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More effective treatments to reduce pathological alcohol drinking are needed. The

glutamatergic system and the NMDA receptor (NMDAR), in particular, are implicated in

behavioral and molecular consequences of chronic alcohol use, making the NMDAR a

promising target for novel pharmacotherapeutics. Ethanol exposure upregulates Fyn, a

protein tyrosine kinase that indirectly modulates NMDAR signaling by phosphorylating

the NR2B subunit. The Src/Fyn kinase inhibitor saracatinib (AZD0530) reduces ethanol

self-administration and enhances extinction of goal-directed ethanol-seeking in mice.

However, less is known regarding how saracatinib affects habitual ethanol-seeking.

Moreover, no prior studies have assessed the effects of Src/Fyn kinase inhibitors on

alcohol-seeking or consumption in human participants. Here, we tested the effects of

saracatinib on alcohol consumption and craving/seeking in two species, including the

first trial of an Src/Fyn kinase inhibitor to reduce drinking in humans. Eighteen male

C57BL/6NCrl mice underwent operant conditioning on a variable interval schedule to

induce habitual responding for 10% ethanol/0.1% saccharin. Next, mice received 5

mg/kg saracatinib or vehicle 2 h or 30 min prior to contingency degradation to measure

habitual responding. In the human study, 50 non-treatment seeking human participants

who drank heavily and met DSM-IV criteria for alcohol abuse or dependence were

randomized to receive 125 mg/day saracatinib (n = 33) or placebo (n = 17). Alcohol

Drinking Paradigms (ADP) were completed in a controlled research setting: before and

after 7–8 days of treatment. Each ADP involved consumption of a priming drink of

alcohol (0.03 mg%) followed by ad libitum access (3 h) to 12 additional drinks (0.015

g%); the number of drinks consumed and craving (Alcohol Urge Questionnaire) were

recorded. In mice, saracatinib did not affect habitual ethanol seeking or consumption at

either time point. In human participants, no significant effects of saracatinib on alcohol

craving or consumption were identified. These results in mice and humans suggest

that Fyn kinase inhibition using saracatinib, at the doses tested here, may not reduce

alcohol consumption or craving/seeking among those habitually consuming alcohol,
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in contrast to reports of positive effects of saracatinib in individuals that seek ethanol

in a goal-directed manner. Nevertheless, future studies should confirm these negative

findings using additional doses and schedules of saracatinib administration.

Keywords: saracatinib, AZD0530, Fyn kinase, alcohol use disorders, alcohol habit, NMDA receptor, glutamate,

AM404

INTRODUCTION

Alcohol is a leading public health problem, presenting the
largest risk factor for premature death for young to middle
aged adults worldwide (1). Alcohol use disorder (AUD) is the
most prevalent substance use disorder other than tobacco use
disorder, yet currently available treatments are rarely used (1, 2).

Three pharmacotherapies for AUD have U.S. Food and Drug
Administration approval: disulfiram, naltrexone (oral and long-
acting injectable), and acamprosate (2). However, these agents
have issues of modest efficacy, adherence, and possible restricted

effect to subpopulations (3, 4), which highlights the need for
novel AUD treatment options.

The glutamatergic system is heavily implicated in the
pathophysiology of AUD, providing potential targets for novel
therapeutics (5, 6). Indeed, pharmacological manipulation

of AMPA, kainate, mGlu, and NMDA glutamate receptors
(NMDAR) can alter alcohol consumption, seeking, withdrawal
or reinstatement (5, 7–14). The NMDAR is one of the highest
affinity targets of ethanol in the brain (15), and chronic ethanol
exposure is associated with altered NMDAR signaling (16–18).
NMDARs play a role in various consequences of chronic alcohol
use (19): NMDAR antagonists can reduce ethanol tolerance,
craving/seeking, and consumption (20–24). For example, the
uncompetitive NMDAR antagonist memantine reduces cue-
and alcohol-induced craving in humans (7, 25) and we have
also observed that a low dose of memantine combined with
a standard dose of the opioid antagonist naltrexone was well-
tolerated and resulted in reduced alcohol drinking and craving
within a sample of individuals with a positive family history
of AUD (21). Our earlier work has also observed that only
lower doses ofmemantine reduce alcohol craving, whereas higher
doses increase alcohol consumption, especially in individuals
with high levels of baseline impulsivity (26). NMDAR antagonists
can have undesirable cognitive and psychotomimetic effects (27,
28). Together, this evidence suggests that NMDARs may be a
promising target for amelioration of the hyper-glutamatergic
state in AUD, but that direct antagonism may present challenges
and more nuanced approaches that target this system may be
needed (5, 21).

Fyn is an Src family protein tyrosine kinase that indirectly
upregulates NMDAR activity by phosphorylating the NR2B
subunit, a component of the NMDAR that is particularly
implicated in the molecular and behavioral adaptations to
chronic ethanol exposure (29–31). Mounting evidence implicates
Fyn in alcohol use behaviors in human participants and rodents.
Multiple studies have identified polymorphisms in the Fyn gene
associated with increased risk for AUD (32–34). Rodent studies
revealed that ethanol activates Fyn in the dorsomedial striatum

(DMS) (35–38). The DMS is a key brain region for goal-directed
action, which refers to behaviors that are sensitive to changes
in action-outcome contingencies (39). Furthermore, ethanol-
induced long-term facilitation in the DMS is Fyn-dependent
(36, 37). Importantly, pharmacological inhibition of Fyn using
the Src/Fyn kinase inhibitor saracatinib (AZD0530) was reported
to reduce ethanol-seeking and enhance extinction of ethanol-
seeking in mice with goal-directed responding for ethanol (35)
and reduce ethanol consumption in ethanol-naïve mice (40),
suggesting that saracatinib may be a viable treatment option for
goal-directed drinking.

Habits, in contrast to goal-directed behaviors, are insensitive
to changes in action-outcome contingencies or devaluation
of previously desirable outcomes and reflect a shift from
recruitment of DMS to dorsolateral striatum (DLS) (39, 41–43).
Ethanol cues can disrupt otherwise goal-directed food-seeking,
and chronic ethanol exposure facilitates the development of
food habits (41, 44). Ethanol-seeking transitions from goal-
directed to habitual more readily than food-seeking (45–48).
Indeed, overreliance on habits is thought to contribute to
compulsive drug-seeking including in AUD (45, 49, 50), and
has been observed in individuals with AUD (51). However, no
studies have examined the efficacy of saracatinib for reducing
ethanol-seeking and consumption in habitual alcohol consumers.
Here, we performed two parallel studies in mice and human
participants to assess the ability of saracatinib to reduce alcohol
consumption and seeking/craving in habitual ethanol-seeking
mice and participants who were heavy drinkers with an AUD.

MATERIALS AND METHODS

Mouse Study
Mice
Eighteen adult male C57BL/6NCrl mice (Charles River
Laboratories, Wilmington, MA) were used for the mouse
experiment. Mice were delivered at 8–9 weeks old and allowed
to acclimate to the vivarium for 7 days before initiating food
restriction to 85–90% of free-feeding body weight. Mice had
ad libitum access to water in the home cage but were provided
with their daily food 15min prior to initiating operant sessions
without water access to induce thirst. Mice were pre-exposed to
10% ethanol, 0.1% saccharin solution in the home cage for 1 h,
2 days in a row prior to initiating operant training with 10%
ethanol, 0.1% saccharin as the reinforcer (10 µl per reward). All
procedures were approved by the Yale University Institutional
Animal Care and Use Committee and in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals of the Institute of Animal Resources.
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Mouse Drugs
Saracatinib, also known as AZD0530, was obtained from
AstraZeneca, Boston, MA. Saracatinib was dissolved in saline
and administered at a dose of 5 mg/kg. This dose was
based on preliminary studies showing that this dose reduces
NR2B phosphorylation in the DMS (data not shown) and to
match levels of saracatinib in cerebrospinal fluid with that
expected for the human study (52), which was performed
simultaneously. AM404 (R&D Systems, Minneapolis, MN) is
an endocannabinoid transport inhibitor that we have previously
shown to reduce habitual responding for ethanol (53): it was
used as a positive control for testing the malleability of habitual
ethanol-seeking. AM404 was dissolved in 5%DMSO, 15% Tween
80 in sterile physiological saline and administered at a dose of 10
mg/kg body weight. Drugs were administered via intraperitoneal
injection (i.p.) at 10 ml/kg body weight.

Mouse Behavioral Paradigm

Apparatus and Training
Mice were trained and tested in standard mouse operant
conditioning chambers in sound attenuation cabinets (Med
Associates, St. Albans, VT). Chambers were equipped with three
nose port apertures and a magazine with photobeam sensors
to record entries and lights to indicate active ports. Ethanol
reinforcers (10% ethanol v/v, 0.1% saccharin) were delivered into
the magazine using a dipper arm holding a 10 µl cup that was
submerged in a reservoir of the reinforcer solution and would
then raise the cup through a hole into the magazine to deliver the
reinforcer, which was provided for 10s before retraction of the
arm back into the reservoir. Mice were trained daily in the same
operant chamber throughout the experiment.

Mice first learned to associate the magazine with reinforcer
delivery in two 40-min magazine training sessions. Each session
began with a reinforcer delivered into the magazine 60 s into the
session. This reinforcer remained available (i.e., dipper arm raised
with cup accessible inside the magazine) until the mouse entered
the magazine, and then for the subsequent 10 s before the dipper
arm was retracted. Following this non-contingent delivery,
reinforcers were delivered on a fixed interval-60 s schedule
throughout the session, meaning that following a minimum of
60 s, the next magazine entry elicited a reinforcer delivery.

Next mice were trained to perform the operant response on
a fixed ratio-1 (FR-1) schedule. One nose port was designated
the “active” port for that mouse (left or right), counterbalanced
between animals but consistent between sessions. The active port
was indicated by illumination of the port. Sessions began with
a single non-contingent reinforcer. Just like magazine training,
reinforcers remained available until the animal entered the
magazine, after which the dipper was available for 10 s before
retraction. Following this free reinforcer, entries into the active
nose port resulted in delivery of a single reinforcer. FR-1 sessions
lasted 45min or until the mouse earned 60 reinforcers, whichever
occurred first. Mice completed FR-1 training upon reaching a
criterion of 13 reinforcers within a single session.

Following FR-1 training, mice earned ethanol reinforcers on
a variable interval (VI) schedule that we have previously shown
to promote habitual responding for ethanol (53). The same

active nose port assigned during FR-1 training remained the
active port for each mouse during VI sessions, as indicated by
illumination of the active port throughout the session. Intervals
were selected pseudo-randomly from an exponential array that
averaged to the schedule duration, after which the first active nose
port response resulted in a reinforcer, as previously (53). Unlike
during magazine and FR-1 training, these reinforcers remained
available for the subsequent 10 s following the active nose port
response, regardless of whether the mouse had yet entered the
magazine. Sessions lasted 45min. Mice were trained on a VI-30
schedule for 3 days, followed by VI-60 for∼24 days.

Contingency Degradation
Contingency degradation sessions delivered ethanol reinforcers
non-contingently at the same rate thatmice earned rewards in the
previous VI session. Active nose port entries had no programmed
responses. Reinforcer delivery occurred at equal intervals that
were individually tailored to the prior day reinforcement rate of
that mouse, meaning each mouse received the same number of
reinforcers as in the prior day VI session. Sessions lasted 45min.
Mice underwent multiple contingency degradation sessions to
test effects of pharmacological agents. Initial testing occurred
following a minimum of 20–25 days of VI-60 training. Between
contingency degradation tests, mice underwent additional VI-60
training days to stabilize responding. Response rates, magazine
entries, and incentivized entries (i.e., magazine entries while
reinforcer is available) were measured and compared between
the contingency degradation test and the preceding day’s VI-60
session, which was used as a baseline. The amount of ethanol
consumed relative to body weight was estimated based on the
number of reinforcers earned. However, consumption could
not be directly confirmed due to the design of the reinforcer
delivery apparatus, which resubmerged the dipper cup into
the reservoir after each reinforcer to refill the cup for the
subsequent reinforcer.

Pharmacological Testing
For each contingency degradation test, the vehicle solution
for the pharmacological agent was administered prior to the
baseline VI-60 session. The day after completing the baseline
session, mice received pharmacological challenge and underwent
contingency degradation testing. First, all animals (n = 18)
received AM404 or vehicle 30min prior to the contingency
degradation test session in a within-subject, counterbalanced
manner. This test served to: (1) provide confirmation that the
group exhibited habitual responding for ethanol (i.e., lack of
decrease in responses during contingency degradation under
vehicle conditions) and (2) provide a positive control testing
whether the habitual responding was sensitive to goal-directed-
promoting agents, as we have previously shown that AM404
reduces habitual responding for ethanol (53). AM404 was
tested within-subject based on our previous experience with
this drug not showing cross-over effects (53, 54). Following
stabilization of responding on the VI-60 schedule following
these contingency degradation tests, saracatinib was tested
in a between-subject cross-over design, in which half the
animals received saracatinib for the 2-h pretreatment condition
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(n = 8/drug), which occurred first for all animals, whereas
the other half received saracatinib for the 30-min pretreatment
condition (n = 8/drug), which occurred second for all animals.
One animal was excluded in each drug group in each time
point due to computer error for a final n = 8/group. The 2-
h pretreatment schedule was selected based on our preliminary
studies showing reduced free-access ethanol consumption in the
home cage at this time point (data not shown) and the 30-
min pretreatment schedule was designed to match the effective
time point for AM404 (53). Overall, animals received one
administration of AM404 vehicle and AM404 prior to any
saracatinib administration, and then all mice received one
dose of saracatinib, at either a 2-h or 30-min pretreatment
time point.

Statistical Analyses
Data were analyzed using SPSS 26 (IBM, Armonk, NY)
and graphed using Prism 8 (Graphpad, San Diego, CA).
Outcome measures included active responses, total magazine
entries, and incentivized entries, which were assessed
using generalized estimating equations with a Poisson
distribution with Wald’s chi square test statistics. Significant
interactions were resolved by making pairwise comparisons
of the estimated marginal means corrected for multiple
comparisons using Sidak’s method. Alpha was set to a threshold
of 0.05.

Human Clinical Trial
Human Participants
Participants (n = 50 randomized to treatment; n = 33
saracatinib, n = 17 placebo) were non-treatment seeking,
heavy drinkers that met the DSM-IV criteria for alcohol abuse
or dependence (Table 1; Supplementary Figure 1). Additional
inclusion criteria were: between 21 and 50 years of age,
body mass index between 19 and 30, capable of reading
English at the 6th grade level or above, average weekly
alcohol consumption of 25–70 standard drinks for men and
20–65 for women with no more than 3 days of abstinence
per week during the month prior to the intake [Timeline
Follow-Back method; TFLB; (55)]. Exclusion criteria included
medical contraindications to drinking alcohol or use of
saracatinib, abuse or dependence on substances other than
alcohol or nicotine, severe psychiatric disability, significant
alcohol withdrawal at any intake appointment [Clinical Institute
Withdrawal Assessment for Alcohol Scale score > 8 (56)],
current use of psychoactive drugs or CYP3A4 inhibitors or
warfarin, those who were not on stable use of prescribed
antidepressants/anxiolytics, those who reported disliking spirits
or were seeking treatment for their drinking, and those who were
pregnant or nursing.

Study Medications
Participants were randomized on a 2:1 ratio (active vs. placebo)
to receive saracatinib (125 mg/day, oral) or matching placebo
for seven to 8 days to achieve steady state drug levels
following exposure to 4–5 half-lives of the drug (t1/2 = 40 h).
The Yale New Haven Investigational Pharmacy randomized

the participants and dispensed the study medications; all
research staff and the participants were blind to treatment
assignment. The dose was selected based on previous studies
demonstrating safety and tolerability of 125 mg/day saracatinib
in human participants (57) and evidence that this dose reached
comparable levels in cerebrospinal fluid to that of 5 mg/kg
in mice, a dose that has been shown to produce neural
changes (52).

Study Design
This study was a randomized, double-blind, placebo-controlled
trial that was approved by the Yale Human Investigations
Committee, registered in ClinicalTrials.gov (NCT02955186), and
followed the National Advisory Council for Alcohol Abuse
and Alcoholism guidelines (58). Alcohol drinking behaviors
were assessed using an established alcohol drinking paradigm
(ADP) conducted in a private room at the Hospital Research
Unit (HRU) of Yale New Haven Hospital (YNHH). The
ADP involved consumption of a priming drinking of alcohol
followed by choice ad libitum consumption of up to 12 drinks
over three 1-h self-administration periods, as done previously
(21). Participants completed a baseline ADP and were then
randomized to receive saracatinib (125 mg/day) or placebo
for a 7–8 day period (Supplementary Figure 2); participants
were contacted daily either in person or virtually to observe
medication administration and check for adverse events. At
the end of this period, they completed the second, on-
treatment ADP.

The YNHH Investigational Pharmacy calculated and
delivered alcohol doses of each participant’s preferred alcohol
to the HRU; the doses were designed to raise blood alcohol
levels to 0.03 g/dl for priming drink and 0.015 g/dl for all
other drinks based on a formula that takes into account
the sex, weight, and age of the participant (59). Each
alcohol dose was mixed with the participant’s preferred
non-caffeinated, non-carbonated mixer in a 1:3 ratio. Each
participant’s preferred alcohol and mixer were determined at an
earlier appointment.

Following completion of each ADP, participants spent the
night at the HRU and were discharged the next morning. They
also received a 1-week follow-up appointment to assess for
adverse events and drinking, and a motivational intervention
to discuss their alcohol use and encourage readiness to change.
Participants were paid to participate and could earn up to $1,142
for completing all portions of the study.

Measures

Alcohol Craving
Craving was measured 30min prior to the priming dose
(baseline), and then 10, 20, 30, 40, and 50min during the priming
dose period and every half hour during each ad libitum period
(i.e., 90, 120, 150, 180, 220, and 240min) using the 8-item
Alcohol Urge Questionnaire (AUQ) (60). Separate area under the
curve (AUC) estimates for each phase were calculated using the
trapezoidal rule based on the time points specified above.
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TABLE 1 | Participant demographics and drinking histories.

All Participants (n = 50) Placebo (n = 17) Saracatinib (n = 33) P

Demographics

Male, n (%) 25 (50%) 9 (53%) 16 (48%) 0.77

Current smokers, n (%) 19 (39%) 7 (44%) 12 (36%) 0.62

White, n (%) 31 (62%) 10 (59%) 21 (64%) 0.74

Family Hx positive, n (%) 20 (40%) 7 (41%) 13 (39%) 0.90

Age, mean (SD) 29 (7.8) 30 (7.9) 29 (7.8) 0.49

Drinking based on 30-day timeline followback interview

Total # drinks, mean (SD) 171 (68) 175 (62) 169 (73) 0.75

Drinks/drinking day, mean (SD) 7.8 (2.8) 7.3 (1.8) 8.1 (3.2) 0.36

% drinking days, mean (SD) 74 (17) 79 (17) 71 (17) 0.10

Alcohol dependence score 10.7 (5.3) 9.9 (5.3) 11.2 (5.4) 0.43

N = 50 total; n = 17 placebo and n = 33 saracatinib. There were no differences between the groups for demographics or drinking measured in the Timeline Followback interview. Hx,

history; SD, standard deviation.

Standard Drinks Consumed
Total number of standard drinks consumed during the 3-h self-
administration period.

Alcohol-Induced Stimulation/Sedation
Determined at 10, 20, and 50min during the priming dose period
and then every hour at the end of each of the three ad libitum
periods with the brief Biphasic Alcohol Effects Scale [BAES; (61)].

Adverse Events
Measured daily during the study medication period using the
SAFTEE (62).

Statistical Analyses
Baseline demographics and drinking characteristics were
compared among medication conditions using t-tests and chi-
square tests as appropriate. Data were checked for normality and
transformations applied as necessary. The two primary outcomes
of interest were: craving (AUQ) and total drinks consumed
during the ad libitum periods, each tested on an intent-to-treat
(ITT) basis at the α = 0.05 threshold. Subjective craving (AUQ)
was quantified by calculating an area under the curve (AUC) for
each phase (priming dose, ad libitum) within each ADP using the
trapezoidal rule, and analyzed using linear mixed models with
medication (placebo, saracatinib) included as a between-subjects
factor and session (baseline, on-Tx) included as a within-subjects
factor. The medication by time interaction was modeled and
participant was the clustering factor. Total drinks consumed was
analyzed using an identical linear mixed model as described for
craving. Potential confounding factors (sex, family history, age,
and baseline drinking variables) were tested by including them in
each model but were not significant and dropped for parsimony.
Similar models were used to assess BAES outcomes. For all
models, the best-fitting variance-covariance structure was based
on the Schwarz-Bayesian Criterion (BIC) (63). Least-square
means were estimated and plotted to determine the nature
of significant effects. All analyses were performed using SAS,
version 9.4 (Cary, NC).

RESULTS

No Effect of 5 mg/kg Saracatinib on
Habitual Responding for Ethanol in Mice
By the end of VI training, mice earned 1.04 ± 0.03 (standard
error of themean) g/kg ethanol within the final session. Although
consumption could not be directly confirmed due to the refilling
of the dipper cup for each reinforcer delivery, all mice entered
the magazine while the dipper cup was available (i.e., incentivized
entries) at least as many times as reinforcers earned, and the
number of incentivized entries was significantly greater than
the number of reinforcers earned [χ2

(1)
= 7.15, p < 0.01],

suggesting knowledge of the action-outcome contingency and the
opportunity to consume the ethanol reinforcers.

Following training, AM404 was administered during
contingency degradation to evaluate whether animals exhibited
habitual responding for ethanol, and whether responding and
ethanol consumption were sensitive to drug challenge with a
known enhancer of goal-directed response patterns. As expected,
AM404 reduced the number of active responses during the
contingency degradation whereas vehicle administration did
not affect responding (Supplementary Figure 3). These results
suggest that the mice were sufficiently trained to respond
habitually for ethanol, and that AM404 successfully reduced
habitual responding for ethanol, consistent with our previous
work (53).

Next, we sought to determine whether saracatinib could
also reduce habitual responding for ethanol. A dose of 5
mg/kg saracatinib was administered 2 h prior to the contingency
degradation test and did not significantly reduce habitual
responding for ethanol (Figure 1A). An increase in responding
was observed across groups during contingency degradation
relative to baseline [χ2

(1)
= 37.01, p< 0.0001]. Likewise, magazine

entries were increased across groups during contingency
degradation [χ2

(1)
= 46.22, p < 0.0001; Figure 1B]. Finally,

no effects of session or drug were identified for incentivized
magazine entries (Figure 1C), a measure of ethanol-seeking
behavior (53). Consistent with the amount of ethanol delivered
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during VI training, mice received an average of 1.17 ± 0.03
(standard error of the mean) g/kg ethanol during testing,
wherein an identical number of reinforcers were delivered
during the baseline VI-60 and contingency degradation sessions.
Overall, saracatinib did not alter habitual responding for
ethanol or ethanol consumption when administered 2 h prior to
contingency degradation testing.

Next, we sought to determine whether the lack of effect
of saracatinib identified at the 2-h time point was due
to a suboptimal time point. We assessed whether a 30-
min pretreatment time point, the time point used for the
positive control compound AM404, would reveal effects of
saracatinib on habitual ethanol responding. Consistent with
the 2-h pretreatment, mice increased active responding during
contingency degradation across drug groups [χ2

(1)
= 4.45, p <

0.05], but no effects of saracatinib were identified (Figure 1D).
Magazine entries increased during contingency degradation
across drug groups [χ2

(1)
= 6.33, p < 0.05; Figure 1E]. No effects

of saracatinib or session type were identified for incentivized
magazine entries (Figure 1F). Consistent with prior testing
phases, mice received an average of 1.11 ± 0.03 (standard error
of the mean) g/kg ethanol. Overall, saracatinib did not affect
habitual responding for ethanol when administered 30min prior
to contingency degradation testing.

No Effect of 125 mg/day Saracatinib on
Alcohol Craving, Alcohol-Induced
Stimulation/Sedation, or Alcohol
Consumption in Human Participants
The final sample of randomized participants (Table 1) included
25 men and 25 women, with an average age of 29.0 [standard
deviation (SD) = 7.8], a diverse racial distribution (31 White, 17
Black, 2 other), and 19 individuals who currently smoked tobacco
(39%), with mean scores of 12.1 (SD = 5.6) on the Alcohol
Dependence Scale (64). During the 30 days prior to the baseline
ADP, participants consumed, on average 171 (SD = 68) drinks,
7.8 drinks per drinking occasion (SD = 2.8) and drank 3 out of
every 4 days (74%, SD = 17%). No differences in demographic
variables were observed between the saracatinib and placebo
groups. See Supplementary Figure 2 for CONSORT diagram.

Saracatinib was well-tolerated and we did not observe any
serious adverse events. The most common adverse events
reported included nausea (saracatinib: n= 5, 15%; placebo: n= 1,
6%) and headache (saracatinib: n = 5, 15%; placebo: n = 1, 6%).
As shown in Supplementary Table 1, participants who received
saracatinib also reported other gastrointestinal symptoms such
as abdominal discomfort and diarrhea (n = 3, 9%), as well as
cold symptoms (n = 6, 18%), nasal congestion (n = 4, 12%) and
joint pain (n = 3, 9%). No one dropped out of the study due to
adverse events. For detailed information on adverse events see
Supplementary Tables 1, 2.

Estimated least-square means and standard errors depicting
the effects of saracatinib on craving for alcohol are shown
in Figures 2A,B. Reductions in craving from baseline were
observed across the placebo and saracatinib treatments during
both the priming dose phase [Figure 2A; F(1,39) = 11.8,

p = 0.0014] and the ad libitum drinking phase [Figure 2B;
F(1, 39) = 10.1, p = 0.003]. However, the observed patterns of
reductions in craving were similar amongmedications during the
priming dose [F(1, 39) = 0.01, p = 0.91] and ad libitum drinking
[F(1, 39) = 0.21, p= 0.65] phases of the paradigm. Craving was not
associated with any of the considered baseline covariates.

Similar to measures of craving, total drinks consumed
(Figure 2C) showed an overall 25% reduction from the baseline
ADP (8.5± 0.51 (standard error of themean) to the on-treatment
ADP session (6.4 ± 0.73) [F(1, 39) = 10.9, p = 0.002], but the
reductions did not differ by medication [medication by session:
F(1, 39) = 0.10, p= 0.75].

We did not observe significant effects of saracatinib on
alcohol-induced stimulation or sedation measured using the
BAES (data not shown).

DISCUSSION

In the present animal and human studies, we assessed the
possibility of a role for Fyn in habitual alcohol-seeking and
drinking in both mice and humans using the Fyn kinase inhibitor
saracatinib. Overall, we did not identify effects of saracatinib
in either mice or humans, suggesting that saracatinib, at the
doses tested, may not be an effective treatment for reducing
alcohol-seeking or consumption in individuals who habitually
consume alcohol.

In mice, we used our established, extended instrumental
training paradigm to induce habitual responding for ethanol
and assessed the effects of acute administration of saracatinib
on ethanol habit. We first demonstrated that this habitual
responding for ethanol was sensitive to pharmacological
manipulation by administering a positive control compound,
AM404, an endocannabinoid transport inhibitor that we have
previously shown to reduce habitual responding for ethanol
(53). AM404 successfully reduced habitual ethanol-seeking,
indicating that the habitual ethanol-seeking was receptive to
pharmacological manipulation. However, 5 mg/kg saracatinib
failed to alter habitual responding for ethanol in mice. This
lack of effect was not likely to be due to time of saracatinib
administration, as neither 2-h, nor 30-min pretreatment was
sufficient to alter habitual ethanol-seeking in these mice. These
time points encompass the 1-h pretreatment employed in a
study that showed saracatinib-induced reduction in ethanol self-
administration inmice reported to have goal-directed responding
for ethanol (35). Furthermore, saracatinib is long-lasting in
the mouse brain, with a half-life of approximately 16 h (52).
Moreover, Fyn activity is upregulated in as little as 15min (37)
and for as long as 16 h (36) following ethanol exposure in rodents.
Overall, these findings suggest that acute administration of 5
mg/kg saracatinib does not modulate ethanol habit in mice.

In the human clinical trial, we assessed alcohol craving and
consumption in non-treatment seeking participants with heavy
drinking habits using our established ADP paradigm before
and after saracatinib administration. No effects of 7–8 days of
oral 125mg saracatinib were identified for craving in either the
priming or ad libitum consumption phases. Furthermore, no
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FIGURE 1 | 5 mg/kg saracatinib did not affect habitual ethanol-seeking or consumption in mice at either time point. Mice received an i.p. injection of saline 2 h (A–C) or

30min (D–F) prior to the VI-60 session preceding contingency degradation (“Baseline”). The following day, mice received an i.p. injection of saline (control condition) or

saracatinib 2 h (A–C) or 30min (D–F) prior to the contingency degradation session (“On-Tx”). (A–C) Response rate, total magazine entries, and incentivized magazine

entries for the 2-h time point, respectively. (D–F) Response rate, total magazine entries, and incentivized magazine entries for the 30-min time point. Two-hour time

point: n = 8/drug. Thirty-minute time point: n = 8/drug. *p < 0.05 vs. baseline day across groups (main effect of session). Tx, treatment; i.p., intraperitoneal.

effects of saracatinib were observed for the number of drinks
consumed. Of note, we observed a reduction in drinking and
craving in the placebo group and in the saracatinib group. While
it is possible that the decrease in the placebo group could have
masked any effects of saracatinib, we have demonstrated drug-
placebo differences in other studies using this ADP paradigm
(21). Together, these results suggest that short-term saracatinib
treatment at a dose of 125mg/daymay not reduce alcohol craving
or consumption in people with heavy drinking habits.

The doses used in these studies were selected based on several
factors: to match cerebrospinal fluid levels of saracatinib between

the two species (52), verified behavioral effects and peripheral
markers of reduced Src family activity (52, 57), and to mitigate
risk of off-target pharmacological effects and side effects (57, 65).
It is possible that alternative doses of saracatinib would yield
different results in both species. Of note, the rate of adverse
events observed, including neuropsychiatric adverse events, with
the 125 mg/day saracatinib dose in human participants was
low compared to what is commonly seen with glutamatergic
agents (21). In contrast, larger clinical trials in older clinical
populations with Alzheimer’s disease (66) have identified higher
rates of adverse effects within the range of the dose used in
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FIGURE 2 | 125 mg/day saracatinib did not affect alcohol craving or

consumption in human participants. Participants underwent two ADPs: One

prior to initiating treatment (“Baseline”) and a second one following 7–8 days of

125 mg/day oral saracatinib treatment (“On-Tx”). (A) AUC for craving during

the priming phase of the ADP session. (B) AUC for craving during the ad

libitum phase. (C) Total drinks consumed. N = 15 placebo; n = 26 saracatinib.

*p < 0.05 vs. baseline ADP across groups (main effect of session). ADP,

alcohol drinking paradigm; AUC, area under the curve; Tx, treatment.

our study. So, our observed lack of adverse events and efficacy
may be related to the population studied, which may potentially
tolerate, and require, higher doses to reverse alcohol-induced
glutamatergic changes due to heavy drinking habits. For example,
in mice, studies that used a dose of 10 mg/kg have reported
saracatinib-mediated reductions in ethanol self-administration
(35). However, in our preliminary work (data not shown) 5
mg/kg of saracatinib was sufficient to reduce phosphorylated
NR2B in DMS, and several studies have used this dose to
successfully ameliorate behavioral deficits or neurodegeneration

in Alzheimer’s models, albeit administered per oral and on a
chronic treatment regimen (52, 67, 68). Nonetheless, future
studies should perform a dose-response curve for effects of
saracatinib on habitual responding for alcohol in mice to
elucidate the present negative findings. Overall, further work to
examine the dose-dependent effects of saracatinib on alcohol
drinking behaviors is needed.

Another possibility for the lack of treatment effects is the
time course of the treatment regimen. While positive effects
of saracatinib on ethanol-seeking and consumption have been
reported after acute administration in mice (35, 40), other
behavioral effects of saracatinib, at the 5 mg/kg dose used in
the present study, required longer time frames. For example,
rescue of cognitive function in an Alzheimer’s mouse model
required 3–5 weeks of 5 mg/kg saracatinib administration for
effects to emerge (52). Likewise, it is possible that a more
extended treatment regimen in the clinical trial would have
yielded positive results. Indeed, maximal plasma levels are
augmented at steady state relative to acute administration
at the 125 mg/day dose, with participants reaching steady
state within 10–17 days (65), whereas the present study
provided saracatinib for 7–8 days. However, a clinical trial
that assessed the efficacy of saracatinib in Alzheimer’s disease
did not observe significant effects at this dose after a year of
treatment, despite positive effects within shorter timeframes in
mouse models (52, 66). Regardless, it is possible that extended
treatment regimens may be needed when considering the
use of this agent to treat alcohol drinking, which may yield
different findings.

Alternatively, Fyn may have brain region- and function-
specific roles that explain the present results. Fyn-dependent long
term facilitation of NMDAR-mediated excitatory postsynaptic
currents in response to ethanol are observed in the DMS,
but not DLS (36, 37). The same study found that the Src
family protein tyrosine kinase inhibitor PP2, which inhibits Fyn,
reduced ethanol self-administration in rats when infused into
the DMS, but not DLS. Furthermore, it was recently reported
that stimulation of D1 neurons in the DMS, but not DLS
upregulated phosphorylation of Fyn and its substrate NR2B
(40), together suggesting that Fyn may play less of a role in
the DLS. These findings align with the possibility that Fyn
may mediate goal-directed, but not habitual, ethanol-seeking
and consumption behaviors; the DMS is classically implicated
in goal-directed action, whereas there is a lateral shift in
activity over time as an action becomes more habitual, including
ethanol-seeking (39, 41, 42). This possibility is supported by the
current literature regarding effects of saracatinib on ethanol-
seeking and consumption. One study reported a reduction
in instrumental responding for ethanol in confirmed goal-
directed mice after acute administration of saracatinib (35).
Another study from the same group reported reductions in
ad libitum ethanol consumption in ethanol-naïve mice (40).
However, we did not test effects of saracatinib on goal-
directed drinking in the present study, and thus cannot
confirm this selectivity from the present results alone. To our
knowledge, the current studies are the first to directly assess the
effects of saracatinib in confirmed habitual ethanol consuming
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individuals, who likely have greater DLS control of ethanol-
seeking (41, 69).

While a strength of these parallel studies is the use
of equivalent doses of saracatinib in chronically alcohol
consuming individuals, there are disparities between the
designs of the mouse and human studies that limit the
comparability. Saracatinib was administered acutely in the
mouse study, whereas the human participants received 7–
8 days of saracatinib. In addition, only male subjects were
used in the mouse study. Furthermore, the mice were
not tested on measures of ethanol dependence, and blood
ethanol concentrations were not measured, which precludes
classification of these mice as heavy drinkers or as ethanol-
dependent. However, prior studies have reported binge-level
blood ethanol concentrations in mice consuming similar
quantities of ethanol during self-administration. For example,
one study reported an average blood ethanol concentration
of 93 mg/dl after consuming 1.3 g/kg ethanol within a 60-
min session, which may be comparable to the present study
in which mice received approximately 1.1 g/kg ethanol within
a 45-min session (70). In addition, in our other studies
using this self-administration paradigm we have observed
heightened withdrawal-induced aggression between male cage
mates (data not shown), which suggests that this experimental
setup may be capable of inducing ethanol dependence.
Nonetheless, these features must be quantified in future studies
for confirmation.

Another key difference between these studies was the direct
assessment of habitual behavior in the mice, which was not
tested in the clinical study. Previous studies have shown that
alcohol-dependent individuals exhibit a shift toward more
habitual, less goal-directed behavior in an outcome devaluation
test (51). Furthermore, another study found that habitual, but
not reward-driven alcohol use was associated with severity of
alcohol dependence (71), and another found that abstinent
participants with high alcohol expectancies and impaired goal-
directed control were more susceptible to subsequent relapse
(72). Together, these findings suggest that habitual behavior
is associated with alcohol dependence and may be relevant
for treatment outcomes. Yet, we cannot draw conclusions
regarding the effects of saracatinib on habitual behavior per se
in the clinical study presented here. There is little work in the
literature regarding back-translatability of effective treatments
for alcohol use disorder in habit paradigms. One study assessed
the effects of naltrexone on ethanol self-administration in rats
using reinforcement schedules that promote goal-directed (FR-
5) vs. habitual (VI-30) responding. They found that naltrexone
reduced responding in both schedules, although they did not
test effects of naltrexone on habit itself, such as in a contingency
degradation or outcome devaluation session (73). More work is

needed in this area to determine the translational potential of
ethanol habit in rodents as a screen for novel therapeutics.

Overall, we did not identify effects of saracatinib on alcohol-
seeking/craving or consumption in habitual mice or heavy
drinking human participants. These results suggest that Fyn
kinase inhibition may not be effective at reducing these aspects
of alcohol use at the doses and treatment regimens employed
in the current study. Future studies should consider the use of
higher doses of saracatinib and alternative treatment regimens to
confirm and expand upon these findings.
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