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VEHiCLE: a Variationally Encoded 
Hi‑C Loss Enhancement algorithm 
for improving and generating Hi‑C 
data
Max Highsmith* & Jianlin Cheng

Chromatin conformation plays an important role in a variety of genomic processes. Hi-C is one of the 
most popular assays for inspecting chromatin conformation. However, the utility of Hi-C contact maps 
is bottlenecked by resolution. Here we present VEHiCLE, a deep learning algorithm for resolution 
enhancement of Hi-C contact data. VEHiCLE utilises a variational autoencoder and adversarial 
training strategy equipped with four loss functions (adversarial loss, variational loss, chromosome 
topology-inspired insulation loss, and mean square error loss) to enhance contact maps, making them 
more viable for downstream analysis. VEHiCLE expands previous efforts at Hi-C super resolution by 
providing novel insight into the biologically meaningful and human interpretable feature extraction. 
Using a deep variational autoencoder, VEHiCLE provides a user tunable, full generative model for 
generating synthetic Hi-C data while also providing state-of-the-art results in enhancement of Hi-C 
data across multiple metrics.

Hi-C data, an extension of chromosome conformation capture assay (3C) is a biological assay which can be used 
to inspect the three-dimensional (3D) architecture of a genome1. Hi-C data can be used for downstream analy-
sis of structural features of chromosomes such as AB compartment, Topological Associated Domains (TADs), 
loops, and 3D chromosome and genome models. Changes in chromosomal conformation have been empirically 
demonstrated to impact a variety of genomic processes including gene methylation and gene expression2.

When analyzing Hi-C data, reads are usually converted into contact matrices, where each cell entry cor-
responds to the quantity of contacts between the two regions indexed by row and column3,4. The size of an 
individual region in this contact matrix is referred to as the resolution or bin size4. The smaller the bin size, the 
higher the resolution. The resolution of a contact matrix is usually selected based on the quantity of read pairs 
in an individual Hi-C experiment, with a higher quantity of read pairs permitting a higher resolution. Certain 
genomic features, such as TADs, can only be meaningfully identified using high resolution contact matrices, 
however if a matrix resolution is selected with insufficient read coverage the matrices can be overly sparse. One 
method to address this issue is to run additional Hi-C experiments, however because of experimental costs this 
is not always a feasible solution.

To solve this problem previous groups have utilized methods from the field of Image super-resolution to 
improve Hi-C contact matrix resolution. The first of these networks was HiCPlus5, a simple neural network 
optimized using mean squared error (mse). HiCPlus was then improved upon by HiCNN6 by adjusting network 
architecture. Next hicGAN7 was proposed, introducing the use of Generative Adversarial Networks (GAN), 
which generated high resolution contact maps conditioned on low resolution input. The network DeepHiC8 
maintained the GAN loss function while extending it to also include a perceptual loss function derived from 
VGG-16 trained on image data. The model HiCSR9 continued the advancement by introducing the use of a deep 
autoencoder as a feature extraction mechanism.

Our network, the Variationally Encoded Hi-C Loss Enhancer (VEHiCLE), extends the approach of con-
ditional generative adversarial networks by using an integrated training approach inspired by literature in the 
domains of deep learning and genomics. First, VEHiCLE incorporates a variational autoencoder which extracts 
biologically meaningful features from Hi-C data. Second, VEHiCLE’s decoder network is engineered to provide 
an easy to use generative model for Hi-C data generation which smoothly maps user tunable, low dimensional 
vectors to Hi-C contact maps independent of any low sampled input. Third, VEHiCLE incorporates a biologically 
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explicit loss function based on Topologically Associated Domain identification to ensure accurate downstream 
genomic analysis.

VEHiCLE obtains state of the art results in the task of Hi-C super-resolution across a variety of metrics pulled 
from the domains of Image analysis and Hi-C quality/reproducibility. VEHiCLE enhanced data show successful 
retrieval of important downstream structures such as TAD identification and 3DModel generation while also 
providing novel human interpretability of its enhancement process.

Approach
Description of VEHiCLE network training.  Vehicle is trained as an adversarial network conditioned on 
low resolution input. The network is trained using a composite loss function made up of 4 sub loss functions: 
Adversarial loss, Variational loss, mean square error (MSE) loss, and Insulation loss. An overview of the training 
mechanism is displayed in Fig. 1a. The intellectual motivation for each of these loss functions is outlined below.

Adversarial loss function.  Generative adversarial networks (GANs) are a popular deep learning based frame-
work for generative modeling which has gained traction in a wide variety of tasks including image superresolu-
tion. GANs were first introduced to the field of Hi-C super resolution through hicGAN, and later improved upon 

Figure 1.   VEHiCLE architecture: (a) overview of training strategy, (b) generator architecture, (c) discriminator 
architecture.
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in DeepHiC and HiCSR. A GAN uses two key networks: a generator G (Fig. 1b) and a discriminator D (Fig. 1c). 
The generator takes samples from an input distribution and generates enhanced matrices. The Discriminator 
is trained on a collection of inputs including real high resolution Hi-C samples as well as enhanced resolution 
Hi-C samples and attempts to determine whether individual samples are real or enhanced. The two networks are 
trained in a game where the generator is rewarded for successfully tricking the discriminator and the discrimina-
tor tries to minimize classification mistakes.

The generator loss function is defined as:

Variational loss.  Autoencoders are deep learning systems which map inputs from sample space to a condensed 
latent space via an encoder and then reconstruct images in sample space from the latent space using a decoder. 
The use of autoencoders for the task of Hi-C data super resolution was originally proposed in our preprint10 for 
the task of denoising Hi-C data. They were then suggested by Dimmick et al.9 as tools for training super reso-
lution networks by using the features extracted by passing Hi-C data through a trained autoencoder as a loss 
function. In this manuscript we expand upon this strategy, but replace their network with a different flavor of 
network called the variational autoencoder11.

Similar to vanilla autoencoders, variational autoencoders (VAE) aim to condense data into lower dimen-
sional space, however they have the advantage of providing smooth feature representation which can permit 
the construction of powerful generative models. To obtain these advantages VAE rely upon a statistical method 
called variational inference11. This method frames the tasks of encoding and decoding as an ancestral sampling 
problem with two steps: First, a latent variable, z, is sampled from a prior distribution Pθ (z) . Second, the observed 
variables, x, is drawn from a likelihood distribution Pθ (x|z).

To encode the observed variable, x, requires the computation of the posterior distribution Pθ (z|x) . However 
because this is computationally intractable, instead one approximates the posterior by choosing a parametric 
family of recognition models qφ(z|x) and selects parameters that minimize the divergence between the recogni-
tion model and the true underlying distribution via a probabilistic dissimilarity metric called KL-divergence,

By performing some algebra outlined in Kingma and welling11 variational autoencoders are trained using 
the following loss function

The integral term on the far right of the loss function ensures that the reconstruction outputs of our networks 
are highly similar to their original inputs, while the KL divergence term causes the latent space distribution of 
values to closely resemble a vector of gaussian random variables. This imposition of gaussian similarity on the 
latent space results in advantages in quality of extracted features and the procurement of a generative model.

To create the variational loss function, we first train our variational autoencoder using high resolution contact 
matrices as both inputs and labels. In each experiment our VAE network is trained using the same chromosomes 
as the overall VEHiCLE network. The variational autoencoder maps vectors from data space into condensed 
latent space, which we interpret as a lower dimensional feature vector (Fig. 2a,b). Because the variational autoen-
coder training strategy imposes a Gaussian distribution of the latent space variables and because our decoder 
maps latent vectors back into data space in a relatively smooth manner we expect highly similar Hi-C contact 
matrices to contain similar latent space profiles.

We compute variational loss by passing both the enhanced Hi-C contact matrix and target high resolu-
tion Hi-C contact matrices through the backpropagatable encoder component of our variational autoencoder 
network, extracting latent dimensional representations. We then compute the mean differences between their 
latent feature vectors,

where fencode is the encoding function, defined by our trained encoder network.

Insulation score loss.  Most of the previously proposed loss functions for developing Hi-C enhancement net-
works draw upon loss functions prolific in the fields of computer vision5–9. While there are certainly advantages 
to these strategies, they derive from assumed similarities between the tasks of image super-resolution and Hi-C 
super-resolution. However, the tasks are not synonymous. Hi-C contact matrices contain important informa-
tion used for downstream feature analysis such as loop calling, TAD identification and 3D model construction. 
Consequently, images which are highly visually similar which are blurry, shift positions of structural features, or 
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contain noise might result in significant differences in downstream analysis. With this fact in consideration, we 
used domain knowledge of computational genomics to devise an insulation loss function, which directly trains 
networks to correctly identify downstream features, specifically TAD placement.

One well-established strategy for the identification of TADs is the use of insulation scores12. Insulation scores 
of a matrix are calculated by sliding a 20 bin (200 kb × 200 kb) window down the diagonal of a matrix and sum-
ming the signal across each bin, resulting in an insulation vector (Fig. 2c). This insulation vector is normalized by 
taking the log2 ratio of each bin’s insulation score and the mean of all insulation scores on the chromosome. From 
the insulation vector a delta vector is computed by observing the change in signal strength 100 kb downstream 
and upstream of each bin on the insulation vector (Fig. 2d). This delta vector is treated as a pseudo-derivative, 
and identifies insulation valleys in the regions where the delta vector crosses the x-axis from negative values to 
positive values, indicating a relative minimum in insulation. TAD Boundaries are assigned to each insulation 
valley whose difference in strength between the nearest left local max and right local min was > 0.1 (Fig. 2e).

The insulation TAD calling procedure can be encoded into a single, back propagatable network up until 
extraction of the delta vector (Fig. 2c,d). We define insulation loss,

where Dvec is a backpropagatable network which maps a contact matrix to a delta insulation vector.

Bin‑wise mean squared error loss.  Bin-wise mean square error loss is a thoroughly tested loss function used in 
previous Hi-C enhancement literature6,8,9. It contributes to maintaining visual similarity between enhanced and 
target Hi-C contact matrices.

Composite training function.  To capitalize on the advantages of all four loss functions we incorporate them into 
our comprehensive training process. First the variational network is trained on the train and validation datasets. 
Then the trained encoder is used for Lvae along with the three other training losses to train the generator net-
work, yielding our overall loss function

w h e re  �x  a re  hy p e r p a r a m e t e r s  u s e d  t o  d e t e r m i n e  l o s s  c ont r i but i on .  We  u s e 
�adv = 0.0025, �mse = 1, �vae = 0.01, �ins = 1.
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Figure 2.   Variational autoencoder. (a) Overview of variational autoencoder approach. (b) VEHiCLE 
architecture. Tad loss evaluated using a feedforward implementation of Insulation loss computing, (c) insulation 
vector, (d) delta vector and (e) identification of TAD Boundaries.
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Results
Latent space representations permit generation of synthetic Hi‑C data.  The KL divergence term 
in the loss function of our variational autoencoder imposes constraints on the latent dimension, pushing our 
estimate for the prior q(z|x) towards a vector distribution of Gaussian random variables. Because all latent vec-
tor variables fall within Gaussians centered around 0, most vectors near the center of these Gaussians can be 
successfully decoded into Hi-C space, resulting in a generative model for Hi-C data. We first perform principal 
component analysis (PCA) on our training set’s learned, latent dimensional features. We then create a function 
mapping PCA values to the latent dimensional space. We then use our trained decoder network to transform 
the values in latent dimensional space into Hi-C space (Fig. 3a). The result is a function mapping a profile of 
PCA values to a 2.57 Mb × 2.57 Mb block of Hi-C data. We hook this function into an interactive matplotlib 
widget, permitting manual visualization of changes to generated Hi-C data as input variables are adjusted. In our 
widget we set a NUM_SLIDERS = 15 parameter to permit the manual tuning of PCA vector components. The 
widget passes a vector to our mapping function with user selected values in all manually adjusted components 
and dataset averages for all PCA’s that are not manually selected or are above the NUM_SLIDERS component 
index threshold. The selection of 15 is arbitrary and can be manually increased by users interested in viewing the 
impact of adjusting higher PC values on the generated Matrix structure.

The zero vector results in a vanilla Hi-C map with interaction frequency between two regions following the 
inverse of genomic distance (Fig. 3b). The biological interpretation of some adjustable features remains elusive, 

Figure 3.   (a) Diagram of synthetic Hi-C generation tool, a user tunable zero-centered feature vector is 
transformed via PCA reverse transform to latent space and then passed through our tuned decoder network. 
(b) The 0 vector corresponds to a purely linear contact map. (c) Increasing value of PC5 results in generation of 
TADs. (d) Adjusting value of PC2 shifts position of TADs. (e) Adjusting PC11 creates stripes within TADS. (f) 
Adjusting PC14 develops loops within TADs.
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with changes to vector component values resulting merely in changes of diagonal signal strength or sporadic 
repositioning of contact regions. However, we observe that many of the tunable feature vector components cor-
respond directly with biologically meaningful features in Hi-C space such as: formation of TADs, increasing 
TAD size (Fig. 3c), increasing TAD frequency, shifting TAD position (Fig. 3c,d), formation of genomic stripes 
(Fig. 3e)13 and formation of chromatin loops14 (Fig. 3f).

Low resolution Hi‑C contact matrices enhanced by VEHiCLE appear visually competitive with 
other enhancement algorithms.  We generate visual heatmaps of Hi-C contact maps of the GM12878 
dataset using VEHiCLE as well as three other previously developed algorithms: HiCSR, DeepHiC and HiCPlus. 
We observe high visual similarity between reconstructions by VEHiCLE and other enhancement algorithms 
(Fig. 4a). We also subtracted high resolution contact maps from reconstructions by each tool to observe a visual 
difference matrix (Fig. 4b). Visually VEHiCLE appears competitive with existing algorithms.

Notes on evaluation metrics.  One of the major differences between the VEHiCLE algorithm and previ-
ous Hi-C enhancement tools is that our architecture is trained to enhance 2.69 Mb × 2.69 Mb regions along diag-
onals of contact maps rather than splitting contact maps into 0.4 Mb × 0.4 Mb pieces, enhancing in a piecemeal 
fashion, and then reassembling (see  “Methods”). This contribution permits the inclusion of more comprehen-
sive information like TAD structure into training samples. However, it is possible to expand older architectures 

Figure 4.   Visual Comparison of deep learning based methods for contact matrix enhancement. (a) Visual 
comparison of enhancement matrices. (b) Absolute difference matrices between target high resolution data and 
enhancement. All displayed matrices are derived from the GM12878 cell line. Architectures of previous models 
utilize original window size.
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to full 2.69 Mb × 2.69 Mb sizes rather than the condensed 0.4 Mb × 0.4 Mb window that appears in previous 
papers. In some cases this expansion of window size degrades older architecture performance, while in others it 
leads to enhancement. Thus, when comparing VEHiCLE to previous tools we include both original architectures 
without adjusting window size as well as alternative architectures trained using expanded window sizes.

Low resolution Hi‑C contact matrices enhanced by VEHiCLE achieve strong similarity to 
high resolution contact matrices using multiple metrics.  Using models trained and tested on the 
GM12878 cell line dataset We evaluated the effectiveness of VEHiCLE in predicting high resolution contacts 
using 5 common metrics: Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient( SPC), 
Mean Squared Error (MSE), Signal-to-noise ratio (SNR) and Structure Similarity Index (SSI) (see “Methods”). 
We compared VEHiCLE reconstructions to the lower resolution data as well as other super resolution methods 
(HiCPlus, DeepHic and HiCSR.) VEHiCLE enhanced contact matrices consistently showed improvement rela-
tive to low resolution data along all 5 metrics (Table 1). VEHiCLE frequently out-performed other Hi-C super 
resolution methods beating all older models with 0.4 Mb window size along every test chromosome in every 
vision metric (Table 1). VEHiCLE out performs both the original and expanded window HiCPlus model in 
every vision metric across every chromosome (Table 1). VEHiCLE remained competitive with 2.69 Mb window 
sized DeepHiC and HiCSR models scoring highest in PCC in 3 of the 4 test chromosomes and scoring in the top 
2 for 80% of the metric-chromosome combinations, a higher consistency of top-2 performance than any of the 
previous models (Table 1).

Downsampled Hi‑C contact matrices enhanced by VEHiCLE display significant improvement 
using Hi‑C specific metrics.  Using models trained on the GM12878 cell line dataset we next evaluated 
VEHiCLE reconstructions using 3 Hi-C specific metrics: GenomeDISCO, HiCRep and QuASAR-Rep (see 
“Methods”). VEHiCLE enhanced metrics remain competitive with other methods (Table 2). Furthermore, even 
in instances where VEHiCLE is outperformed by another algorithm, we consistently observe increased perfor-
mance relative to original low resolution matrices. These results indicate biological consistency with VEHiCLE 
enhanced matrices.

VEHiCLE enhanced contact matrices effectively retrieve downstream features such as 
TADS.  We identified TADs using the prolific insulation score method12. This method assigns an insulation 
score vector by sliding a window across the diagonal of the contact matrix, constructing an insulation difference 
vector, and using the zeros of the insulation difference vector to discover TAD boundaries. We used models 

Table 1.   Comparison of multiple standard vision metrics across different super-resolution algorithms. 
Networks are trained using the training set chromosomes of the GM12878 cell line and evaluated on the test 
chromosome set of the GM12878 cell line. Top 2 scores for each metric are bolded.

Downsampled HiCPlus 40 DeepHiC 40 HiCSR 40 HiCPlus 269 DeepHiC 269 HiCSR 269 VEHiCLE

Chro 4

PCC 0.7592 0.9103 0.9212 0.9285 0.9467 0.9524 0.9463 0.9524

SPC 0.6259 0.805 0.7715 0.8292 0.8646 0.8837 0.8719 0.8739

SSIM 0.2336 0.3284 0.3784 0.4346 0.3785 0.4305 0.4526 0.3978

MSE 0.0468 0.0163 0.0162 0.0114 0.0091 0.0083 0.0097 0.0098

SNR 306.65 514.24 516.847 619.41 700.549 733.5042 673.73 670.9001

Chro 14

PCC 0.8682 0.9374 0.9481 0.9583 0.9716 0.975 0.9753 0.9764

SPC 0.6692 0.8159 0.7188 0.85 0.88 0.9031 0.888 0.8892

SSIM 0.3524 0.4022 0.5481 0.5877 0.644 0.6588 0.67 0.6439

MSE 0.0145 0.0117 0.0052 0.0041 0.0027 0.0024 0.024 0.0024

SNR 341.5712 380.041 554.9034 627.752 786 830.2759 847.28 834.5026

Chro 16

PCC 0.8798 0.9327 0.9479 0.9602 0.9694 0.9771 0.8771 0.9769

SPC 0.6684 0.8097 0.6949 0.8496 0.8887 0.9027 0.8884 0.8896

SSIM 0.3901 0.3935 0.5618 0.5924 0.6913 0.7058 0.7095 0.6948

MSE 0.0118 0.0124 0.0047 0.0036 0.0027 0.0021 0.0021 0.0022

SNR 332.8447 318.105 517.1062 597.73 703.324 808.4 810.28 797.5162

Chro 20

PCC 0.9075 0.9303 0.9507 0.9656 0.9692 0.9825 0.983 0.983

SPC 0.6866 0.827 0.6857 0.8631 0.9094 0.9184 0.9033 0.905

SSIM 0.4373 0.4082 0.6022 0.6432 0.7522 0.7559 0.7619 0.7559

MSE 0.0076 0.0124 0.0038 0.0027 0.0023 0.0014 0.0013 0.0014

SNR 364.83 282.43 510.35 608.04 662.656 850.7672 886.20 868.3073
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trained on the GM12878 cell line and evaluated insulation on test chromosomes for the HMEC, K562 and 
IMR90 cell lines as well as the GM12878 cell line. We expand the test set to evaluate the effectiveness of our 
network at predicting downstream biological features like TADs when the model is trained on different cell lines 
which may have different TAD profiles.

We compare the insulation difference vector of each matrix-enhancement algorithm to the insulation differ-
ence vector of our high resolution contact matrix using the L2 norm dissimilarity metric. In many cases VEHi-
CLE enhanced insulation difference vectors have higher similarity to target matrices relative to other matrix 
enhancing algorithms (Table 3). Furthermore, even in instances where VEHiCLE is outperformed by another 
algorithm we consistently observe higher similarity between the target high resolution matrices and VEHiCLE 
enhanced matrices relative to low resolution matrices (Table 3).

3D chromatin model construction.  We tested the effectiveness of reconstructed data in building 3D 
structure models using the structural modeling tool 3DMax. We extracted constraints from the low resolution, 
high resolution and VEHiCLE-enhanced 2.57 Mb × 2.57 Mb regions of our test dataset chromosomes of the 
GM12878 dataset. From each constraint grouping we generated 3 models. We observed significantly higher 
visual similarity between VEHiCLE-enhanced and high-resolution matrices relative to low-resolution matrices 
(Fig. 5a). We then used the TM-score metric to quantify structural similarity of models15. We observed higher 
TM-scores between high resolution and VEHiCLE-enhanced matrices than between high resolution and low 
resolution models (Fig. 5b). We also observed higher TM-score similarities between models generated by the 
same VEHiCLE-Enhanced matrices relative to models generated by the same low resolution matrices, indicating 
VEHiCLE enhanced models are more consistent (Fig. 5c).

Discussion
One of the most common challenges in Deep Learning projects is the opaque nature of a neural network’s inner 
functioning. Consequently, our ability to extract latent features and map them to biologically relevant structures 
provides a significant advance in increasing interpretability of Hi-C matrices. Our GUI tool can be used to 
generate Hi-C data through user tunable parameters with biologically relevant downstream structures such as 
TAD strength, TAD positioning, stripes and loops. Further inspection of these features has potential to enhance 
analysis of key characteristics of chromatin organization.

Our introduction of the Insulation loss sets a new precedent of utilizing biological knowledge in the training 
of Hi-C networks. This may open the door for future improvement of Hi-C data enhancement by utilizing other 
forms of domain knowledge to increase usability of deep learning enhanced matrices. Future loss functions 
could incorporate algorithms for identification of other important downstream features such as loops or stripes.

In addition to the increased interpretability and inclusion of domain knowledge, VEHiCLE obtains resolution 
enhancement results competitive with the state-of-the art, often beating top algorithms on a variety of metrics, 
all while preserving the ability to convey meaningful structures such as TAD’s and 3D structure in downstream 
analysis.

VEHiCLE’s capacity to increase accuracy of insulation scores shows promise of utility for experimental biolo-
gists interested in chromosome architecture at specific genomic locations. By enhancing experimentally obtained 

Table 2.   Comparison of Hi-C superresolution algorithms using Hi-C reproducibility metrics. Networks are 
trained using the training set chromosomes of the GM12878 cell line and evaluated on the test chromosome 
set of the GM12878 cell line. Top 2 scores for each metric are bolded. *Our version of the HiCSR model with 
an expanded window size of 269 repeatedly failed to converge using these tools, thus we include only the 
authors original model for comparison.

Downsampled HiCPlus 40 DeepHiC 40 HiCSR 40 HiCPlus 269* DeepHiC 269 VEHiCLE

Chr 4

GenomeDISCO 0.941 0.972 0.945 0.98 0.972 0.98 0.972

HiCRep 0.967 0.974 0.972 0.989 0.972 0.99 0.972

QuASAR-Rep 0.924 0.995 0.993 0.995 0.995 0.589 0.995

Chr 14

GenomeDISCO 0.942 0.933 0.907 0.979 0.975 0.977 0.972

HiCRep 0.982 0.969 0.97 0.991 0.987 0.992 0.991

QuASAR-Rep 0.944 0.995 0.993 0.996 0.996 0.996 0.996

Chr 16

GenomeDISCO 0.927 0.904 0.88 0.972 0.967 0.972 0.969

HiCRep 0.974 0.948 0.96 0.987 0.978 0.988 0.987

QuASAR-Rep 0.941 0.992 0.99 0.994 0.994 0.995 0.995

Chr 20

GenomeDISCO 0.934 0.895 0.864 0.974 0.968 0.973 0.948

HiCRep 0.981 0.949 0.959 0.988 0.984 0.989 0.979

QuASAR-Rep 0.955 0.994 0.99 0.996 0.996 0.996 0.996
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Hi-C data a biologist could observe the frequency with which a list of genes or cis regulatory elements are found 
near TAD boundaries. Such analysis could provide further insight into the role of structural organization in a 
genomic process. Additionally, VEHiCLE enhanced matrices could be used to generate more accurate 3D models 
when building visualizations of genomic structure. These visualizations may provide insight into the underlying 
machinery of a genomic process of interest.

Methods
Dataset assembly.  Like many of the previous Hi-C super resolution networks we train VEHiCLE on high 
and low resolution Hi-C data for the GM12878 cell line16. While previous work often split chromosomes into 
training, validation and testing sets in a sequential manner8,9 we were concerned that differences in the 3D 
conformation of large vs small chromosomes17 may contain implicit bias in contact map features that could 
confound training. Consequently we assembled training, validation and test sets in a non-sequential manner 
using chromosomes 1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21 as our training set, chromosome 2, 8, 10, 22 as our 
validation set and chromosomes 4,14,16,20 as our test set.

Previous work on Hi-C super resolution consistently used network input window sizes of 0.4 Mb × 0.4 Mb at 
10 kb resolution, requiring networks to split chromosome contact maps into 40 × 40  bin matrices5–9. While this 
strategy has seen relative success, a major disadvantage is that certain important features of Hi-C such as TADs 
can span ranges larger than 0.4 Mb, meaning that it is impossible for previous networks to explicitly encode 
important information about TAD organization. Furthermore, this informational bottleneck of constraining 
window sizes to 40 × 40 bins is not incumbent upon the employed super-resolution networks as work in the field 
of computer vision has demonstrated the effectiveness of GAN and VAE networks on significantly larger images. 
With these considerations in mind we instead built our network to accept 2.69 Mb × 2.69 Mb images, a range 
which is large enough to fully encompass the average TAD of length 1MB18. Observing 2.69 Mb × 2.69 Mb regions 
of Hi-C contact maps at range 10 kb results in submatrix images of 269 × 269 bin size. Because of the expanded 
window size we trained our network exclusively on diagonally centered submatrices, split by sliding a 269 × 269 
window down the diagonal of each chromosome’s Hi-C contact map. We move the window with a stride of 50 
bins at a time, ensuring sufficient overlap between samples for our dataset to include all contacts between regions 
within 2 Mb of each other. This results in a total of 3309 training, 1051 validation, and 798 testing matrices.

Because the convolutional arithmetic of our GAN architecture results in a decrease in output matrices by 12 
bins, our output matrices are of dimension 257 × 257. Our variational loss is based on reconstruction of matrices 
output by our GAN, thus when training our variational autoencoder we use the inner 257 × 257 bins of each 
269 × 269 sample in our dataset.

All Models were trained using the GM12878 cell line. When evaluating vision metrics, Hi-C qc metrics and 
3D model comparison we use the test chromosomes from the GM12878 cell line. For our insulation score analysis 
we extend our test set to include the K562, IMR90 and HMEC cell lines so as to verify the effectiveness of our 
network at retrieving information when trained on a different cell line. Both low resolution and high-resolution 

Table 3.   L2 norm of TAD Insulation difference vectors against target insulation vectors. Networks are trained 
using the training set chromosomes of the GM12878 cell line and evaluated on the test chromosome sets of the 
K562, IMR90, HMEC and GM12878 cell line. The top 2 scores for each metric are bolded.

Norm of insulation score difference vectors

Downsampled HiCPlus 40 DeepHiC 40 HiCSR 40 HiCPlus 269 DeepHiC 269 HiCSR 269 VEHiCLE

Chr 4

GM18278 7.966 6.64 7.52 4.389 7.8217 4.3782 4.7323 4.763

K562 10.942 9.1133 9.957 7.605 10.688 7.976 7.11 7.305

IMR90 9.8344 8.5681 9.2244 5.9457 9.78 5.736 6.091 5.5729

HMEC 16.143 13.132 15.267 10.17 15.8212 11.6367 10.1420 11.2512

Chr 14

GM18278 2.68 2.619 3.774 2.898 2.97 2.305 2.473 2.3414

K562 6.225 5.927 6.329 5.548 6.28 5.1104 4.8282 4.868

IMR90 4.3609 4.6005 5.1827 3.871 4.838 3.309 3.284 3.244

HMEC 9.214 8.34 9.549 7.448 9.2113 6.9471 6.5814 7.0423

Chr 16

GM18278 4.162 3.467 3.769 3.099 4.3619 2.6623 2.3862 2.4376

K562 6.653 5.903 6.485 5.14 6.817 4.6 4.465 4.572

IMR90 5.806 5.0148 5.459 4.169 6.134 3.556 3.117 3.376

HMEC 8.957 8.353 8.799 7.527 9.1517 6.4103 6.068 6.4423

Chr 20

GM18278 2.077 2.419 2.587 2.624 2.5274 1.8383 1.807 1.922

K562 5.316 4.835 5.021 4.307 5.4488 4.267 3.811 3.908

IMR90 2.888 3.522 3.444 3.083 3.5723 2.3699 2.2602 2.3169

HMEC 6.383 6.662 6.579 5.805 6.562 4.7832 4.701 4.8159
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contact maps are normalized using the Knight–Ruiz algorithm, a standard normalization method in the Hi-C 
literature [19].

Variational autoencoder architecture.  The VAE component of VEHiCLE utilizes two neural networks 
for the encoding and decoding components, where the encoder is trained for the parameters of q0 and the 
decoder is trained to optimize the parameters of p0. The VEHiCLE encoder network contains 7 convolutional 
layers with kernel counts: 32, 64, 128, 256, 256, 512, 512. Each convolutional layer is separated by leaky ReLU 
and batch normalization. The decoder network has 7 layers of convolution transpose with the kernel counts 
512, 512, 256, 256, 128, 64, 32, also separated by leaky ReLU and batch norm functions. The decoder network is 
appended by a Sigmoid activation function placing outputs in the range of [0,1].

Generative adversarial network architecture.  We use the discriminator and generator architecture 
defined in HiCSR, with the exception of our generator’s output function, which is changed from tanh, to a 
sigmoid so that outputs are mapped to [0,1]. The generator architecture contains 15 residual blocks separated 
by skip connections, each containing 64 convolutional filters. The fully convolutional discriminator is a fully 
convolutional network with ReLU activation. Both the generator and discriminator are trained with batch nor-
malization.

Other networks.  We used the pytorch versions of HiCPlus, DeepHiC and HiCSR provided at https://​
github.​com/​wangj​uan001/​hicpl​us, https://​github.​com/​omega​hh/​DeepH​iC and https://​github.​com/​PSI-​Lab/​

Figure 5.   (a) 3D reconstruction of Chro 20 0.6–3.1 MB. (b) TM -score comparison of High Resolution 
structures to (red) Low resolution structures and (green) VEHiCLE enhanced structures. VEHiCLE enhanced 
scores are significantly higher (Wilcoxon rank sum p value < 1e−20). (c) Average TM-Score comparison 
of ingroup structures generated by same contact matrix (red) low res, (yellow) high res, (green) VEHiCLE 
enhanced. VEHiCLE enhanced scores are significantly better than low-resolution scores (wilcoxon rank sum p 
value < 1e−20) Structures are all generated from GM12878 cell line using the test chromosome set: 4, 14,16,20.

https://github.com/wangjuan001/hicplus
https://github.com/wangjuan001/hicplus
https://github.com/omegahh/DeepHiC
https://github.com/PSI-Lab/HiCSR
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HiCSR. We first tested networks using their literature provided weights, however we obtained very poor perfor-
mance because these networks were trained on alternative training sets with key characteristic differences from 
ours. First, their training sets had bin value ranges of [− 1,1], however our training datas range was [0,1] because 
negative values confound the probabilistically motivated VAE component. Second the input size of contact maps 
for previous networks was 40 × 40, while our network aims to incorporate surrounding genomic information 
and utilizes a larger window input size of 269 × 269. To provide more accurate comparison we trained networks 
on our own GM12878 Dataset. Because our networks accept a large scale input matrix 269 × 269, but other 
networks were built to accept 40 × 40 pieces, we trained other networks by splitting each 269 × 269 into 36 non-
overlapping pieces. Evaluation of Hi-C metrics was performed by feeding split pieces through networks as neces-
sary, then reassembling pieces and comparing full chromosome contact maps.

Standard evaluation metrics.  We utilize 5 reproducibility metrics pulled from image-super resolution 
literature: Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient (SPC), Mean Squared Error 
(MSE), Signal-to-noise ratio (SNR) and Structure Similarity Index (SSI).

Mean squared error. 

Pearson correlation coefficient. 

Spearman correlation coefficient.  Spearman Correlation is similar to Pearson correlation differing in that it uti-
lizes rank variables so as to evaluate monotonic relationship between the matrices without imposing a linearity 
condition that may not exist in nature.

Signal‑to‑noise ratio.  Signal-To-Noise Ratio uses a ratio of the clean signal to the difference between clean and 
noisy signals to represent how much signal is actually getting through. The higher the value of SNR the better 
quality the data.

Structural similarity index.  SSI is calculated by sliding windows between images and averaging values. The 
constants C1 and C2 are used to stabilize the metric while the means, variances and covariances are computed via 
a Gaussian filter. We use the implementation of SSI developed by Hong et al.8 (DeepHiC) keeping their default 
values for the size of sub-windows and variance value of gaussian filter at 11 and 3 respectively.

Hi‑C reproducibility metrics.  We consider 3 Hi-C specific reproducibility metrics: GenomeDISCO20, 
HiCRep21, and QuASAR-Rep22. We use the 3DChromatin_ReplicateQC23 implementations of the metrics. This 
3DChromatin_ReplicateQC repository also included metrics for the tool HiC-Spector22, however we consist-
ently obtained faulty values, even when using the repositories sample data and so we excluded HiC-Spector 
results from this analysis. When expanding previous models to a 269 × 269 window size the HiCSR model repeat-
edly failed to converge using these metrics, thus we only include the original 40 × 40 window version of HiCSR 
in our evaluation of Hi-C Reproducibility metrics. GenomeDISCO utilizes a random walk on a graph generated 
by contact maps to obtain a concordance score23. HiCRep develops a stratum adjusted correlation coefficient for 
matrix comparison by measuring weighted similarity of contacts in identified stratum23. QuASAR-Rep calcu-
lates a correlation matrix of interaction using weights based on enrichment22.

Topologically associated domain identification.  Topologically associated domains were identified 
using Insulation score as identified in Crane et al. We mimicked their procedure entirely with the exception 
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∑
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that our initial insulation score window size was condensed to 20 bins instead of 50 because this demonstrated 
greater visual accuracy in TAD positioning12.

Three‑dimensional model reconstruction.  To generate models, we utilize 3DMax24 with out-of-the-
box parameters of 0.6 conversion factor, 1 learning rate, and 10,000 max iteration. We create 3 models per input 
contact matrices. We generate models for every 5th 269 Mb × 269 Mb input matrix from our training dataset, 
because this skipping distance ensures coverage of each chromosome while minimizing model generation time. 
Similarity between structures was measured using TM-score15.

Motivation for 269 × 269 window size.  The decision to expand our window size to 2.69 × 2.69 Mb is 
multifaceted. Philosophically the decision to expand beyond the previous standard of 0.4 Mb × 0.4 Mb was to 
permit the inclusion of a wider range of genomic information in our deep learning methods.

From a technical standpoint our insulation score loss is based on the previously defined method for insulation 
determination12. Because calculation of insulation necessitates incorporation of boundary bins, the length of an 
insulation vector is always smaller than the dimension of a Hi-C contact maps axis with formula:

Thus, using a 20 kb insulation window and 10 kb Delta window with the previously applied 40 × 40 window 
would result in an insulation vector of length (40-20-19) = 1, which is only a scalar and would contain insufficient 
information for meaningful feature extraction.

The decision to use 269 as opposed to a different, large number is due to our variational autoencoder. While 
passing through the variational autoencoder the dimension of an input matrix is compressed with each incre-
mental layer. It was essential that at each step the output dimension remained a whole number and that when the 
latent representation is decoded back into contact matrix space the reconstructed matrix be of the same dimen-
sion as its input. 257 was the smallest number which both spanned 2 Mb (a range that would encompasses nearly 
all TADs) and resulted in the same dimensional input and output at each layer of our variational autoencoder. We 
account for the 12 bin decrease in size that occurs by passing through our GAN, resulting in a 269 × 269  matrix.

Data availability
All Hi-C data were downloaded from the Gene Expression Omnibus (GEO) GSE63525. For the Hi Resolution 
Matrices of GM12878, IMR90, K562 and HMEC we used GSE63525_GM12878_insitu_primary+replicate_com-
bined_30.hic, GSE63525_IMR90_combined_30.hic, GSE63525_K562_combined_30.hic and GSE63525_HMEC_
combined_30.hic respectively. For low resolution matrices we used GSM1551550_HIC001_30.hic, GSM1551602_
HIC053_30.hic, GSE63525_K562_combined_30.hic, and GSM1551610_HIC061_30.hic respectively.

Code availability
VEHiCLE was built using python. All experimental code as well as the VEHiCLE enhancement tool and Con-
tact Matrix generating GUI are available at https://​github.​com/​Max-​Highs​mith/​VEHiC​LE with zenodo https://​
zenodo.​org/​badge/​lates​tdoi/​33953​5370.
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