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Literary evidence depicts that aggregated β-amyloid (Aβ) leads to the pathogenesis
of Alzheimer’s disease (AD). Although many traditional Chinese medicines (TCMs) are
effective in treating neurodegenerative diseases, there is no effective way for identifying
active compounds from their complicated chemical compositions. Instead of using a
traditional herbal separation method with low efficiency, we herein apply UHPLC-DAD-
TOF/MS for the accurate identification of the active compounds that inhibit the fibrillation
of Aβ (1-42), via an evaluation of the peak area of individual chemical components in
chromatogram, after incubation with an Aβ peptide. Using the neuroprotective herbal
plant Scutellaria baicalensis (SB) as a study model, the inhibitory effect on Aβ by its
individual compounds, were validated using the thioflavin-T (ThT) fluorescence assay,
biolayer interferometry analysis, dot immunoblotting and native gel electrophoresis
after UHPLC-DAD-TOF/MS analysis. The viability of cells after Aβ (1-42) incubation
was further evaluated using both the tetrazolium dye (MTT) assay and flow cytometry
analysis. Thirteen major chemical components in SB were identified by UHPLC-DAD-
TOF/MS after incubation with Aβ (1–42). The peak areas of two components from
SB, baicalein and baicalin, were significantly reduced after incubation with Aβ (1–42),
compared to compounds alone, without incubation with Aβ (1–42). Consistently, both
compounds inhibited the formation of Aβ (1–42) fibrils and increased the viability of cells
after Aβ (1–42) incubation. Based on the hypothesis that active chemical components
have to possess binding affinity to Aβ (1–42) to inhibit its fibrillation, a new application
using UHPLC-DAD-TOF/MS for accurate identification of inhibitors from herbal plants
on Aβ (1–42) fibrillation was developed.
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INTRODUCTION

Population aging is becoming a major demographical and health
issue in the 21st century. Consistently, the number of people with
aged-related neurodegenerative diseases, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), and Huntington’s disease
(HD) are accelerating rapidly (Sheikh et al., 2013). The number of
people with AD, the most common type of dementia (Fang et al.,
2017), is expected to reach 74.7 and 131.5 million globally by
2030 and 2050, respectively (Alzheimer’s Disease International,
2018). The extracellular plaque of the Aβ peptide, and the
neurofibrillary tangles (NFTs) composed of the microtubule
associated filamentous tau protein in the brain, are two important
pathological hallmarks of AD (Bloom, 2014). The accumulation
of Aβ in neurons is recognized as the initiation step of AD
progression, with the induction of oxidative stress, inflammation,
and cell death (Di Bona et al., 2010). Although it remains
controversial, Aβ is considered as one of the key targets for the
treatment of AD (Yoshiike et al., 2003). Considering the fact that
many natural small molecules have been proven to inhibit Aβ

fibrillation and reduce the cytotoxicity of neurons, recent studies
have focused on the screening of natural compounds with anti-
AD effects in TCMs. For example, natural polyphenols such as
curcumin can bind Aβ (1–42) and block its fibril formation and
aggregation (Yang et al., 2005); resveratrol is capable of changing
the oligomeric conformation and attenuate the cytotoxicity of Aβ

(Feng et al., 2009); epigallocatechin-3-gallate is able to reduce the
level of Aβ in brain and protect the mitochondrial function of
neurons in the amyloid precursor protein (APP) and presenilin-1
(PS1) double transgenic AD mice (Dragicevic et al., 2011).

Scutellaria baicalensis (SB) (Huangqin) is a widely used TCM
(Mehlhorn et al., 2014), which was firstly described in “Shen
Nong Ben Cao Jing” (Yuan et al., 2015). Modern pharmacological
studies have depicted its positive effects in neuroprotection
(Yune et al., 2009; Miao et al., 2014), anti-cancer (Ye et al.,
2002; Sato et al., 2013), anti-inflammation (Huang et al., 2006;
Kim et al., 2009; Yoon et al., 2009), anti-oxidation (Gabrielska
et al., 1997; Huang et al., 2006; Wang et al., 2014), anti-
bacteria, and anti-virus (Zandi et al., 2013; Shi et al., 2016).
Flavonoids including baicalin, baicalein, wogonin, oroxylin
A-7-O-glucuronopyranoside, and oroxylin A are the major
chemical components in SB (Lee et al., 2014). While baicalin,
baicalein and wogonin were reported to inhibit fibrillation of
Aβ (Heo et al., 2004; Zhu and Wang, 2015), total flavonoids
from the stem and leaf of SB might improve learning or
memory impairment and attenuate neuronal loss induced by
the Aβ peptide in rats (Wang et al., 2013). However, the
traditional bioactivity guided separation of active compounds
from TCMs, requires repeated rounds of isolation and bioactivity
validation before a single active fraction or chemical component
can be identified. Due to the disadvantages of being time-
consuming and laborious, the traditional way of identifying novel
inhibitors on fibrillation of Aβ from TCMs is ineffective with
slow progress (Gerardo Castillo et al., 2007; Liu et al., 2011;
Kandasamy et al., 2012).

With the recent advances in the development of
chemical analysis technologies, such as HPLC coupled with

ultraviolet (UV) or florescence detector, mass spectrometry (MS)
and nuclear magnetic resonance (NMR), identification of the
bioactive component through the analysis of chromatograms,
has become more prevalent (Li and Lurie, 2014; Wu et al.,
2015; Bertini et al., 2017). Recent literature has reported a
novel method on the structure-based discovery of fiber-binding
compounds using computational docking, which was then
validated by NMR for their binding affinity to both Aβ (16–21)
and Aβ (1–42). The results confirmed that compounds with a
binding affinity to Aβ, decreased toxicity of fiber by increasing
its stability (Jiang et al., 2013). Consistently, a model using
NMR for the validation of the binding affinity of non-natural
peptides to tau fibers, showed a diminished1H NMR spectrum
of the effective peptides (Sievers et al., 2011). Based on these
observations, we hypothesized that chemical components would
show a reduction in the UHPLC-DAD-TOF/MS chromatogram
peak area upon effective Aβ binding. To validate the hypothesis,
SB was selected as the study subject for the evaluation of
method accuracy. Our results confirmed that 13 major chemical
components were identified from the total ethanol extract of
SB (SB-TEE). Among them, two of the chemical components,
baicalin and baicalein showed a significant decrease of the peak
area in the extracted-ion chromatogram (EIC) as evaluated by
UHPLC-DAD-TOF/MS. Consistently, SB-TEE, baicalin and
baicalein possess an inhibitory effect on the Aβ (1–42) fibril
formation as validated by biolayer interferometry analysis, ThT
fluorescence detection assay, native gel and dot blot analysis.
The anti-fibrillation effect on Aβ was further confirmed by the
decrease in its cytotoxicity after treatment with baicalin and
baicalein. The current study presents a new approach using the
UHPLC-DAD-TOF/MS system for the accurate screening or
the quality control of anti-fibrillation compounds from TCMs,
which may facilitate the drug discovery of potential anti-AD
agents in the future.

MATERIALS AND METHODS

Chemicals and Reagents
Baicalin, wogonoside and baicalein (≥98% purity, HPLC) were
obtained from Chengdu MUST Bio-technology Company Ltd.
(Chengdu, China). SB with the place of origin in Ji Lin province
of China was purchased from Beijing Tong Ren Tang Zhuhai
Pharmacy Co., Ltd. (Guangdong, China). 3-(4,5-dimethylthiazol-
2-yl)-2,5-dimethyltetrazolium bromide (MTT) and ThT were
purchased from Sigma (St. Louis, MO, United States). Milli-Q
water was prepared by the Milli-Q integral water purification
system (Millipore, Billerica, MA, United States) in our laboratory.
Acetonitrile was purchased from Anaqua Chemicals Supply
(Houston, TX, United States). Aβ (1–42) was obtained from
the China Peptides Co., Ltd. (Shanghai, China). EZ-Link NHS-
LC-LC-Biotin was obtained from Thermo Scientific Waltham
(MA, United States). Super Streptavindin (SSA) biosensors were
purchased from FortéBIO, PALL Life Sciences (Port Washington,
NY, United States). The Annexin V staining kit was purchased
from BD Biosciences (San Jose, CA, United States). The native
PAGE Bis-Tris Gel (4–16%), running buffer (20X) and the native
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PAGE sample buffer were obtained from Invitrogen (Carlsbad,
CA, United States). The PVDF membrane was obtained from
PALL Life Sciences (Port Washington, NY, United States).

Preparation of SB-TEE
25 gram of the SB plant was smashed into powder and extracted
with 10 times its volume of 75% ethanol for 2 h, by refluxing two
times. The extracted solution was then filtered, concentrated and
dried with a rotary evaporator under reduced pressure to produce
the final SB-TEE. The dried ethanol extracts were re-dissolved in
DMSO at a suitable concentration for further use.

Instrument and Chromatographic
Conditions
UHPLC (Agilent Technologies 1290 Series), equipped with the
time of flight (TOF) MS (Agilent Technologies 6230) with a jet
stream ion source, was operated in negative and positive ion
modes during the UHPLC analysis. All samples were analyzed
using the Agilent Eclipse Plus C-18 column (100 × 2.1 mm)
with a particle size of 1.8 µm at a flow rate of 0.35 mL/min.
The separation was conducted in accordance with the gradient
elution program, comprised of mobile phase A (0.1% formic
acid in water) and mobile phase B (0.1% formic acid in ACN):
0–2 min, 2% B; 2–5 min, 2–10% B; 5–15 min, 10–50% B;
15–18 min, 50–80% B; 18–20 min, 80–100% B; 20–22 min, 100%
B; 22.1–25 min, 2% B. For UHPLC-DAD-TOF-MS analysis, the
data was acquired using the UV detector with the detection
wavelength at 254 nm and in the scan mode with a m/z value
from 100 to 1700 Da by 2.0 spectra/s. Data were analyzed using
Agilent MassHunter Workstation software B.01.03.

Aβ (1–42) Peptide Preparation
1 mg of Aβ peptide (1–42) was dissolved in 400 µL of
hexafluoroisopropanol (HFIP; Sigma) and subjected to ultrasonic
for 15 min. Aβ peptide solution was aliquoted into a 1.5 mL
tube (100 µL/tube) and dried under a stream of nitrogen gas to
produce a peptide film which was stored at −80◦C. Aβ (1–42)
was re-dissolved in 10 µL of DMSO (Sigma, United States)
and an appropriate volume of PBS (pH = 7.4) to acquire the
final concentration before use. The Aβ (1–42) peptide was then
incubated at 37◦C for 5 days to form the aggregated form of Aβ

for all biological and chemical assays.

Biolayer Interferometry Analysis
200 µL of solution containing 100 µg of the Aβ peptide was
incubated at 37◦C for 5 days. EZ-Link NHS-LC-LC-Biotin
(Thermo Scientific, United States) was dissolved in DMSO to a
concentration of 10 mM. Aβ (1–42) was biotinylated in a 1:0.5
molar ratio of biotin reagent and incubated for 30 min at room
temperature before being added into a 96-well plate (Greiner Bio-
One, PN:655209). Biotinylation was ascertained by loading the
mixture onto super streptavidin (SSA) capacity tips (ForteìBIO,
Menlo Park, CA, United States) and detected by the FortéBIO
Octet Red instrument. Additionally, SSA biosensors were pre-
wetted with PBS for the recording of baselines. Successful
biotinylated Aβ (1–42) solution was collected and immobilized

onto SSA tips overnight at 4◦C. Compounds (baicalin and
baicalein) dissolved in DMSO were diluted to an appropriate
concentration with PBS to a final volume of 200 µL/well.
Control wells were added with an equal amount of DMSO. All
experiments consisted of repeated cycles of four major steps: wash
(300 s), baseline (120 s), association (120 s), and dissociation
(120 s). The results including the association and dissociation
plot and kinetic constants were analyzed with ForteìBIO data
analysis software.

Thioflavin-T (ThT) Fluorescence Assay
20 µL of Aβ (1–42) (100 µM) was diluted with PBS or the
tested SB compounds, to a final volume of 100 µL with 5 days
of incubation at 37◦C. A ThT fluorescence assay was performed
as described in the previous report (Lu et al., 2011). Briefly,
ThT was dissolved with PBS (pH = 7.4) at a final concentration
of 20 µM and was kept away from light. 10 µL of aggregated
Aβ with or without the tested compounds and 190 µL of ThT
solutions were added into a black 96-well-plate and incubated
for 1 h. Fluorescence measurements were carried out using
the microtiter plate reader (SpectraMax Paradigm, Molecular
Devices, United States) with excitation at 450 nm and emission
at 490 nm. Background fluorescence was measured in the control
sample containing PBS and 0.02% of DMSO.

Dot Blot Assay
20 µM of Aβ (1–42) was incubated with SB-TEE or SB single
compounds for 5 days at 37◦C. 4 µL of each incubated solution
was spotted onto the methanol pre-activated PVDF membrane,
which was then blocked with 5% non-fat dried milk in Tris-
buffered saline and Tween 20 (TBST) for 1 h. The membrane was
incubated with primary anti-amyloid fibril antibody [mOC87]
(1:1000) (Abcam, Cambridge, MA, United States) overnight at
4◦C, followed by an incubation with HRP-conjugated secondary
antibody. Protein bands were detected using ultra signal sensitive
ECL Western Blotting detection reagent (4A Biotech Co., Ltd,
Beijing, China) and visualized using gel imaging equipment
(Amersham Imager 600, GE, Tokyo, Japan). Band intensity was
quantified using the software ImageJ (National Institutes of
Health, Bethesda, MD, United States).

Native Gel Electrophoresis
After the incubation of Aβ (1–42) with SB-TEE or SB single
compounds at 37◦C for 5 days, with Aβ (1–42) alone set as
the control group, the incubated solutions were centrifuged
at 10,000 g for 10 min. The supernatant was collected for
the detection of soluble Aβ (1–42) oligomers by native gel
electrophoresis. In brief, samples in the Novex native PAGE
sample buffer were loaded into the pre-casted native PAGE
gels for electrophoresis in 1X of Novex Native PAGE running
buffer. The proteins on the gel were then transferred to a PVDF
membrane. The membrane was blocked with 5% non-fat milk in
TBST and then immunoblotted with an antibody against amyloid
fibril [mOC87] (1:1000) (Abcam, Cambridge, MA, United States)
overnight at 4◦C. After an incubation with HRP-conjugated
secondary antibody, protein bands were detected and visualized
as described in the previous “Dot Blot Assay” section.
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FIGURE 1 | The identification of the chemical components in SB using Agilent 6230 UHPLC-DAD-TOF/MS. (A) TIC (total ion chromatogram) and the corresponding
UV chromatogram of SB-TEE and its main components (scutellarin, baicalin, oroxyloside, wogonoside, baicalein, wogonin and oroxylin A). (B) The chemical
structures of the identified components in SB.

Cell Viability
PC-12 cells were cultured with DMEM (Gibco, Grand Island, NY,
United States) containing 10% horse serum (Gibco, Grand Island,
NY, United States), 5% fetal bovine serum (FBS, PAN Biotech,
Germany) and 1% penicillin and streptomycin, in a humidified

incubator with 5% CO2 at 37◦C. Cell viability of PC-12 cells
was measured using MTT method (Wong et al., 2005). In brief,
PC-12 cells plated on 96-well plates were incubated with
Aβ (1–42) alone, Aβ (1–42) with SB-TEE or Aβ (1–42)
with single compounds from SB, respectively. After 48 h of
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TABLE 1 | The retention time, formula, chemical name and the mass of the chemical components in negative and positive ion modes.

Peak Retention

No. time (min) Formula Chemical name [M-H]− (m/z) ppm [M+H]+ (m/z) ppm

Calculated Measured Calculated Measured

1 3.91 C26H28O13 Chrysin -6-C-arabinose-8-C-glucose 547.1457 547.1474 3.11 549.1603 549.1641 6.92

2 4.081 C21H18O12 Scutellarin 461.0725 461.033 1.74 463.0871 463.0911 8.64

3 4.223 C26H28O13 Chrysin -6-C-glucose-8-C-arabinose 547.1457 547.1485 5.12 549.1603 549.1647 8.01

4 4.78 C22H20O12 Hispidulin 7-glucuronide 475.0882 475.0899 3.58 477.1028 477.105 4.6

5 5.046 C21H18O11 Baicalin 445.0776 445.0809 7.41 447.0922 447.0959 8.24

6 5.62 C22H20O12 5,7,8-Tetrahydroxyflavone; 6-Me ether,
7-O-β-D-glucuronopyranoside

475.0882 475.0917 7.37 477.1028 477.1063 7.34

7 5.562 C22H20O11 Oroxyloside 459.0933 459.097 8.06 461.1078 461.1116 8.24

8 5.656 C22H20O12 5,6,7-Tetrahydroxyflavone; 8-Me ether,
7-O-β-D-glucuronopyranoside

475.0882 475.0862 −4.2 477.1028 477.1035 1.46

9 5.762 C22H20O11 Wogonoside 459.0933 459.0975 9.15 461.1078 461.1109 6.72

10 6.748 C15H10O5 Baicalein 269.0455 269.0469 5.2 271.0601 271.0622 7.75

11 8.024 C16H12O5 Wogonin 283.0612 283.0614 0.71 285.0757 285.078 8.07

12 8.149 C19H18O8 Skullcapflavone II 373.0929 373.0929 0 375.1074 375.1103 7.73

13 8.291 C16H12O5 Oroxylin A 283.0612 283.0629 6 285.0757 285.0776 6.66

treatment, 10 µL of MTT solution (Sigma, United States)
was added to cells in each well and further incubated for
4 h at 37◦C. The incubation medium was then removed
and 150 µL of DMSO was added to cells to dissolve
the formazan. Absorbance (OD) of each well was then
detected by spectrophotometer at the wavelength of 490 nm.
The percentage of cell viability was calculated using the
formula: cell viability (%) = cells number(treated)/cells
number (DMSOcontrol) × 100 %. Data were obtained from 3
independent experiments.

Flow Cytometry Analysis
Cell viability of PC-12 cells was further evaluated by flow
cytometry using the annexin V staining kit (BD Biosciences,
San Jose, CA, United States). In brief, PC-12 cells seeded in a
6-well-plate were treated with Aβ (1–42) with or without the
addition of SB-TEE or its single compounds, for 48 h. After
treatments, the cells were trypsinized and centrifuged. The cells
pellets were re-suspended with 250 µL of PBS and then stained
with 2 µL of propidium iodide and 1 µL of FITC (BD Biosciences,
San Jose, CA, United States) for 15 min. The cells were then
analyzed using a FACSCalibur flow cytometer (BD Biosciences,
San Jose, CA, United States). Data acquisition and analysis
were performed using the Flowjo 7.6.1 (TreeStar, San Carlos,
CA, United States).

Statistical Analysis
All analyses were performed using the GraphPad Prism 6.0
(GraphPad Software, Inc., San Diego, CA, United States).
All data were presented as means ± SEM. The difference
was considered to have statistical significance if p < 0.05.
Student’s t-test or one-way ANOVA was applied for
statistical analysis to compare all the different groups in
the current study.

RESULTS

Characterization of the Chemical
Components in the Total Ethanol
Extract of Scutellaria baicalensis
SB is a rich source of polyphenols, especially flavonoids, which
are a major class of bioactive components in SB (Zhou et al.,
2015). Up to now, more than 100 polyphenols were identified
from the genus Scutellaria (Sripathi and Ravi, 2017). Recent
studies have reported the neuroprotective effects of SB and its
flavonoids in anti-Aβ fibrillation and improvement of cognitive
function (Heo et al., 2004; Yune et al., 2009; Wang et al., 2013).
With its well-known neuroprotective effects, SB was selected as
the subject of our study. To begin, the chemical components of
SB were characterized using UHPLC-DAD-TOF/MS in negative
or positive ion mode and UV at 254 nm. As shown in the
total ion chromatogram (TIC) and UV chromatogram of SB-
TEE in Figure 1A, a total of 13 peaks were observed and
marked. Among them, the identities of 7 flavonoids including
scutellarin (#2), baicalin (#5), oroxyloside (#7), wogonoside (#9),
baicalein (#10), wogonin, (#11) and oroxylin A (#13) from SB-
TEE, were confirmed with reference to the chromatograms of
their corresponding standard pure compounds analyzed under
the same chromatographic conditions. The identities of the
remaining six components (#1, #3, #4, #6, #8, and #12) were
confirmed by comparing their accurate mass and retention
features on the C18 column, to the reported literature. With
their common nuclear structure labeled in red, 13 major
peaks were identified, with their chemical structures shown in
Figure 1B. The retention time, formula, chemical name and
the accurate MS in negative mode or positive mode are listed
in Table 1. All the characterizations of the major chemical
components in SB were confirmed before being further subjected
to biological evaluation.
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FIGURE 2 | The prediction of Aβ-binding propensity of chemical components in SB using Agilent 6230 UHPLC-DAD-TOF/MS. (A) The TIC of SB-TEE with or
without the incubation with 20 and 200 µM Aβ (1–42). S1: SB-TEE; S2: The incubation of SB-TEE with 20 µM Aβ (1–42); S3: The incubation of SB-TEE with
200 µM Aβ (1–42). (B) The bar chart shows the percentage of reduction (%) in the peak area of each SB component in TIC after their incubation with 20 or 200 µM
Aβ (1–42). Columns means of 3 independent experiments; bars, SEM. ∗p < 0.05, ∗∗p < 0.01 and ∗∗∗p < 0.001 vs. 0 µM Aβ (1–42) group.

Prediction of Aβ (1–42) Peptide-Binding
Propensity of Selected SB Chemical
Components by UHPLC-DAD-TOF-MS
The Aβ peptide, which constitutes the amyloid plaques in the
brains of AD patients, has long been identified as the major
cause of AD. Upon sequential cleavage by the γ-secretase
and β-secretase, Aβ can be produced from the APP with the
major cleavage sites of γ-secretase at the positions 40 and
42 of the Aβ peptide. With its soluble toxic nature and high
propensity to fibrillate and form amyloid plaques (Yiannopoulou
and Papageorgiou, 2013; Xiao et al., 2015; Walti et al., 2016),
accumulation of Aβ (1–42) is highly correlated with the
pathogenesis of AD, with a cascade of cellular responses such

as inflammation, oxidative damage and neurotoxicity (Graham
et al., 2017). Therefore, therapeutic approaches that target the
accumulated aggregation and fibrillation of Aβ with antibodies,
peptides, or chemical molecules has intensively been investigated
(Cho and Kim, 2011). To predict the peptide-binding propensity
of the above 13 identified chemical components in SB, SB-TEE
was incubated with 20 and 200 µM of Aβ (1–42), respectively.
With a blank solution and SB-TEE without Aβ (1–42) incubation
working as the control, all reaction product mixture was analyzed
using UHPLC-DAD-TOF/MS under the same chromatographic
conditions. Figure 2A shows the TIC of SB alone (S1), and
SB-TEE incubated with 20 µM (S2) or 200 µM (S3) of Aβ

(1–42), respectively. With the peak area of all the identified
components calculated and analyzed, Figure 2B and Table 2
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show the percentage (%) of decrease in the peak area of all
the identified chemical components in TIC. Among them,
baicalin (peak #5) and baicalein (peak #10) showed the highest
reduction in peak area (34.38 and 53.03%) after incubation with
Aβ (1–42) (200 µM).

Validation of Aβ (1–42) Peptide-Binding
Propensity of Selected SB Chemical
Components by ThT Assay
To further validate the peptide-binding propensity of selected
SB compounds, baicalin (peak #5) and baicalein (peak #10),
which showed the highest percentage of peak area reduction
in TIC, were subjected to further validation with the negative
control, wogonoside (peak #9), which showed no significant
change in the peak area (Table 3). As shown in Figures 3A,B,
the peak areas of baicalin and baicalein in TIC were negatively
correlated to the concentrations of Aβ. Upon binding to amyloid
fibrils, benzothiazole fluorescent dye (ThT) can produce a strong
fluorescence signal at the wavelength of 482 nm (Xue et al., 2017),
therefore, the widely used ThT is applied to further monitor
and confirm the inhibition of Aβ fibril formation in vitro. As
shown in Figure 3C, fluorescence intensity indicated that the
concentration of Aβ fibril was decreased upon treatment with
baicalin and baicalein, suggesting the positive role of baicalin and
baicalein in anti- Aβ fibril formation.

Direct Binding Measurement of Baicalin
and Baicalein to Aβ (1–42) by Biolayer
Interferometry Analysis
To determine the binding affinity of the selected SB chemical
components to Aβ (1–42) fibril, the label-free biolayer
interferometry assay which measures the biomolecular inter-
action was used. It is performed by monitoring the binding
of a ligand immobilized on the tip surface of a biosensor to a

TABLE 2 | Quantitative reduction (%) of peak area of each SB component in TIC
after their incubation with 20 or 200 µM Aβ (1–42).

Compounds in SB Quantitative reduction of peak area (%)

With 20 µM Aβ (1–42) With 200 µM Aβ (1–42)

1 7.53 ± 4.05 23.24 ± 3.33∗

2 16.41 ± 8.71 26.78 ± 10.92∗∗

3 5.79 ± 0.94 15.2 ± 12.59

4 14.11 ± 0.15 22.1 ± 15.63

5 5.58 ± 0.06 34.38 ± 0.96∗∗∗

6 7.87 ± 9.84 28.04 ± 8.81∗∗

7 14.40 ± 12.19 25.51 ± 3.51∗

8 13.72 ± 8.38 28.69 ± 5.85∗∗

9 14.03 ± 10.43 27.8 ± 9.05∗∗

10 32.94 ± 15.38∗∗∗ 53.03 ± 6.93∗∗∗

11 8.81 ± 10.94 30.61 ± 10.39∗∗

12 7.89 ± 8.06 21.47 ± 9.9

13 7.59 ± 1.89 27.4 ± 11.81∗∗

Note: ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 vs. 0 µM Aβ (1–42) group.

TABLE 3 | The percentage (%) of reduction in the peak areas of baicalin, baicalein
and wogonoside in TIC after incubation with 20 or 200 µM Aβ (1–42).

Compound Quantitative reduction of peak area (%)

With 20 µM Aβ (1–42) With 200 µM Aβ (1–42)

Baicalin (50 µM) 16.96 ± 1.28 44.07 ± 9.03∗

Baicalein (50 µM) 32.52 ± 34.67 70.28 ± 23.84∗∗

Wogonoside (50 µM) 9.49 ± 8.81 15.77 ± 8.84

Note: ∗p < 0.05 and ∗∗p < 0.01 vs. 0 µM Aβ (1–42) group.

specific analyte in the tested solution. Upon the association,
the optical thickness at the biosensor tip will be increased,
leading to a real time shift in wavelength (1λ) due to a change
in the thickness of the biological layer. These Interactions
will then be quantitated to provide accurate data on binding
specificity and the association or dissociation rates. To begin,
increasing concentrations of baicalin (25, 50, 100, 200, 400,
800 µM) and baicalein (12.5, 25, 50, 100, 200, 400 µM)
were applied for the real-time monitoring of their direct
association with the biotinylated Aβ (1–42). As shown by the
association/dissociation binding curves of the 2 compounds
in Figures 4A,B, there is a dose dependent increase in the
optical thickness (nm) of the sensor layer, suggesting the
direct binding of baicalin and baicalein to Aβ. Table 4 showed
the kinetic constants calculated using the ForteìBIO data
analysis software. The results showed that the KD value of
baicalin and baicalein were 242 and 170 µM, respectively,
suggesting the direct and reversible interaction of baicalin and
baicalein with Aβ (1–42).

In vitro Inhibitory Effect of SB-TEE,
Baicalin, Baicalein and Wogonoside on
Aβ (1–42) Fibrillation
Dot immunoblot, utilizing the strong Aβ-binding capacity of
PVDF membrane, was used for further validation of the in vitro
anti-Aβ (1–42) fibrillation effect of SB-TEE, baicalin, baicalein
and wogonoside. To begin, incubation of 20 µM Aβ (1–42)
with or without SB-TEE, baicalin, baicalein or wogonoside
for 5 days at 37◦C was performed. Equal amount of each
incubated sample spotted onto the PVDF membrane was
then subjected to immunoblotting with antibodies specific for
detection and quantitation of amyloid fibrillation (Gong et al.,
2003). As shown in Figures 5A,B, while baicalein possesses
the highest potency in anti-fibrillation of Aβ, wogonoside was
not effective in inhibiting the fibrillation of Aβ. To further
confirm the anti-fibrillation effect of the selected compounds,
non-denaturing native gel electrophoresis was applied for
the effective detection of fibrillary Aβ. Consistently, baicalein
showed the highest potency in anti-fibrillation of Aβ, as
shown in Figure 5C. These data have confirmed the feasibility
of our proposed new application of using a UHPLC-DAD-
TOF/MS based detection system for precise identification
of β-amyloid fibrillation inhibitors from TCMs that contain
multiple chemical components.
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TABLE 4 | The binding affinity (KD), association rate constant (Kon) and
dissociation rate constant (Kdis) of baicalin and baicalein to Aβ (1–42).

KD (µM) Kon (1/Ms) Kdis (1/s)

Baicalin 242 1.66 × 10+02 4.01 × 10−02

Baicalein 170 9.22 × 10+02 1.57 × 10−01

SB-TEE Alleviates the Cytotoxicity of Aβ

(1–42) in PC-12 Cells
To further validate the correlation between the anti-fibrillation
effect and the functional role of SB, the effect of SB-TEE on Aβ

(1–42)-induced cell death was evaluated. To begin, the viability
of PC-12 cells upon SB-TEE treatment, from 0 to 1000 µg/mL,
was evaluated by MTT assay. As shown in Figure 6A, no obvious
cellular toxicity was observed within the tested concentration
range. Furthermore, fibrillation of Aβ (1–42) was performed in
the presence of PBS or SB-TEE with 5 days of incubation at
37◦C. A ThT fluorescence assay confirmed that the fibrillation
of Aβ decreased with an increasing concentration of SB-TEE
from 1 and 100 µg/mL, as shown in Figure 6B. To further
elucidate the anti-Aβ fibrillation effect of SB-TEE in cells, viability
of PC-12 cells incubated with an increasing concentration of
Aβ (1–42), from 10 to 30 µM, was evaluated by MTT assay
as shown in Figure 6C. With an incubation concentration of
20 µM Aβ (1–42), Figure 6D confirmed that an increasing

concentration of SB-TEE decreased the toxicity of Aβ (1–42),
which is correlated with the anti-Aβ fibrillation effect of SB-TEE.
Our results have confirmed the protective role of SB-TEE on
Aβ-induced toxicity in cells, which further validated the accuracy
and precision of applying the UHPLC-DAD-TOF/MS detection
system for the identification of Aβ fibrillation inhibitors, from
analytical chemistry to cellular functional level.

Protective Role of Baicalin, Baicalein and
Wogonoside in the Cytotoxicity of Aβ

(1–42) in PC-12 Cells
Aβ (1–42)-induced oxidative stress and neurotoxicity have been
implicated in the pathogenesis of AD (Butterfield, 2002). With
the protective effect of SB-TEE in alleviating the cytotoxicity
of Aβ (1–42) in PC-12 cells, the role of the selected potential
anti-Aβ fibrillation herbal compounds, baicalin and baicalein,
identified by UHPLC-DAD-TOF/MS were further evaluated by
MTT and flow cytometry analysis. As shown by the MTT results
in Figure 7A, baicalin, baicalein and wogonoside possess very
low or no cytotoxicity in PC-12 cells at concentrations ranging
from 0 to 100 µM. Viability of PC-12 cells incubated with Aβ (1–
42) (20 µM) with or without the presence of baicalin (50 µM),
baicalein (50 µM) or wogonoside (50 µM) were evaluated by
MTT assay. As shown in Figure 7B, while both baicalin and
baicalein were able to rescue cells from Aβ (1–42)-induced
cell death, wogonoside showed no effect in the restoration of
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FIGURE 5 | Inhibitory effect of SB-TEE and selected compounds on Aβ (1–42) fibrillation by dot blot assay and native gel electrophoresis analysis. (A) The dot blot
image of Aβ (1–42) with or without the incubation with SB-TEE (100 µg/mL), baicalin (50 µM), baicalein (50 µM), or wogonoside (50 µM). (B) The dot blot images
were analyzed and quantitated with the software Image J. Columns, means of 3 independent experiments; bars, SEM. ∗p < 0.05, ∗∗p < 0.01 vs. 20 µM Aβ (1–42)
alone group. (C) The native gel electrophoresis analysis was performed by analyzing Aβ (1–42) solution (50 µg) with or without incubation of SB-TEE, baicalin,
baicalein or wogonoside at 37◦C for 5 days using the 4–16% gradient native gel under non-denatured condition. The full-length images of dot blot and native gel
electrophoresis are displayed in Supplementary Figure S1.
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FIGURE 6 | Cytotoxicity of SB-TEE and Aβ (1–42) fibril on PC-12 cells. (A) Cytotoxicity of SB-TEE on PC-12 was examined by MTT assay at 48 h after treatment.
(B) The anti- Aβ fibrillation effect of SB-TEE (1–100 µg/mL) was measured by ThT fluorescence assay. ∗∗∗p < 0.001 vs. 20 µM Aβ (1–42) group. (C) Cellular toxicity
induced by 10–30 µM of Aβ (1–42) on PC-12 cells was evaluated by MTT assay at 48 h after treatment. ∗p < 0.05 and ∗∗p < 0.01 vs. 0 µM Aβ (1–42) group. (D)
Cellular toxicity induced by 20 µM of Aβ (1-42) on PC-12 cells was evaluated by MTT assay at 48 h after SB-TEE (1, 10, and 100 µg/mL) treatments. Column,
means of 3 independent experiments; bars, SEM. ∗p < 0.05, ∗∗p < 0.01 and ∗∗∗p < 0.001 vs. 20 µM Aβ (1–42) alone group.

cell viability. The MTT result was further confirmed by flow
cytometry analysis using annexin V staining. As shown by the
increased percentage of viable cells in Figures 7C,D, quantitated
flow cytometry results confirmed the protective role of baicalin
and baicalein in Aβ (1–42)-induced cell death. All these data
have further supported the notion of applying UHPLC-DAD-
TOF/MS as a system for accurate and rapid detection of anti- Aβ

fibrillation inhibitors from TCMs.

DISCUSSION

Accumulation of Aβ in senile plaques and hyperphosphorylated
tau in NFTs are the two main pathological characteristics in
the brain of AD patients. Experimental evidence has suggested
that Aβ is an important biomarker for diagnosis and drug
target of AD, based on the amyloid hypothesis of AD (Thakur

et al., 2009; Selkoe and Hardy, 2016; Tamagno et al., 2017).
The Aβ (1–42) peptide derived from APP through the cleavage
of γ-secretases and β-secretases, is the predominant aggregated
and neurotoxic form of Aβ found in the brain of AD patients
due to its two additional hydrophobic amino acids (Butterfield
et al., 2013; Xiao et al., 2015). The excessive formation and
failure on the clearance of Aβ, can lead to the formation of
self-aggregated Aβ in different forms such as oligomers and
neuritic plaques, which possess neurotoxicity and can affect
axon function via oxidative stress (Lecanu et al., 2006), altered
electrochemical signaling (Walsh et al., 2002) or N-methyl-D-
aspartate (NMDA) receptor-mediated excitotoxicity (You et al.,
2012), which can lead to impaired cognitive and memory
functions (Palop and Mucke, 2010). Current pharmacological
interventions to AD include the use of cholinesterase inhibitors,
NMDA receptor antagonists and neurotrophic factors (Masters
et al., 2015). In addition, inhibitors targeting the different
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FIGURE 7 | Aβ (1–42) fibril-induced cytotoxicity on PC-12 cells after baicalin, baicalein and wogonoside treatments. (A) Cytotoxicity of baicalin, baicalein and
wogonoside (0–500 µM) on PC-12 were examined by MTT assay at 48 h after treatment. (B) Cellular toxicity induced by 20 µM of Aβ (1–42) on PC-12 cells was
evaluated by MTT assay at 48 h after baicalin (50 µM), baicalein (50 µM), and wogonoside (50 µM) treatments. Columns means of 3 independent experiments; bars,
SEM. ∗∗p < 0.01 and ∗∗∗p < 0.001 vs. 20 µM Aβ (1–42) group. (C) Cellular toxicity induced by 20 µM of Aβ (1–42) with or without the co-treatment of baicalin,
baicalein and wogonoside on PC-12 cells was evaluated by flow cytometry at 48 h after treatment. (D) Quantitative results on the percentage of viable cells after
SB-TEE, baicalin and baicalein treatments with the presence of Aβ (1–42) in PC-12 cells. Columns, means of 3 independent experiments; bars, SEM. ∗∗∗p < 0.001
vs. 20 µM Aβ (1–42) alone group.

structures of Aβ have also been widely studied (Kepp, 2012;
Doig and Derreumaux, 2015). For example, carnosine (β-alanyl-
L-histidine) can interact with Aβ (1–42) monomer and inhibit
Aβ aggregation (Attanasio et al., 2013). As an inhibitor of
Aβ oligomers, both curcumin and resveratrol can bind to
the N-terminus (residues 5–20) of Aβ 42 monomers (Fu
et al., 2014), while BAN2401 (humanized version of mAb158)
decreases the level of soluble Aβ protofibrils (Lannfelt et al.,
2014). A recent report has suggested that the human innate
immune peptide LL-37 can bind to Aβ and modulate the
formation of the Aβ fibril (De Lorenzi et al., 2017). However,
current available drugs or treatments are only symptomatic
which mainly target the modulation of cognitive ability or
neuropsychiatric symptoms.

As amyloid deposition starts early, before the onset of
dementia symptoms (Lannfelt et al., 2014), preventive drugs are
particularly important in AD treatment. With the advantages

of multi-targets and high drug safety, TCMs are commonly
used as a preventive prescription for aged-related degenerative
diseases, therefore, identifying potential active compounds from
TCMs has become an important strategy for AD therapy
(Pan et al., 2013). TCMs have been used for the treatment
of AD for a long time in China. For example, huperzine A,
a lycopodium alkaloid isolated from huperzia serrata, could
improve AD symptoms through inhibiting acetylcholinesterase
(AChE) activity (Zhu et al., 2010). The leaf extract of Ginkgo
biloba (EGb 761) could protect hippocampal neurons against
cytotoxicity induced by Aβ fragments (Bastianetto et al., 2000;
Wu et al., 2011). However, potential drug discoveries from TCMs
still encounters challenges in the quick and precise identification
of bioactive components from its complex herbal formulation
(Liu et al., 2017).

SB has been reported for its protective roles in the
improvement of learning ability (Heo et al., 2009) and brain
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FIGURE 8 | Schematic diagram for the rationale, design and characterization of Aβ fibril inhibitors from herbal medicines. À The incubation of Aβ (1–42) solution with
TCMs extract. Á Analysis of the pre-incubated Aβ (1–42)-TCM extract mixture using Agilent 6230 UHPLC-DAD-TOF/MS instrument. Â Chemical analytical
prediction on the binding propensity of the compounds by UHPLC-DAD-TOF/MS. Ã Identification of the Aβ (1–42) binding chemical components from TCMs with
their accurate mass identified and confirmed from literatures. Ä Bioassay-validation of the Aβ (1–42) peptide-binding propensity of the identified compounds.
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injury (Hwang et al., 2011; Lin et al., 2011) possibly via its
anti-oxidation, -inflammation (Yune et al., 2009) and -apoptosis
properties (Jeong et al., 2011). Although a previous study has
reported only the moderate neuroprotectivity of SB extract for
Aβ insult (Kim et al., 2007), possibly due to the low testing
concentration, other studies have confirmed that flavonoids
from SB play a protective role in the recovery of neurological
functions and in the prevention of AD (Gasiorowski et al., 2011;
Gao et al., 2013; Vauzour, 2014). For example, total flavonoids
from SB can protect neuronal damage and improve memory
deficits induced by cerebral ischemia in rats (Shang et al.,
2006; Cao et al., 2016). Additionally, a flavonoid composition
(UP326) containing baicalin can help to maintain memorizing
and processing abilities of aged animals (Yimam et al., 2016).
As the major type of flavonoids in SB, baicalein and baicalin
ameliorated cognitive impairment in AD animal models (Wei
et al., 2014; Chen et al., 2015). In fact, the recent development
of plant-derived drugs has received considerable attention in
the treatment of AD (Kumar and Nisha, 2014), therefore, based
on the previous literature on SB, the development of accurate
detection methods of active components from herbal plants is
performed in this study by choosing baicalein and baicalin as
the study subjects.

It is noteworthy that traditional bioactivity guided purification
of single active compounds from TCMs is time-consuming,
laborious, costly and has low sensitivity. Although ThT
fluorescence dye is a commonly used fluorescent probes
for Aβ fibril detection, it possesses the disadvantages of
low specificity and sensitivity (Roberti et al., 2009; Kitts
et al., 2011; Li et al., 2013). Cell-based detection methods
have been developed by expressing the GFP-Aβ 42 fusion
protein in E. coli, which allows the rapid high throughput
screening of inhibitors on Aβ aggregation (Kim et al., 2006).
Furthermore, the advances in the use of affinity chromatography
in conjunction with highly sensitive detection technology has
also facilitated the detection of bioactive compounds from TCMs.
For example, biolayer interferometry accurately measures the
real-time biomolecular interactions in the cells-free system,
which has been used to identify D-enantiomeric peptide D3
and its derivatives as Aβ oligomers inhibitors (Concepcion
et al., 2009; Klein et al., 2016). Nuclear magnetic resonance
spectroscopy (NMR), was used to identify inhibitors on Aβ

fibrillation from a compound library with high sensitivity and
speed (Sievers et al., 2011). Furthermore, mass spectroscopy
coupled with liquid chromatography (LC) was used for
rapid detection of small molecules such as epigallocatechin
gallate (EGCG), hemin and tramiprosate that could bind to
Aβ precursors (Young et al., 2015). Although some of the
current detection methods show high sensitivity and analytical
speed, these methods work best only in targeting single
compounds, but not to extract of TCMs that contain multiple
chemical components.

UHPLC-DAD-TOF-MS is a common analytical equipment
that provides accurate mass analysis including profiling,
characterization, identification and quantification of a mixture
of chemical molecules, based on their molecular weights,
with highly sensitive. Therefore, it serves as a useful tool for

the identification of single components from complicated
chemical compositions like the extract of TCMs (Hossain
et al., 2010). We have previously reported the successful
identification of the natural methylglyoxal (MGO) scavenger
from Polygonum cuspidatum and the autophagy inducer
from Radix polygalae using UHPLC-DAD-MS and UHPLC-
DAD-TOF-MS, respectively (Tang et al., 2013; Wu et al.,
2013). According to the published reports, the peak area
of the bioactive inhibitors including small molecule and
peptide in the NMR spectrum decreased significantly upon
their binding to the Aβ or tau fiber (Sievers et al., 2011;
Jiang et al., 2013). Based on the above observation, we have
therefore hypothesized and confirmed that the components
in TCMs, with an inhibition effect on Aβ fibrillation, must
possess binding affinity to the Aβ fibril, and these bioactive
components can be successfully detected using UHPLC-DAD-
TOF-MS via chromatogram analysis. In the present study,
although the method was successfully applied on SB-TEE and
its major known chemical components, further verification
on different TCMs along with a biological evaluation is
required to further validate accuracy. In additional to MS,
which provides information on the possible potency and
accurate identifies of the herbal chemicals, combinational
use of column chromatography and NMR technology,
for the analytical isolation and identification of novel or
low abundance active compounds presented in SB or other
herbs, are required.

CONCLUSION

In conclusion, up to now, there are still no effective and
reliable detection methods for the inhibitors of β-amyloid
fibrillation from complicated chemical composition such as
TCMs. As shown in Figure 8, based on the fact that the
peak area of the compounds on the chromatogram are reduced
upon their binding with Aβ fibril, we hypothesized that the
components in TCMs, that have binding propensity for Aβ,
can be identified using UHPLC-DAD-TOF/MS. Through the
effective and accurate isolation of the active compounds from
TCMs, UHPLC-DAD-TOF-MS has therefore proved to be a
useful method for identifying the bioactive compounds in TCMs
with anti-Aβ fibrillation effects. In the near future, the method
proposed in this study may also be applied for the precise
screening of inhibitors on other AD-related proteins such as tau,
which may facilitate AD drug discovery from TCMs.
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