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The traditional view of ventricular excitation and conduction is an all-or-nothing response
mediated by a regenerative activation of the inward sodium channel, which gives
rise to an essentially constant conduction velocity (CV). However, whereas there is
no obvious biological need to tune-up ventricular conduction, the principal molecular
components determining CV, such as sodium channels, inward-rectifier potassium
channels, and gap junctional channels, are known targets of the “stress” protein
kinases PKA and calcium/calmodulin dependent protein kinase II (CaMKII), and are
thus regulatable by signal pathways converging on these kinases. In this mini-review
we will expose deficiencies and controversies in our current understanding of how
ventricular conduction is regulated by stress kinases, with a special focus on the
chamber-specific dimension in this regulation. In particular, we will highlight an odd
property of cardiac physiology: uniform CV in ventricles requires co-existence of mutually
opposing gradients in cardiac excitability and stress kinase function. While the biological
advantage of this peculiar feature remains obscure, it is important to recognize the
clinical implications of this phenomenon pertinent to inherited or acquired conduction
diseases and therapeutic interventions modulating activity of PKA or CaMKII.

Keywords: right ventricle, right ventricle outflow tract, PKA, CaMKII, phosphatase, conduction velocity,
ventricular fibrillation, Brugada syndrome

INTRODUCTION

Traditionally, conduction through the ventricular tissue has been considered an all-or-none event
scantly amenable to control. However, as early as 1953 Siebens et al. (1953) showed that sympathetic
agonists modestly accelerated ventricle conduction. Using diverse approaches, subsequent studies
also showed modest conduction increases in response to adrenergic stimulation (Munger et al.,
1994; de Boer et al., 2007; Lang et al., 2015; Ajijola et al., 2017). Of interest, the duration of the
QRS complex, which reflects the total time of conduction spread through the ventricles (Nattel
and Jing, 1989), may change dynamically in the 24 h cycle (Nakagawa et al., 1998), or in response
to exercise (Pilhall et al., 1992). Other studies suggest that sex hormones modulate QRS duration
(Macfarlane et al., 1994; Okin et al., 1995). Interestingly, the conductivity of channels involved in the
generation and transmission of the ventricular impulse (notably the cardiac Na+ channel, Nav1.5)
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may be modulated by phosphorylation, and thus are amenable
to regulation by protein kinases responding to various neural
and hormonal signals, in particular transmitted through
activation of G-protein-coupled receptors (GPCRs) (Sato
et al., 2015). Prominent in these signaling pathways are the
calcium/calmodulin-dependent protein kinase II (CaMKII)
(Hund et al., 2010; Ashpole et al., 2012; Glynn et al., 2015;
Burel et al., 2017) and the cAMP-activated protein kinase A
(PKA) (Murphy et al., 1996; Zhou et al., 2002; Aiba et al., 2014),
collectively known as “stress” kinases for their involvement in
the “fight or flight” physiological response (Wehrens et al., 2004;
Wu et al., 2016). This mini-review will focus on very recent
(and still limited) information regarding how the electrical
wave propagation through ventricular chambers is regulated by
stress kinases. Specifically, we will highlight a largely unknown
regional aspect of kinase function in the ventricles, and will
discuss its relevance to clinical conditions causing reduced
ventricular excitability, such as the Brugada syndrome (BrS).
A comprehensive review on the fundamentals of cardiac
conduction can be found elsewhere (Veeraraghavan et al., 2014).

NORMAL VENTRICULAR CONDUCTION
IS SUSTAINED BY CONSTITUTIVE
ACTIVITY OF CaMKII AND PKA

CaMKII, a serine/threonine-specific protein kinase regulated by
the Ca2+/calmodulin complex (Maier and Bers, 2002; Erickson,
2014), modulates the cardiac response to stress by targeting
numerous ion channels and transporters (Bers and Grandi,
2009). Importantly, CaMKII functionally regulates the three
main components of cardiac excitability: Nav1.5 (Wagner et al.,
2006; Yoon et al., 2009; Aiba et al., 2010), inward-rectifier
potassium channels underlying the K+ current IK1 (Wagner
et al., 2009), and gap junction channels formed by Connexin
43 (Cx43) proteins (Procida et al., 2009; Huang et al., 2011).
Recently, CaMKII has garnered attention due to its ability to
modulate ion channels in ways that favor afterdepolarizations,
and for its prominent role in cardiac disease development
(Swaminathan et al., 2012). Increased activity of CaMKII [which
may occur due to CaMKII overexpression (Zhang et al., 2002,
2003) or upregulation in the failing heart (Anderson, 2005)] alters
Ca2+ homeostasis [including increased Ca2+ entry through
ICaL (Anderson et al., 1994); increased Ca2+ release through
RyR (Wehrens et al., 2004); and increased Ca2+ reuptake to
the SR (Mattiazzi and Kranias, 2014)] and enhances the late
sodium current (INaL) (Wagner et al., 2006; Maltsev et al., 2008),
both effects promoting abnormal cellular triggered activity and
arrhythmia (Anderson, 2005; Vincent et al., 2014). Whereas there
is a general consensus on the direction of CaMKII regulation
of cellular Ca2+ cycling (Swaminathan et al., 2012), regulation
of cellular excitability and conduction by CaMKII remains
controversial. On the cellular level, some studies suggested that
CaMKII activity favors an overall Na+ current (INa) upregulation
(Yoon et al., 2009; Aiba et al., 2010), while others argued that it
promotes an overall INa downregulation (Wagner et al., 2006).
Yoon et al. (2009) were the first to suggest that baseline CaMKII

activity is required for normal ventricular excitation, and that
CaMKII inhibition is detrimental. The authors showed that the
CaMKII blocker KN93 reduced peak INa, shifted the steady-
state inactivation curve to hyperpolarized values, decreased INaL,
enhanced intermediate inactivation, and delayed the recovery
from fast and slow inactivation. Altered INa kinetics led to a
significant suppression of the action potential upstroke velocity
(dV/dtmax), a measure of cellular excitability. In terms of the
regulation direction, Yoon et al.’s (2009) results are consistent
with findings by Aiba et al. (2010), who showed that intracellular
delivery of CaMKII (CaMKIIα) to isolated guinea pig myocytes
caused upregulation of INa (i.e., changes in kinetics leading
to increased availability of INa under physiological conditions).
However, the studies by Yoon et al. (2009) and Aiba et al. (2010)
contradict the studies performed in isolated adult mouse/rabbit
myocytes (Wagner et al., 2006), HEK293 cells (Deschenes et al.,
2002; Ashpole et al., 2012), or using simulations (Hund et al.,
2008), that showed that overexpression/inhibition of CaMKII
suppressed/enhanced INa availability, and inhibitors KN93 (or
AIP, a peptide inhibitor) rescued CaMKII overexpression-
induced detrimental effects.

CaMKII regulation of ventricular conduction in the whole
heart is also controversial. Takanari et al. (2016) reported that
a chronic reduction in CaMKII activity in mice following
expression of CaMKII-inhibiting autocamtide-3-related peptide
(AC3-I) caused an increase in conduction velocity (CV) in
both RV and LV. In addition, they showed that inhibition
of calmodulin, the upstream regulator of CaMKII, increased
ventricular CV, and reduced arrhythmogenicity in isolated rabbit
hearts (Takanari et al., 2016). The improved conduction following
calmodulin/CaMKII inhibition was attributed to increased
localization of Cx43 in the intercalated disk (Takanari et al.,
2016). On the physiological level, our own studies yielded
strikingly opposite outcomes (Warren and Zaitsev, 2017; Warren
et al., 2017; Zaitsev et al., 2019). Specifically, inhibition of either
CaMKII or calmodulin slowed down propagation mainly due
to inducing severe conduction defects in the right ventricular
outflow tract (RVOT, Figure 1A, leftmost and center panels),
and this was proarrhythmic (Figure 1B; Warren and Zaitsev,
2017; Zaitsev et al., 2019). Whilst Cx43 channel function was not
analyzed, CaMKII blockade reduced dV/dtmax both in myocytes
and whole hearts (Warren et al., 2017; Zaitsev et al., 2019),
consistent with Yoon et al.’s (2009) data, and suggestive of a
reduced INa availability. Moreover, CaMKII inhibition caused
highly rate-dependent changes of ventricular conduction and
excitability (see more below) (Warren et al., 2017; Zaitsev et al.,
2019), readily explained by altered INa inactivation (Yoon et al.,
2009), but not by altered localization or conductivity of Cx43.
Investigating how CaMKII gain- and loss-of-function alters both
myocardial active and passive properties in the same whole-
heart animal model will likely resolve the controversy. We invite
anyone interested to collaborate on such a study.

PKA is a cAMP sensitive protein kinase which responds to
beta-adrenergic receptor activation (Taylor et al., 2013; Soni et al.,
2014), and is inhibited by muscarinic receptor activation (Harvey
and Belevych, 2003). PKA activation drives the physiological
response to stress by targeting molecular components of cardiac

Frontiers in Physiology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 86

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00086 February 14, 2020 Time: 19:21 # 3

Zaitsev and Warren Right Ventricle Conduction Vulnerability

FIGURE 1 | (A) Inhibition of either CaMKII or PKA signaling leads to
preferential conduction slowing in the basal RV approximately corresponding
to the RVOT. Qualitatively, similar effects are produced by blockade of
calmodulin, CaMKII, or PKA with W7, KN93, and H89, respectively. (B) With
sufficient concentration and/or time of exposure, all three interventions lead to
reentrant VT or VF, with the driving rotors preferentially occurring in the RVOT
[reused with permission from the American Journal of Physiology (Warren and
Zaitsev, 2017) and Zaitsev et al. (2019)].

function and excitability (Soni et al., 2014). Interestingly,
CaMKII and PKA work hand in hand upregulating excitation–
contraction coupling in response to stress (Grimm and Brown,
2010). Consequently, and given that Nav1.5 phosphorylation
sites targeted by CaMKII or PKA cluster mostly in the first
intracellular linker loop of the channel (Marionneau and Abriel,
2015), including a potentially shared site at Ser571 (Hund
et al., 2010; Marionneau et al., 2012), we hypothesized that
PKA regulates ventricular conduction similarly to CaMKII. This
was subsequently confirmed (Zaitsev et al., 2019). Figure 1A
(rightmost panel) illustrates how PKA blockade with H89 caused
a highly non-uniform, RVOT-centric, depression of conduction,
which initiated arrhythmia (Figure 1B).

Our organ-level findings are generally consistent with single
cell patch clamp studies indicating that PKA and/or its upstream
signals (beta-agonists and cAMP) upregulate INa (Matsuda et al.,
1992; Frohnwieser et al., 1997; Lu et al., 1999; Aiba et al., 2010).
Although some early studies suggested opposite effects (Ono
et al., 1989; Schubert et al., 1989), slow background shifts in
INa kinetics common in isolated myocytes may have confounded

those results (Ono et al., 1993). Of note, diverse mechanisms of
PKA-mediated INa upregulation were proposed, including PKA-
induced increase in Na+ channel trafficking to the sarcolemma
(Zhou et al., 2000, 2002). To date, there is no cellular counterpart
to our whole heart study (Zaitsev et al., 2019) that would
clarify how inhibition of PKA modulates INa gating. However,
similarities in the conduction depression patterns elicited by
CaMKII and PKA inhibition (Figure 1) suggest that the
underlying ionic mechanisms are also similar.

ROLE OF PHOSPHATASES – A “KNOWN
UNKNOWN”

In the 1980s the notion emerged that opposing actions of
endogenous phosphatases and associated kinases set the basal
level of membrane currents, such as the L-type inward Ca2+

current (Hescheler et al., 1988), IK1 (Koumi et al., 1995a),
and connexins (Moreno et al., 1994). It is suggested that
type 1 and type 2A phosphatases (PP1 and PP2A) are key
to regulating ion channel phosphorylation (Luss et al., 2000;
Terentyev and Hamilton, 2016), but improved understanding
is pending. A recent study by El Refaey et al. (2019) using
a PP2A phosphatase-defective transgenic mouse showed that
adrenergic stimulation of myocytes induced aberrant action
potentials attributed to a deficient dephosphorylation of Nav1.5
affecting INaL. This study reported no significant difference in the
fast component of INa (El Refaey et al., 2019).

In our experiments, administration of broad-acting
phosphatase inhibitor calyculin to isolated rabbit hearts led
to a small yet significant acceleration of ventricular conduction,
the effect being greater in the RV than in the LV (Zaitsev et al.,
2019). This supports a phosphatase-mediated negative regulation
of excitability, which differs from El Refaey et al. (2019). Given
the broad action of calyculin, our data might indicate that
a phosphatase other than PP2A (e.g., PP1) regulates the fast
component of INa.

Additional indirect evidence of the phosphatase-mediated
negative regulation of excitability is the progressive nature of
CaMKII/PKA-inhibition-mediated conduction defects (steady
state after >1 h of kinase blockade) (Zaitsev et al., 2019). The
progressive conduction deterioration is most easily explained in
terms of continuing phosphatase activity amid decreased total
kinase activity. Because the RV is revealed as the most vulnerable
region, it is plausible that phosphorylation/dephosphorylation
imbalance affects it more prominently.

STRESS KINASES REGULATE
VENTRICULAR CONDUCTION IN A
RATE-DEPENDENT MANNER

Besides the progressive conduction deterioration caused by
CaMKII and/or PKA blockade, the effect of each blocker was
strongly rate dependent. Combined, these two effects resulted in
a frequency-dependence which progressed with time. At short
durations of drug exposure, the detrimental effect of either
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CaMKII or PKA blockade was noticeable only at relatively high
pacing rates (short pacing intervals), but with increased exposure
to drug conduction was affected even at physiological pacing
rates. The detrimental effects of kinases’ blockade were always
largest in the basal RV (approximately corresponding to the
RVOT), culminating in 2:1 conduction block, turbulence, and
initiation of VF in that region at pacing intervals as long as 400 ms
(Figure 1B; Zaitsev et al., 2019). Remarkably, severe conduction
depression induced by either CaMKII or PKA inhibition was
almost fully abolished just by prolongation of the pacing interval
to >6000 ms (Zaitsev et al., 2019).

This result is revealing. First, it suggests that IK1 or
Cx43 channels, the two major factors of ventricular syncytial
conduction besides INa, do not play a significant role in mediating
adverse effects caused by stress kinases’ inhibition. Even though
current evidence points to CaMKII and PKA targeting both
connexins (Burt and Spray, 1988; Moreno et al., 1992; Procida
et al., 2009; Huang et al., 2011) and IK1 (Fakler et al., 1994;
Koumi et al., 1995a,b,c; Wagner et al., 2009), neither is known
to possess time-dependent gating properties. Second, given
Yoon et al.’s (2009) data, enhancement of intermediate/slow
inactivation of INa emerges as the likely mechanism causing
conduction abnormalities in the presence of CaMKII inhibition.
Furthermore, by similarity of the CaMKII and PKA inhibition
effects, we predict that PKA also regulates intermediate/slow
inactivation of INa, an effect not reported thus far. Lastly,
the fact that long period of quiescence abolishes the effect of
PKA and/or CaMKII inhibition disfavors the notion that our
observed upregulation of INa by PKA and/or CaMKII is due to
Na+ channel trafficking to the plasma membrane (Zhou et al.,
2000). From the perspective of Nav1.5 gating mechanisms, it
remains to be understood how insufficient phosphorylation of the
protein, likely at locations identified in the 1st intracellular loop
(Marionneau and Abriel, 2015), favors stabilization of the channel
in the inactivated state.

CONSTITUTIVE ACTIVITY OF CaMKII
AND PKA IN THE HEART – HOW MUCH
OF IT?

De Koninck and Schulman (1998) demonstrated that CaMKII
can act as an intracellular Ca2+ ([Ca2+

]i) transducer and
activation frequency sensor in vitro. In line with this, using
FRET-based biosensor Camui, Erickson et al. (2011) showed that
increased activation rates (range 0–1 Hz) significantly increased
CaMKII activity in isolated rabbit ventricular myocytes. Since
the tested rates are much below the resting heart rate, one
should expect a much higher level of CaMKII activation
at the physiological baseline. In addition, even in quiescent
cells, a significant activation of CaMKII produced by various
neurohumoral ligands acting upon GPCR was reported (Erickson
et al., 2011). Thus, the normal physiological level of CaMKII
activity in the heart is a complex integral of various signals.
Whereas it has not yet been quantitatively assessed, the degree
at which CaMKII blockade affects conduction in hearts paced
at normal physiological rate and in the absence of GPCR

stimulation (Zaitsev et al., 2019), clearly indicates that the basal
level of CaMKII activity is far from zero. To which extent this
level is regulated by acute variations in heart rate and [Ca2+]i,
or by phasic changes in autonomic and endocrine regulation,
remains unknown and needs to be further investigated.

PKA constitutive activity is largely determined by the
relationship between the half-maximal cAMP concentration
required for PKA activation and the basal level of cAMP in cells.
Measures of cAMP concentration yielded values around 1 µM
(Terasaki and Brooker, 1977; Iancu et al., 2008). According to
several in vitro studies, the cAMP concentration required for half-
maximal activation of PKA is in the range 90–300 nM (Adams
et al., 1991; Mongillo et al., 2004). Based on these estimates, PKA
should be fully activated under resting conditions, precluding
the possibility of a dynamic response to upstream signals acting
via cAMP, which clearly contradicts fundamental physiology.
Various schemes were proposed to resolve this controversy,
including cAMP sequestration that renders it inactive (Exton
et al., 1971), or the presence of intracellular domains in
which cAMP concentration is much lower than the bulk
cytosol concentration (Iancu et al., 2008). Recently, Koschinski
and Zaccolo (2017) challenged the prior in vitro estimates
of PKA sensitivity, reporting significantly higher half-maximal
concentrations for the enzyme (5.2 µM cAMP) measured in
intact Chinese hamster ovary cells. Upon inhibition of PKA
(10 µM H89) in unstimulated cells, they found no detectable
change in FRET-based PKA activity reporter signal, suggesting
a negligible level of PKA activity at baseline cAMP levels.
However, 10 µM H89 induced a dramatic slowing of ventricular
conduction in perfused rabbit hearts, supporting the presence of
robust endogenous PKA activity, even in the absence of beta-
adrenergic and other neural and hormonal signals (Zaitsev et al.,
2019). Perhaps, PKA signaling is very different between ovary
cells and cardiac myocytes. Since isolated hearts respond to both
beta-adrenergic stimulation and stimulation of cAMP synthesis
with vigorous increase in PKA activity (Zhang and MacLeod,
1996), the constitutive level of PKA activity in the intact heart
must be far from both inactive and fully activated state, but where
it stands exactly, remains to be established.

CONDUCTION VULNERABILITY IN THE
RV: THE ACHILLES’ HEEL OF THE
HEART

The spatial patterns of ventricular conduction depression
induced by “stress” kinase inhibitors are unique insomuch that
the RV is affected much more prominently than the LV, and
within the RV the most affected region is RVOT. This pattern is
remarkably similar among the kinase inhibitors KN93 and H89,
as well as the calmodulin inhibitor W7 (Figure 1A), suggesting a
common mechanism of action.

Figures 2A–C illustrate how the specific RVOT vulnerability
can be explained in terms of its intrinsically reduced excitability
(reflected in reduced dV/dtmax, see Figure 2C inset), compared
to other ventricular regions such as the anterior–apical left
ventricle (AALV) (Warren et al., 2017). The reduced excitability
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FIGURE 2 | Concealed conduction vulnerability in the right ventricular outflow tract (RVOT). The left-hand part (A–D) illustrates the currently established static
component of the phenomenon, whereas the right-hand part (E–G) illustrates a largely hypothetical dynamic component. (A) The anterior view of the heart showing
RVOT and the anterior–apical left ventricle (AALV), the two regions with demonstrated significant differences in properties affecting conduction. (B) Compared to
AALV (and possibly other ventricular regions), RVOT has a lesser expression of Nav 1.5, the pore-forming subunit of INa (Boukens et al., 2013), but a larger
expression of “stress” kinases PKA and CaMKII (Zaitsev et al., 2019). (C) Cardiac myocytes from RVOT have reduced excitability (assessed by the maximum slope
of the action potential upstroke slope, dV/dtmax) than cardiac myocytes from AALV [reused with permission from the American Journal of Physiology (Warren et al.,
2017)]. (D) The theoretical non-linear relationship between excitability and conduction velocity (Shaw and Rudy, 1997) which may explain the relatively uniform
conduction velocities across the ventricles (Zaitsev et al., 2019) despite the regional differences in the expression of Nav 1.5 and excitability [modified Shaw and
Rudy (1997), with permission]. (E) A diagram highlighting the dynamic nature of the phosphorylated state of Nav 1.5, which depends on the dynamic equilibrium
between the sum of all kinase and phosphatase activity. Overall, little is known about the actual temporal fluctuations of Nav 1.5 phosphorylation, but such can be
inferred from the fact that both PKA and CaMKII are downstream of highly dynamic autonomic and endocrine signals. (F,G) Physiological fluctuations of Nav 1.5
phosphorylation may lead to variations in excitability and conduction velocity [slower conduction with less phosphorylation (Zaitsev et al., 2019)]. While such
variations are benign under normal conditions (F), they may lead to acute conduction crisis and reentrant arrhythmias when INa expression is globally reduced (G)
(Remme and Wilde, 2014), or when the phosphorylation balance of Nav 1.5 is compromised (Aiba et al., 2014) in patients with Brugada syndrome (BrS).

presumably results from the locally reduced expression levels of
Nav1.5 (Veeraraghavan and Poelzing, 2008; Boukens et al., 2013).
The fact that, despite regional differences in excitability, the
impulse conduction is uniform through the ventricular chambers
(see Figure 1A, upper panels; see also Figures 3D–E in Boukens
et al., 2013) requires explanation. We believe that two factors
are involved. One is that cardiac excitability operates within a
wide margin of safety across which impulse conduction is robust
(Figure 2D). The presence of such a safety margin stems from
the asymptotic relationship between action potential upstroke
(dV/dtmax) and conduction (Buchanan et al., 1985; Shaw and
Rudy, 1997), whereby dV/dtmax needs to cross a critical threshold
before conduction is noticeably affected (Figure 2D).

The second factor is the presence of spatial heterogeneity
in stress kinase-related signaling (Figures 2A,B). We found
that the protein expression levels of CaMKII-δ (Maier and
Bers, 2002) and of the catalytic subunit of PKA (PKA-Cα)

(Yin et al., 2008) are significantly higher in the RVOT than in the
AALV (Zaitsev et al., 2019), suggesting increased local activities
of these enzymes. Others showed that the RV hemodynamic
response was more sensitive to β-adrenergic stimulation than
the LV (Irlbeck et al., 1996). Additionally, RV myocytes subject
to isoproterenol exhibited increased sarcomere shortening, Ca2+

transient amplitude, cytoplasmic cAMP accumulation, and PKA
activity compared to the LV counterparts (Molina et al., 2014).
These findings suggest the existence of an organ-wide program
which controls local cellular signaling to maintain a specific
functional profile. Whereas the physiological advantage of such
an adaptation remains unclear, an apparent physiological role of
stress kinases is to upregulate functional INa (Aiba et al., 2010)
to maintain RV excitability well within the margins of safety.
The source of this heterogeneity may be linked to the distinct
development origin of the RVOT (Boukens et al., 2009), which
has been associated to a more persistent RVOT-regional slow
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impulse conduction during cardiac development (de Jong et al.,
1992; Boukens et al., 2013). Alternatively, we speculate that higher
expression levels of CaMKII and PKA in RVOT could develop
in response to a comparatively higher local mechanical stress
caused by the distinct hemodynamic context in which RVOT
operates (Geva et al., 1998). However, the physiological advantage
or necessity of intrinsically reduced RVOT excitability (Warren
et al., 2017) remains elusive.

Finally, the role of regional differences in the myocardial
organization properties such as connexin distribution (Ou
et al., 2005), fiber orientation (Burgess et al., 1988), or cleft
geometry (Kelly et al., 2018) might be important. We should
note, however, that isolated cells subject to kinase inhibitors
developed depressed excitability characteristics akin to that
observed in intact tissue (Warren et al., 2017), indicating that
tissue architecture is not required for the phenomenon to
develop. Additionally, the dynamic nature of the phenomenon
cannot be readily ascribed to tissue architecture components
which are functionally time-independent. Thus, it seems that
the tissue architecture is not directly responsible for the
core phenomenon of kinase inhibition-induced conduction
depression. However, it may contribute to increased conduction
vulnerability in the RVOT by conferring the region a narrower
safety margin for conduction.

STRESS KINASE ACTIVITY AND THE
BRUGADA SYNDROME

The BrS is a hereditary lethal cardiac condition associated with
conduction abnormalities in the RVOT (Kasanuki et al., 1997;
Postema et al., 2010; Zhang et al., 2015). Abnormal INa function
likely underlies the BrS phenotype, since the majority of known
mutations causing the disease affect this current (Antzelevitch
et al., 2017). The ECG signature of BrS, an abnormal ST segment
elevation in precordial leads, manifests intermittently (Veltmann
et al., 2006). Circadian biases in the development of abnormal ST
segment elevation (Gray et al., 2017), as well as in the initiation
of VF (Matsuo et al., 1999), underscore the dynamic nature
of BrS. Increased parasympathetic tone can also underlie the
dynamic unmasking of the disease phenotype, which can be
reverted by interventions that increase the sympathetic signals
(Kasanuki et al., 1997).

Conduction patterns induced by “stress” kinase inhibition
(Figure 1) are strikingly similar to RVOT-centric conduction
defects described in BrS patients (Zhang et al., 2015). A prevailing
paradox is that the permanent nature of dysfunctional Nav1.5
mutations afflicting BrS patients is typically associated to
intermittent or lacking phenotypes. We speculate that the
intermittent display of BrS phenotype may in part depend
on dynamic fluctuations in stress kinases’ activity. Supporting
this, half-maximal blockade of INa with TTX [which is
similar to the degree of INa loss-of-function in some BrS
models (Papadatos et al., 2002; Remme et al., 2009)] caused
only a uniform slowing of conduction, while a subsequent
short exposure to CaMKII inhibitor KN93 disproportionally
slowed RV conduction, bringing about BrS-like phenotype

(Zaitsev et al., 2019). We submit that following kinase activity
fluctuations (Figure 2E), ventricular excitability is dynamically
shifted back-and-forth within the limits of safe conduction,
which are wide in healthy hearts (Figure 2F), but narrower
in hearts affected by the BrS (Figure 2G). When this limit
is breached, conduction in the RVOT fails first, and VF
initiates in a manner similar to that observed during kinase
inhibition (Figure 2G, right panel). Whereas there are no known
cases of BrS involving CaMKII signaling, a family with BrS
bore a SCN5A mutation in a PKA consensus phosphorylation
site, which effectively disrupted positive regulation of INa by
PKA (Aiba et al., 2014). Overall, the role of stress kinase
signaling in BrS remains poorly understood and definitely merits
further investigation.

CONCLUSION

Because of an intrinsically reduced safety margin for conduction
in the RV/RVOT, the constitutive activity of both CaMKII
and PKA is required for normal ventricular conduction.
Consequently, any intervention decreasing activity of these
kinases is potentially pro-arrhythmic and life-threatening.
Further, any condition leading to additional reduction in
the RV excitability (BrS, ischemia, and electrolyte imbalance)
bears increased risk. Normal ventricular conduction hinges
on the delicate balance of phosphorylation/dephosphorylation,
which is a result of a very complex and highly dynamic
summation of upstream signals mediated through nervous and
endocrine regulation, as well as circadian rhythms. Whereas
a wealth of knowledge has been accumulated at the level of
molecular mechanisms involved in regulation of cardiac ionic
channels by phosphorylation, there is a deficiency in translating
these mechanisms to the level of whole-heart physiology and
pathophysiology. We hope that this mini-review will stimulate
investigations to bridge this gap.
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