

metal-organic compounds

 $\nu = 99.739 \ (1)^{\circ}$

Z = 1

V = 1038.94 (8) Å³

Mo $K\alpha$ radiation

 $0.38 \times 0.30 \times 0.10 \text{ mm}$

14302 measured reflections

5026 independent reflections

4627 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.28 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.036$

refinement $\Delta \rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -thiosemicarbazide- κ^4 S:S-bis [chloridobis(triphenylphosphane- κP)silver(I)]

Yupa Wattanakanjana,^a* Chaveng Pakawatchai^b and Ruthairat Nimthong^b

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and ^bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Correspondence e-mail: yupa.t@psu.ac.th

Received 17 December 2012; accepted 21 December 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.026; wR factor = 0.069; data-to-parameter ratio = 20.0.

The dinuclear title complex, $[Ag_2Cl_2(CH_5N_3S)_2(C_{18}H_{15}P)_2]$, lies across an inversion center. The Ag^I ion exhibits a slightly distorted tetrahedral coordination geometry formed by a P atom from a triphenylphosphane ligand, two metal-bridging S atoms from thiosemicabazide ligands and one chloride ion. The S atoms bridge two symmetry-related Ag^I ions, forming a strictly planar Ag₂S₂ core with an Ag···Ag separation of 2.7802 (7) Å. There is an intramolecular N-H···Cl hydrogen bond. In the crystal, N-H···Cl and N-H···S hydrogen bonds link complex molecules, forming layers parallel to (001). These layers are connected through π - π stacking interactions [centroid-centroid distance = 3.665 (2) Å], leading to the formation of a three-dimensional network.

Related literature

For metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Ferrari *et al.* (2007); Pakawatchai *et al.* (2012). For potential applications of thiosemicarbazide derivatives and their metal complexes, see: Pandeya *et al.* (1999); Wujec *et al.* (2009); Mohareb & Mohamed (2012); He *et al.* (2012). For examples of related discrete complexes, see: Wattanakanjana *et al.* (2012); Lobana *et al.* (2008).

Experimental

Crystal data

 $\begin{bmatrix} Ag_2Cl_2(CH_5N_3S)_2(C_{18}H_{15}P)_2 \end{bmatrix}$ $M_r = 993.46$ Triclinic, $P\overline{1}$ a = 8.7845 (4) Å b = 9.4656 (4) Å c = 13.7529 (6) Å $\alpha = 109.276$ (1)° $\beta = 98.306$ (1)°

Data collection

```
Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
T_{min} = 0.638, T_{max} = 0.880
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.069$ S = 1.065026 reflections 251 parameters 5 restraints

Table 1

Hydrogen-bond	geometry	(Å, °`).
,	D/	·	, -

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3B\cdots Cl1^{i}$ $N2-H2\cdots S1^{ii}$ $N1-H1B\cdots Cl1^{iii}$ $N1-H1A\cdots Cl1$	0.87 (2) 0.83 (2) 0.85 (2) 0.89 (2)	2.67 (2) 2.66 (2) 2.63 (2) 2.45 (2)	3.535 (2) 3.4320 (15) 3.4088 (16) 3.3239 (16)	171 (2) 155 (2) 154 (2) 170 (2)
Symmetry codes: -x + 2, -y + 3, -z + 1	(i) $x - 1$,	y, z; (ii)	-x + 1, -y + 2, -	-z + 1; (iii)

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5573).

References

- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.
- He, J., Wang, X., Zhao, X., Liang, Y., He, H. & Fu, L. (2012). Eur. J. Med. Chem. 54, 925–930.
- Lobana, T. S., Sharma, R. S. & Butcher, R. J. (2008). Polyhedron, 27, 1375–1380.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mohareb, R. M. & Mohamed, A. A. (2012). Int. J. Pure. Appl. Chem. 2, 144–155.
- Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507.
- Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572–m1573.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wujec, M., Stefańska, J., Siwek, A. & Tatarczak, M. (2009). Acta Polon. Pharm. Drug Res. 66, 73–82.

supplementary materials

Acta Cryst. (2013). E69, m83-m84 [doi:10.1107/S1600536812051562]

Di- μ -thiosemicarbazide- $\kappa^4 S$:S-bis[chloridobis(triphenylphosphane- κP)silver(I)]

Yupa Wattanakanjana, Chaveng Pakawatchai and Ruthairat Nimthong

Comment

Metal(I) complexes of phosphine ligands have been extensively studied as precursors for preparing mixed-ligand complexes (Ferrari *et al.*, 2007; Pakawatchai *et al.*, 2012) having different geometries such as mononuclear and dinuclear. Thiosemicabazide and thiosemicarbazide derivatives, as well as their metal complexes, have recently attracted considerable attention because of their relevance in biological systems such as antitumor, antimicrobial, antibacterial and antifungal activities (Pandeya *et al.*, 1999; Wujec *et al.*, 2009; Mohareb *et al.*, 2012; He *et al.*, 2012). Herein, the crystal structure of a dinuclear silver(I) chloride complex containing triphenylphosphane and thiosemicarbazide is described.

The molecular structure of the title dinuclear compound is shown in Fig. 1. The molecule lies acroos a crystallographic inversion center which is at the center of the Ag₂S₂ core with a Ag^{...}Ag separation of 2.7802 (7) Å. The bond angles around Ag¹ ion are approximately in the range of 111.851 (15)–123.445 (15)°. Geometrical distortion from ideal angles (109.47°) can be explained by the need to accommodate the bulky triphenylphosphane groups. The P1—Ag1 bond length of 2.4225 (4) Å is slightly longer than that found in for example [Ag₂(C₆H₇N₂S)₂(C₁₈H₁₅P)₂], which is 2.4088 (6) Å (Wattanakanjana *et al.*, 2012). The bridging Ag—S bond length (Ag1—S1 = 2.5202 (4) Å) is shorter than those observed in related silver(I) complexes containing S-bridged donor ligand, due to 2.5832 (8)–2.7208 (11) Å for [Ag₂Cl₂(l-S-pySH)₂(PPh₃)₂] and 2.6306 (4)–2.6950 (7) Å for [Ag₂Br₂(l-S-pySH)₂(PPh₃)₂] (Lobana *et al.*, 2008). There is intramolecular N—H···Cl hydrogen bond with the geometry N1···Cl1 = 3.3239 (16) Å. In the crystal, an N1—H1B···Cl1 hydrogen bonds forming a layer parallel to (001) (Fig. 2). In addition, the layers are stacked *via* $\pi \cdots \pi$ stacking interactions [centroid–centroid distance = 3.665 (2) Å, centroid = C31—C36 ring] froming the three dimensional network (Fig. 3).

Experimental

Triphenylphosphane (0.37 g, 1.41 mmol) was dissolved in 30 cm³ of acetonitrile at 335 K. AgCl (0.10 g, 0.70 mmol) was added and the mixture was stirred for 2.5 h. Thiosemicabazide (0.06 g, 0.66 mmol) was added and the new reaction mixture was heated under reflux for 5 h. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solid, which was deposited upon standing for few days, was filtered off and dried under reduced pressure.

Refinement

All H atoms bonded to C atoms were constrained with a riding model of 0.93 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to the N atoms were located in a difference Fourier map and refined isotropically, with restrained N—H distances 0.834 (16)–0.888 (16) Å with $U_{iso}(H) = 1.2U_{eq}(N)$.

Computing details

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Figure 1

The molecular structure with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.

Figure 2

Part of the crystal structure with N-H···S and N-H···Cl hydrogen bonds shown as dashed lines.

Figure 3

Part of the crystal structure with π - π stacking interactions shown as dashed lines.

Di- μ -thiosemicarbazide- κ^4 S:S-bis[chloridobis(triphenylphosphane- κP)silver(I)]

Crystal data	
$[Ag_{2}Cl_{2}(CH_{5}N_{3}S)_{2}(C_{18}H_{15}P)_{2}]$ $M_{r} = 993.46$ Triclinic, P1 Hall symbol: -P 1 a = 8.7845 (4) Å b = 9.4656 (4) Å c = 13.7529 (6) Å a = 109.276 (1)° $\beta = 98.306$ (1)° $\gamma = 99.739$ (1)° V = 1038.94 (8) Å ³	Z = 1 F(000) = 500 $D_x = 1.588 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9010 reflections $\theta = 2.3-28.0^{\circ}$ $\mu = 1.28 \text{ mm}^{-1}$ T = 293 K Block, colorless $0.38 \times 0.30 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Full-matrix least-squares on F ² scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003) $T_{min} = 0.638$, $T_{max} = 0.880$	14302 measured reflections 5026 independent reflections 4627 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.069$ S = 1.06 5026 reflections 251 parameters 5 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 + 0.2733P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.38$ e Å ⁻³

 $\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0693 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.71808 (17)	1.20926 (18)	0.50782 (12)	0.0350 (3)	
C11	1.16762 (18)	0.7721 (2)	0.21780 (12)	0.0418 (3)	
C12	1.2004 (2)	0.6279 (3)	0.18680 (16)	0.0564 (5)	
H12	1.1194	0.5403	0.1675	0.068*	
C13	1.3557 (3)	0.6145 (3)	0.18463 (19)	0.0701 (6)	
H13	1.3781	0.5177	0.1635	0.084*	
C14	1.4747 (3)	0.7429 (4)	0.21342 (19)	0.0712 (7)	
H14	1.5778	0.7330	0.2111	0.085*	
C15	1.4436 (2)	0.8871 (3)	0.24596 (17)	0.0628 (6)	
H15	1.5255	0.9741	0.2657	0.075*	
C16	1.2904 (2)	0.9025 (2)	0.24935 (14)	0.0481 (4)	
H16	1.2695	0.9999	0.2727	0.058*	
C21	0.84762 (18)	0.61752 (19)	0.20371 (13)	0.0404 (3)	
C22	0.7696 (2)	0.5083 (2)	0.10569 (15)	0.0546 (4)	
H22	0.7794	0.5284	0.0448	0.065*	
C23	0.6776 (3)	0.3701 (3)	0.09818 (19)	0.0678 (6)	
H23	0.6257	0.2977	0.0322	0.081*	
C24	0.6619 (3)	0.3386 (3)	0.1867 (2)	0.0732 (6)	
H24	0.6023	0.2439	0.1809	0.088*	
C25	0.7351 (3)	0.4481 (3)	0.2851 (2)	0.0789 (7)	
H25	0.7228	0.4276	0.3456	0.095*	
C26	0.8265 (3)	0.5878 (3)	0.29402 (17)	0.0619 (5)	
H26	0.8737	0.6618	0.3603	0.074*	
C31	0.90601 (19)	0.8272 (2)	0.09696 (15)	0.0447 (4)	
C32	0.9697 (3)	0.7705 (2)	0.00965 (15)	0.0562 (4)	
H32	1.0525	0.7220	0.0147	0.067*	
C33	0.9124 (3)	0.7846 (3)	-0.08519 (19)	0.0758 (7)	
H33	0.9564	0.7463	-0.1433	0.091*	
C34	0.7892 (4)	0.8561 (4)	-0.0922 (3)	0.0916 (10)	
H34	0.7483	0.8642	-0.1559	0.110*	
C35	0.7272 (3)	0.9150 (4)	-0.0065 (3)	0.0931 (10)	
H35	0.6449	0.9639	-0.0121	0.112*	
C36	0.7850 (2)	0.9031 (3)	0.0888 (2)	0.0666 (6)	

H36	0.7432	0.9457	0.1472	0.080*	
N1	0.82011 (18)	1.32995 (18)	0.51108 (14)	0.0474 (3)	
N2	0.57728 (17)	1.22460 (17)	0.52697 (14)	0.0478 (3)	
N3	0.5365 (2)	1.3672 (2)	0.54628 (19)	0.0609 (5)	
P1	0.96967 (5)	0.80383 (5)	0.22142 (3)	0.03895 (10)	
S1	0.75685 (4)	1.02919 (4)	0.47995 (3)	0.03889 (10)	
C11	1.13857 (6)	1.28186 (5)	0.41121 (4)	0.05418 (12)	
Ag1	0.977789 (17)	1.016088 (15)	0.381354 (12)	0.05737 (8)	
H1A	0.912 (2)	1.320 (3)	0.4929 (19)	0.069*	
H1B	0.797 (3)	1.417 (2)	0.530(2)	0.069*	
H2	0.518 (3)	1.146 (2)	0.526 (2)	0.069*	
H3A	0.528 (3)	1.404 (3)	0.6102 (14)	0.069*	
H3B	0.443 (2)	1.349 (3)	0.5070 (18)	0.069*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0332 (7)	0.0382 (7)	0.0346 (7)	0.0098 (6)	0.0061 (5)	0.0142 (6)
C11	0.0328 (7)	0.0549 (10)	0.0334 (7)	0.0156 (7)	0.0070 (6)	0.0082 (7)
C12	0.0476 (10)	0.0577 (11)	0.0546 (10)	0.0222 (9)	0.0088 (8)	0.0047 (9)
C13	0.0606 (13)	0.0856 (17)	0.0659 (13)	0.0444 (13)	0.0159 (10)	0.0154 (12)
C14	0.0395 (10)	0.116 (2)	0.0689 (13)	0.0367 (12)	0.0176 (9)	0.0363 (14)
C15	0.0352 (9)	0.0982 (17)	0.0597 (12)	0.0118 (10)	0.0102 (8)	0.0366 (12)
C16	0.0377 (8)	0.0630 (11)	0.0454 (9)	0.0119 (8)	0.0088 (7)	0.0218 (8)
C21	0.0336 (7)	0.0431 (8)	0.0419 (8)	0.0124 (6)	0.0080 (6)	0.0107 (7)
C22	0.0610 (11)	0.0483 (10)	0.0432 (9)	0.0011 (8)	0.0152 (8)	0.0063 (8)
C23	0.0743 (14)	0.0492 (11)	0.0610 (12)	-0.0057 (10)	0.0126 (11)	0.0063 (9)
C24	0.0709 (14)	0.0592 (13)	0.0896 (17)	0.0004 (11)	0.0118 (12)	0.0368 (13)
C25	0.0872 (17)	0.0848 (17)	0.0714 (15)	0.0060 (14)	0.0063 (13)	0.0483 (14)
C26	0.0638 (12)	0.0692 (13)	0.0483 (10)	0.0083 (10)	-0.0014(9)	0.0249 (10)
C31	0.0343 (7)	0.0401 (8)	0.0552 (10)	0.0030 (6)	0.0044 (7)	0.0166 (7)
C32	0.0637 (12)	0.0529 (11)	0.0468 (10)	0.0099 (9)	0.0097 (8)	0.0141 (8)
C33	0.0969 (19)	0.0617 (13)	0.0547 (12)	-0.0107 (13)	0.0015 (12)	0.0234 (11)
C34	0.0875 (19)	0.0859 (19)	0.097 (2)	-0.0152 (15)	-0.0220 (16)	0.0621 (18)
C35	0.0588 (14)	0.100 (2)	0.138 (3)	0.0163 (14)	-0.0038 (16)	0.078 (2)
C36	0.0438 (10)	0.0688 (13)	0.1000 (17)	0.0183 (9)	0.0158 (11)	0.0442 (13)
N1	0.0388 (7)	0.0386 (7)	0.0699 (10)	0.0106 (6)	0.0169 (7)	0.0230(7)
N2	0.0372 (7)	0.0396 (7)	0.0729 (10)	0.0145 (6)	0.0200 (7)	0.0226 (7)
N3	0.0468 (9)	0.0477 (9)	0.0920 (14)	0.0236 (7)	0.0164 (9)	0.0234 (9)
P1	0.03125 (19)	0.0388 (2)	0.0393 (2)	0.00988 (15)	0.00878 (15)	0.00323 (16)
S 1	0.03454 (18)	0.03454 (19)	0.0490 (2)	0.01021 (14)	0.01279 (15)	0.01437 (16)
Cl1	0.0497 (2)	0.0406 (2)	0.0713 (3)	0.00658 (17)	0.0195 (2)	0.0183 (2)
Ag1	0.05604 (11)	0.04168 (10)	0.06025 (12)	0.00514 (6)	0.02583 (7)	-0.00213(7)

Geometric parameters (Å, °)

1.311 (2)	С25—Н25	0.9300
1.323 (2)	С26—Н26	0.9300
1.7236 (16)	C31—C32	1.383 (3)
1.383 (3)	C31—C36	1.391 (3)
	1.311 (2) 1.323 (2) 1.7236 (16) 1.383 (3)	1.311 (2) C25—H25 1.323 (2) C26—H26 1.7236 (16) C31—C32 1.383 (3) C31—C36

C11—C16	1.391 (3)	C31—P1	1.8184 (18)
C11—P1	1.8189 (16)	C32—C33	1.386 (3)
C12—C13	1.394 (3)	С32—Н32	0.9300
C12—H12	0.9300	C33—C34	1.377 (4)
C13—C14	1.364 (4)	С33—Н33	0.9300
C13—H13	0.9300	C34—C35	1.360 (5)
C14—C15	1.377 (4)	С34—Н34	0.9300
C14—H14	0.9300	C35—C36	1.383 (4)
C15—C16	1.384 (3)	С35—Н35	0.9300
C15—H15	0.9300	С36—Н36	0.9300
C16—H16	0.9300	N1—H1A	0.888 (16)
C21—C22	1.389 (2)	N1—H1B	0.851 (17)
C21—C26	1.391 (3)	N2—N3	1.406 (2)
C21—P1	1.8221 (18)	N2—H2	0.834 (16)
C22—C23	1.381 (3)	N3—H3A	0.851 (16)
C22—H22	0.9300	N3—H3B	0.870 (16)
C23—C24	1.366 (4)	P1—Ag1	2.4225 (4)
С23—Н23	0.9300	S1—Ag1	2.5202 (4)
C24—C25	1.384 (4)	Cl1—Ag1	2.5378 (5)
C24—H24	0.9300	Ag1—Ag1 ⁱ	3.3502 (4)
C25—C26	1.383 (3)		
N1—C1—N2	119.02 (15)	C32—C31—P1	123.22 (14)
N1—C1—S1	123.57 (12)	C36—C31—P1	118.21 (17)
N2—C1—S1	117.41 (12)	C31—C32—C33	121.2 (2)
C12—C11—C16	119.68 (16)	С31—С32—Н32	119.4
C12—C11—P1	123.64 (15)	С33—С32—Н32	119.4
C16—C11—P1	116.68 (13)	C34—C33—C32	119.1 (3)
C11—C12—C13	119.7 (2)	С34—С33—Н33	120.5
C11—C12—H12	120.2	С32—С33—Н33	120.5
C13—C12—H12	120.2	C35—C34—C33	120.4 (2)
C14—C13—C12	120.2 (2)	С35—С34—Н34	119.8
C14—C13—H13	119.9	С33—С34—Н34	119.8
C12—C13—H13	119.9	C34—C35—C36	120.9 (3)
C13—C14—C15	120.57 (19)	С34—С35—Н35	119.6
C13—C14—H14	119.7	С36—С35—Н35	119.6
C15—C14—H14	119.7	C35—C36—C31	119.8 (3)
C14—C15—C16	120.0 (2)	С35—С36—Н36	120.1
C14—C15—H15	120.0	С31—С36—Н36	120.1
C16—C15—H15	120.0	C1—N1—H1A	120.0 (17)
C15—C16—C11	119.9 (2)	C1—N1—H1B	119.0 (18)
C15—C16—H16	120.1	H1A—N1—H1B	121 (2)
C11—C16—H16	120.1	C1—N2—N3	120.06 (15)
C22—C21—C26	118.97 (18)	C1—N2—H2	115.7 (18)
C22—C21—P1	123.40 (14)	N3—N2—H2	124.3 (19)
C26—C21—P1	117.55 (14)	N2—N3—H3A	109.2 (19)
C23—C22—C21	120.31 (19)	N2—N3—H3B	106.8 (18)
C23—C22—H22	119.8	H3A—N3—H3B	107 (2)
C21—C22—H22	119.8	C31—P1—C11	103.77 (8)

C24—C23—C22	120.6 (2)	C31—P1—C21	103.33 (8)
C24—C23—H23	119.7	C11—P1—C21	105.00 (8)
С22—С23—Н23	119.7	C31—P1—Ag1	117.05 (6)
C23—C24—C25	119.7 (2)	C11—P1—Ag1	109.59 (5)
C23—C24—H24	120.1	C21—P1—Ag1	116.71 (6)
C25—C24—H24	120.1	C1—S1—Ag1	108.17 (5)
C26—C25—C24	120.3 (2)	P1—Ag1—S1	123.445 (15)
С26—С25—Н25	119.8	P1—Ag1—Cl1	119.164 (17)
С24—С25—Н25	119.8	S1—Ag1—Cl1	111.851 (15)
C25—C26—C21	120.0 (2)	P1—Ag1—Ag1 ⁱ	122.531 (13)
С25—С26—Н26	120.0	S1—Ag1—Ag1 ⁱ	58.885 (10)
С21—С26—Н26	120.0	Cl1—Ag1—Ag1 ⁱ	105.880 (14)
C32—C31—C36	118.6 (2)		
C16_C11_C12_C13	-1.8(3)	C36_C31_P1_C21	91 93 (16)
P1-C11-C12-C13	1.0(5) 178 80 (17)	C_{32} C_{31} P_{1} A_{g1}	143 54 (15)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.3(4)	C_{36} C_{31} P_{1} A_{g1}	-37.84(17)
C12 - C13 - C14 - C15	0.7 (4)	C_{12} C_{11} P_{1} C_{31}	-96.91(17)
C_{13} C_{14} C_{15} C_{16}	-0.2(3)	C16-C11-P1-C31	83 68 (14)
C_{14} C_{15} C_{16} C_{11}	-13(3)	C_{12} C_{11} P_{1} C_{21}	11 23 (18)
C12-C11-C16-C15	23(3)	C16-C11-P1-C21	-168 18 (13)
P1-C11-C16-C15	-17827(14)	C12— $C11$ — $P1$ — $Ag1$	137 34 (15)
$C_{26} - C_{21} - C_{22} - C_{23}$	-2.5(3)	C16— $C11$ — $P1$ — $Ag1$	-42.07(14)
P1-C21-C22-C23	-179.27(18)	C_{22} C_{21} P_{1} C_{31}	18.41 (17)
$C_{21} - C_{22} - C_{23} - C_{24}$	0.0 (4)	C_{26} C_{21} P_{1} C_{31}	-158.39(15)
C_{22} C_{23} C_{24} C_{25}	2.0 (4)	C_{22} C_{21} P_{1} C_{11}	-90.05(16)
C_{23} C_{24} C_{25} C_{26}	-1.3(5)	C_{26} C_{21} P_{1} C_{11}	93.14 (16)
C24—C25—C26—C21	-1.3(4)	C22—C21—P1—Ag1	148.38 (14)
C22—C21—C26—C25	3.1 (3)	C26—C21—P1—Ag1	-28.42(16)
P1—C21—C26—C25	-179.9(2)	N1—C1—S1—Ag1	-21.93(16)
C36—C31—C32—C33	-1.7 (3)	N2-C1-S1-Ag1	158.21 (12)
P1—C31—C32—C33	176.89 (16)	C31—P1—Ag1—S1	96.31 (6)
C31—C32—C33—C34	-0.2 (3)	C11—P1—Ag1—S1	-145.95 (6)
C32—C33—C34—C35	1.4 (4)	C21—P1—Ag1—S1	-26.83 (6)
C33—C34—C35—C36	-0.7 (4)	C31—P1—Ag1—Cl1	-55.26 (7)
C34—C35—C36—C31	-1.3 (4)	C11—P1—Ag1—Cl1	62.48 (7)
C32—C31—C36—C35	2.5 (3)	C21—P1—Ag1—Cl1	-178.40 (6)
P1-C31-C36-C35	-176.20 (19)	C31—P1—Ag1—Ag1 ⁱ	168.06 (6)
N1—C1—N2—N3	2.5 (3)	C11—P1—Ag1—Ag1 ⁱ	-74.21 (7)
S1—C1—N2—N3	-177.61 (15)	C21—P1—Ag1—Ag1 ⁱ	44.92 (6)
C32—C31—P1—C11	22.69 (18)	C1—S1—Ag1—P1	-132.43 (5)
C36—C31—P1—C11	-158.69 (16)	C1—S1—Ag1—Cl1	20.96 (6)
C32—C31—P1—C21	-86.69 (17)	C1—S1—Ag1—Ag1 ⁱ	116.84 (5)

Symmetry code: (i) -x+2, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>B</i> ···Cl1 ⁱⁱ	0.87 (2)	2.67 (2)	3.535 (2)	171 (2)

supplementary materials

N2—H2···S1 ⁱⁱⁱ	0.83 (2)	2.66 (2)	3.4320 (15)	155 (2)	
N1—H1B···Cl1 ^{iv}	0.85 (2)	2.63 (2)	3.4088 (16)	154 (2)	
N1—H1A····Cl1	0.89 (2)	2.45 (2)	3.3239 (16)	170 (2)	

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) -*x*+2, -*y*+3, -*z*+1.