MLDA, the number of iterations was set to 18. Following data input 
and iteration, the computed results are presented in Table 1 and Fig. 6. 

The classification accuracy of the Adaboost-MLDA method generally 
exhibits an upward trend with an increase in the number of iterations. 
Focusing on SG, although the accuracy of Adaboost-MLDA initially 
stands at only 69.75%, positioning it between PCA + LDA and MLDA, it 
gradually increases and then stabilizes. After 18 iterations, the classifi-
cation accuracy of Adaboost-MLDA reaches 95.06%, significantly sur-
passing PCA + LDA and MLDA. Similar conclusions can be obtained for 
data preprocessed by MSC + SG and SNV + SG. This is attributable to the 
iterative training function of Adaboost, which is an adaptive feature 
extraction process. The classification errors of each round of weak 
classifiers contribute to generating the optimal feature selection for the 
training model. Therefore, Adaboost can improve classification accuracy 
substantially, providing valuable insights for research into more accu-
rate discriminant analysis methods. 

As illustrated in Fig. 6, For MLDA, The classification accuracy of SNV 
+ SG was higher than that of MSC + SG, and SG achieved the highest 
accuracy. Different from Fig. 6(b) and (c)–. (a) lies in its higher accuracy 
of MLDA compared to PCA + LDA. This could be attributed to the se-
lection of an optimal feature dimension specifically for MLDA. While the 
relative merits of SG, MSC + SG, and SNV + SG were not readily 

Table 1 
The final classification accuracies of PCA + LDA, MLDA and Adaboost-MLDA 
based on SG, MSC + SG and SNV + SG (%).   

PCA + LDA MLDA Adaboost-MLDA 

SG 62.96 70.99 95.06 
MSC + SG 64.81 48.15 98.77 
SNV + SG 74.69 59.26 97.53  

Fig. 4. Algorithm flowchart of MLDA used to classify the NIR spectra.  

Fig. 5. Comparison of classification accuracy of PCA + LDA and MLDA uti-
lizing SG preprocessing with changes in the number of eigenvectors. 
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definable, it was important to note that under the enhancements of 
Adaboost-MLDA, all three preprocessing methods achieved higher 
accuracies. 

Similarly, for the spectra in Fig. 2 that underwent derivation and 
filtering, we classified them using the same method described above, 
with the accuracy presented in Table 2. As indicated in Table 2, although 
the classification capabilities of PCA + LDA and MLDA are not signifi-
cantly prominent, Adaboost-MLDA is notably exceptional. After 18 it-
erations, its accuracy approaches 100%, making it the most effective 
classification method. This finding is consistent with the conclusions of 
the previous experiment. 

To sum up, in this experiment, MLDA demonstrates relatively high 
classification accuracy when the number of eigenvectors is either low or 
high, surpassing the accuracy of PCA + LDA under similar conditions. 

However, the classification accuracy of MLDA alone is still not optimal. 
Combining Adaboost with MLDA significantly improves the classifica-
tion accuracy of MLDA, making Adaboost-MLDA the most effective 
classification method in this study. 

Adaboost-MLDA significantly enhances classification accuracy, 
achieving an accuracy of 100%, thereby establishing itself as an effective 
method for peanut kernel classification. For any given test sample, its 
spectrum can be measured and compared with known peanut spectra, 
ultimately determining the most probable classification or origin of the 
sample. This straightforward approach is advantageous in combating 
the sale of counterfeit and substandard peanuts in the market, thus 
safeguarding consumer rights. 

5. Conclusion 

Adaboost-MLDA, integrating Adaboost with MLDA, creates a stron-
ger classifier, markedly improving the classification accuracy of MLDA 
through adaptive feature extraction. While PCA + LDA sometimes shows 
low accuracy, MLDA enhances it, yet not optimally. Therefore, 
Adaboost-MLDA is crucial, initially boosting the performance of the 
classifier before classification. Experimental results support that Ada-
boost significantly elevates classification accuracy, addressing the need 
for a more efficient classification method in scenarios where standard 
techniques like PCA + LDA or MLDA show poor performance. 

The exceptional classification accuracy of Adaboost-MLDA in iden-
tifying peanut spectra is a key aspect of its utility. For new peanut kernel 
samples, measuring and comparing their NIR spectra with known NIR 
spectra is feasible. Adaboost-MLDA, used in classifying these NIR 
spectra, identifies the most likely class of the peanut kernels effectively. 
This approach plays a pivotal role in tracing their origins, guaranteeing 
the quality of peanuts, safeguarding consumer rights and eliminating 
market disorder. 
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