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Abstract: This paper studies beam allocation and power optimization scheme to decrease the hard-
ware cost and downlink power consumption of a multiuser millimeter wave (mmWave) massive
multiple-input multiple-output (MIMO) system. Our target is to improve energy efficiency (EE) and
decrease power consumption without obvious system performance loss. To this end, we propose a
beam allocation and power optimization scheme. First, the problem of beam allocation and power op-
timization is formulated as a multivariate mixed-integer non-linear programming problem. Second,
due to the non-convexity of this problem, we decompose it into two sub-problems which are beam
allocation and power optimization. Finally, the beam allocation problem is solved by using a convex
optimization technique. We solve the power optimization problem in two steps. First, the non-convex
problem is converted into a convex problem by using a quadratic transformation scheme. The
second step implements Lagrange dual and sub-gradient methods to solve the optimization problem.
Performance analysis and simulation results show that the proposed algorithm performs almost
identical to the exhaustive search (ES) method, while the greedy beam allocation and suboptimal
beam allocation methods are far from the ES. Furthermore, experiment results demonstrated that
our proposed algorithm outperforms the compared the greedy beam allocation method and the
suboptimal beam allocation scheme in terms of average service ratio.

Keywords: massive MIMO; energy efficient; beam allocation; power optimization; mmWave; convex
optimization scheme; lagrange dual method

1. Introduction

The new technologies of massive multiple-input multiple-output (MIMO) and millime-
ter wave (mmWave) [1,2] play a key role in fifth-generation (5G) wireless communication
systems. The massive MIMO and mmWave technologies have great potential to satisfy
the requirements of current wireless communication systems, such as having a high data
rate, tolerance of transmission latency, low cost, system security, and good user experi-
ence. In addition, they are supported the transmission of big data in the internet of things
(IoT) networks [3–6]. The key idea of massive MIMO technique is the use of multiple
antennas in the transmitter and the receiver to increase system performance and reliability
through strategies, such as beam-forming, diversity transmission, spatial multiplexing,
and interference suppression, meanwhile providing services for several users sharing the
same spectrum resources, and the mmWave techniqueis able to provide huge amounts of
mmWave frequency bandwidth and a large numbers of narrow beams with high directive
gain. These features will further to enhance system energy efficiency (EE) and reduce the
power consumption of networks [7,8].

In a practical network, one of the key challenges in a mmWave massive MIMO system
is hardware cost and power consumption. Since each antenna in MIMO systems usually
requires a separate radio-frequency (RF) chain that consists of RF amplifiers and analog-
to-digital converters, which are very pricey and huge power consumption elements in

Sensors 2021, 21, 2550. https://doi.org/10.3390/s21072550 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3041-957X
https://orcid.org/0000-0002-8048-6703
https://doi.org/10.3390/s21072550
https://doi.org/10.3390/s21072550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21072550
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/7/2550?type=check_update&version=1


Sensors 2021, 21, 2550 2 of 13

massive MIMO systems. The power consumption of RF chain becomes huge with the
number of antennas growing large in a mmWave communication system [9]. Mssive MIMO
technology enables 5G wireless network to be capable of generating a large number of
beams. In that scenario with multiple beams, only partial beams are used to serve all
users in a cell. As a result, inter-beam interference has a high dependency on beam-user
association results. This makes the beam-user association problem in the mmWave massive
MIMO systems much more complicated and still remains largely unknown. Additionally,
in conventional beam allocation systems with a small number of beams, even when all
the beams are used, most of the users are still unserved. If a user can not get service for a
long time, long service delay appears and it will lead to a decline of user service quality
and overall system performance, which is undesirable for the delay sensitive services [10].
Moreover, in conventional beam allocation systems, it is assumed that the power of the base
station (BS) is equally allocated for each beam, but the equal power allocation strategy can
not realize optimal and full use of energy resources. It is therefore of great importance for us
to study the beam allocation and power optimization problem in massive MIMO systems.

MmWave communication brings higher communication bandwidth, but with large
path loss. In order to compensate for the high isotropic path loss caused by high frequencies,
beam-forming technology can be employed [11], as it can extend the communication range
using narrow beams of high gain. When multiple narrow beam-forming vectors are config-
ured both in a base station (BS) and user, the beam allocation process is necessary to find
the best beam-pair among all possible beam pairs for maximum beam-forming efficiency.

Recently, a range of beam allocation and power optimization algorithms have been pro-
posed for mmWave massive MIMO systems. They mainly focused on enhancing sum-rate,
decreasing power consumption, and improving energy efficiency [12–18]. Reference [13]
proposed a beam selection concept in mmWave massive MIMO systems, whereby the
number of the RF chains can be reduced by exploiting beam selection scheme without
obvious system performance loss. Reference [14] proposed two analog beam selection
schemes with low complexity to enhance the EE in the hybrid massive MIMO systems.
Reference [15] proposed a two-step low complexity beam allocation scheme to reduce
the signaling overhead while maximizing the sum date rate. Reference [16] studied the
maximizing system sum rate and decreasing downlink power consumption performance of
multiuser switched-beam mmWave massive MIMO system by applying a low complexity
beam allocation algorithm with a limited number of RF chains. Reference [17] proposed
an adaptive frequency-reuse based beam allocation algorithm to reduce the rate disparity
of the users and improve the individual data rates of the worst-case users. Reference [18]
proposed a joint beam selection method in mmWave massive MIMO systems with dis-
crete lens array using equal power allocation. In [18], the authors mainly considered the
channel correlation among users to enhance system sum rate. In addition, Reference [19]
proposed a joint power allocation and beam-forming algorithm to maximize the sum rate
in a multiuser mmWave-NOMA system. However, all the previous works [13–18] assumed
that the power of the BS is equally allocated for each beam, but the equal power allocation
strategy can not realize the optimal and full use of energy resources. Therefore, studying
an efficient beam allocation and power optimization algorithm for EE is important to
improving system performance.

In this paper, we study the beam allocation and power optimization problems in a
multiuser massive MIMO downlink system working at the mmWave frequency band. The
main contributions of our work are as follows:

• In this paper, we proposed beam allocation and power optimization algorithm to
enhance EE without obvious system performance loss. First, the problem of beam
allocation and power optimization is formulated as a multivariate mixed-integer
non-linear programming problem. Second, because of the non-convexity of this
problem, we decompose it into two sub-problems, which are beam allocation and
power optimization;
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• The beam allocation problem is solved by a convex optimization technique. For power
optimization, first, the non-convex problem is converted into a convex problem by
using a quadratic transformation scheme. After that, we used Lagrange dual and
sub-gradient methods to solve the convex problem;

• Our experiments demonstrate that the proposed algorithm performs almost identi-
cal to ES method, and surpasses both the greedy beam allocation method and the
suboptimal beam allocation scheme in terms of EE and average service ratio.

Notation: Symbol E[·] denotes the expectation operator; vectors are denoted by using
lower-case bold letters and matrices are denoted by using bold letters; and |·| denotes the
absolute value of a scalar.

The remaining content is organized as follows. Section 2, describes the system model
and formulates the energy-efficiency maximizing problem. In Section 3, we discuss the
proposed algorithm based on different schemes. Section 4 provides the simulation results
and analyzes the computational complexity. Finally, this work is concluded in Section 5.

2. System Model and Problem Formulation
2.1. System Model

The considered scenario is a single-cell multiuser massive MIMO downlink system
working at a mmWave frequency band, composing of an M-antennas BS and U single
antenna UE (M >> U). BS is located at the cell center, where the M antennas at the BS
will formed M massive number beams and employs MRF RF chains (MRF ≤ U) to serve
U users, where U users are uniformly distributed within a circular cell with a unit radius,
and the location of user u is at the Υu = (ρu, θu). In addition, we define cm,u ∈ {0, 1} as the
beam-user associate indicator. If beam m is allocated to user u, cm,u = 1; otherwise, cm,u = 0.
We assume that each user can only associate with one best beam for its date transmission,
and each associated beam is allocated to its one best associated user, respectively. Therefore,
the constraints can be written as:

M

∑
m=1

cm,u ≤ 1, cm,u ∈ {0, 1}, ∀u ∈ {1, 2, ..., U} (1)

U

∑
u=1

cm,u ≤ 1, cm,u ∈ {0, 1}, ∀m ∈ {1, 2, ..., M}. (2)

2.2. Problem Formulation

According to Shannon’s formula, the achievable downlink rate of the u-th user which
is served by m-th beam can be written as:

Rm,u = log2(1 + SINRm,u) (3)

where SINRm,u can be written as:

SINRm,u =
pmDm(θu)ρ−α

u
M
∑

i=1,i 6=m
piDi(θu)ρ

−α
u + σ2

0
(4)

where Dm(θ) is given by [17]:

Dm(θ) =
sin2(0.5Mπcosθ − βm)

Msin2(0.5πcosθ − 1
M βm)

(5)

where:

βm =

(
−M + 1

2
+ m

)
π (6)
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where pm ∈ p is the transmit power allocated to active beam m, where p = {p1, p2, ..., pM}
is the set of transmit powers. The Dm(θu) denotes the directivity gain of m-th beam in the
cell at θu, where θu denotes the angle of departure (AoD) of the transmitted signal for user
u. ρu denotes the distance from user u to the base station and α is the path-loss exponent,
assuming a pure line of sight (LOS) channel at mmWave frequencies because the NLOS
paths have a high propagation loss, scattering, and blockage in mmWave environments.
βm denotes the array weights, we use the βm to symmetric the angular coverage of each
beam with its main direction [17], and σ2

0 denotes additive white Gaussian noise power.
Our target is to enhance system EE without performance loss. Therefore, the system

EE optimization problem can be expressed as:

max
p,Q

η =

M
∑

m=1

U
∑

u=1
cm,uRm,u

M
∑

m=1
pm + Mγ

(7)

subject to:

s.t.1 :
M
∑

m=1
cm,u ≤ 1, cm,u ∈ {0, 1}, ∀u ∈ {1, 2, . . . , U}

s.t.2 :
U
∑

u=1
cm,u ≤ 1, cm,u ∈ {0, 1}, ∀m ∈ {1, 2, . . . , M}

s.t.3 : cm,uRm,u ≥ Rmin
m,u , ∑U

u=1 cm,u=1

s.t.4 :
M
∑

m=1
pm ≤ Pt

s.t.5 : cm,u ∈ {0, 1}, ∀u ∈ {1, . . . , U}, ∀m ∈ {1, . . . , M}

(8)

where Q = [cm,u]M×U denotes the beam-user association matrix; η is the system EE which
is nonnegative; γ is the power consumption of per transmit antenna; minimum rate of per
user is denoted by Rmin

m,u ; and Pt is the maximum transmit power.

3. Beam Allocation and Power Optimization Algorithm

Due to the influence of binary variable cm,u, the optimization Problem (7) is a typical
non-convex multivariate mixed-integer non-linear programming problem and the optimum
is difficult to find. Therefore, we decompose the problem into two subproblems: (1) Beam
allocation problem with fixed power and (2) power optimization problem.

3.1. Beam Allocation

The target of beam allocation is to ensure each user can be allocated a beam. In
this part, we assume the power is fixed, the denominator of optimization problem (7)
is independent of optimization variables. Therefore, under the fixed power, formula (7)
becomes an ‘0–1’ integer programming problem with regard to beam-user association as:

max
Q

M

∑
m=1

U

∑
u=1

cm,uRm,u (9)

subject to:

s.t.1 :
M
∑

m=1
cm,u ≤ 1, cm,u ∈ {0, 1}, ∀u ∈ {1, 2, . . . , U}

s.t.2 :
U
∑

u=1
cm,u ≤ 1, cm,u ∈ {0, 1}, ∀m ∈ {1, 2, . . . , M}

s.t.3 : cm,uRm,u ≥ Rmin
m,u , ∑U

u=1 cm,u=1
s.t.4 : cm,u ∈ {0, 1}, ∀u ∈ {1, . . . , U}, ∀m ∈ {1, . . . , M}.

(10)
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Problem (9) is generally complicated due to the influence of binary variable cm,u.
Hence, we adopt the fractional beam-user association relaxation, where cm,u can take any
real value in [0,1] [20] (see Lemma 1).

The relaxed beam-user association problem function:

max
Q

M
∑

m=1

U
∑

u=1
cm,uRm,u

s.t.1, s.t.2, s.t.3 in (10) , 0 ≤ cm,u ≤ 1.
(11)

It is observed that the optimization problem (11) is a convex problem according to
Lemma 1 in [20]. Hence, we apply lagrange dual method to solve this problem. The
Lagrangian function of (11) is:

F(cm,u, µm,u, λu, υm) =
M
∑

m=1

U
∑

u=1
cm,uRm,u

+
M
∑

m=1

U
∑

u=1
µm,u(cm,uRm,u − Rmin

m,u )

+
U
∑

u=1
λu(1−

M
∑

m=1
cm,u) +

M
∑

m=1
υm(1−

U
∑

u=1
cm,u)

(12)

where µm,u ≥ 0, λu ≥ 0 and υm ≥ 0 are lagrangian multipliers and they are associated with
constraints s.t.3, s.t.1, and s.t.2 in (11), respectively. Correspondingly, the lagrange dual
function of (11) is formulated as:

D(µm,u, λu, υm) = max
Q

M
∑

m=1

U
∑

u=1
Fm,u(cm,u, µm,u, λu, υm)

−
M
∑

m=1

U
∑

u=1
µm,uRmin

m,u +
U
∑

u=1
λu +

M
∑

m=1
υm

(13)

where Fm,u(cm,u, µm,u, λu, υm) is the corresponding Lagrange dual function for each user,
and can be written as:

Fm,u(cm,u, µm,u, λu, υm) =
(1 + µm,u)cm,uRm,u − (λu + υm)cm,u

(14)

and the lagrange dual problem of (13) can be written as:

min
µm,u ,λu ,υm

D(µm,u, λu, υm), s.t. µm,u ≥ 0, λu ≥ 0, υu ≥ 0. (15)

According to the KKT conditions and the partial derivative of (14) with respect to
variable cm,u, we can achieve as:

∂Fm,u(cm,u, µm,u, λu, υm)

∂cm,u
= (1 + µm,u)Rm,u − λu − υm. (16)

In order to achieve the maximum of (11), the best beam-user associate factor cm,u is
defined as:

cm,u =

{
1, i f m = mbest
0, i f m 6= mbest

(17)

where:
mbest = arg max

∀m
{(1 + µ

(t)
m,u)Rm,u − λ

(t)
u − υ

(t)
m }. (18)

We obtain the best beam-user associate factor by relaxing the binary constraint in (11).
In fact, it is an optimal solution to the original problem (9) because the optimal cm,u is
fortunately either 0 or 1, which exactly satisfies constraints in (10).
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Although the best beam-user associate factor is achieved, it is related to the lagrange
iteration multipliers. So we update them by a sub-gradient-based method that guarantees
convergence [21], and the iterations can be written as:

∇µ
(t+1)
m,u = [µ

(t)
m,u − δ

(t)
1 (c(t)m,uRm,u − Rmin

m,u )]
+

∇λ
(t+1)
u = [λ

(t)
u − δ

(t)
2 (1−

M
∑

m=1
c(t)m,u)]

+

∇υ
(t+1)
m = [υ

(t)
m − δ

(t)
3 (1−

U
∑

u=1
c(t)m,u)]

+

(19)

where [x]+ = max{x, 0}. δ
(t)
1 , δ

(t)
2 , and δ

(t)
3 are iteration step sizes that should be chosen

appropriately [22], i.e., δ
(t)
1 = 0.1

/√
t, δ

(t)
2 = 0.1

/√
t and δ

(t)
3 = 0.1

/√
t.

3.2. Power Optimization

Given the optimized beam-user association, the optimization problem in (7) is only
dependent of power variable. Therefore, we can rewrite the optimization problem in (7) as:

max
p

η =

M
∑

m=1

U
∑

u=1
cm,uRm,u

M
∑

m=1
pm + Mγ

(20)

subject to:
s.t.1 : cm,uRm,u ≥ Rmin

m,u , ∑U
u=1 cm,u=1

s.t.2 :
M
∑

m=1
pm ≤ Pt

. (21)

The optimization problem (20) is a typical non-convex and nonlinear fractional pro-
gramming. So it can be transformed to parametric subtractive problem by the parametric
programming, and the parametric subtractive problem can be written as:

max
p

M

∑
m=1

U

∑
u=1

cm,uRm,u − η(
M

∑
m=1

pm + Mγ), s.t.1, 2. (22)

In addition, the rate of downlink Rm,u is a non-convex function. So we first convert it
into a convex function by applying the quadratic transformation method [23]. The objective
function Rm,u can be expressed as:

R̃m,u = log2(1 + 2vm,u

√
pmDm(θu)ρ

−α
u −v2

m,uψm,u) (23)

where ψm,u=
M
∑

i=1,i 6=m
piDi(θu)ρ−α

u + σ2
0 , vm,u is the auxiliary variable which is nonnegative

and we can write the optimal value of vm,u as [23]:

vbest
m,u =

√
pmDm(θu)ρ

−α
u

ψm,u
. (24)

According to reference [23] (TH.1), we can rewrite the optimization problem in (22) as:

max
p,vm,u

M

∑
m=1

U

∑
u=1

cm,uR̃m,u − η(
M

∑
m=1

pm + γM), s.t.1′ (25)

where s.t.1′ : cm,uR̃m,u ≥ Rmin
m,u , ∑U

u=1 cm,u=1.
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It is observed that the optimization function in (25) is a convex function with respect
to pm and vm,u, respectively. Hence, we use the Lagrangian dual scheme to address this
problem. The Lagrangian function of (25) is:

F′(pm, vm,u, νm,u, χ) =
M
∑

m=1

U
∑

u=1
cm,uR̃m,u− η(

M
∑

m=1
pm + γM)+

M
∑

m=1

U
∑

u=1
νm,u(cm,uR̃m,u − Rmin

m,u )+χ(Pt −
M
∑

m=1
pm)

(26)

where νm,u ≥ 0 and χ ≥ 0 are lagrangian multipliers and are associated with constraints
in (25). Correspondingly, the lagrange dual function of (25) is formulated as:

D(νm,u, χ) = max
p,vm,u

F′(pm, vm,u, νm,u, χ) (27)

and the lagrange dual problem can be written as:

min
νm,u ,χ

D(νm,u, χ), s.t. νm,u ≥ 0, χ ≥ 0. (28)

According to the KKT conditions, we can derive the optimal power pbest
m and vbest

m,u
by equating the partial derivative of (27) to zero with respect to pm and vm,u, respectively.

Therefore, vbest
m,u =

√
pmDm(θu)ρ

−α
u

ψm,u
(see formula (24)), and the optimal power pbest

m can be

expressed as in (29), where A = 4 ln 2vm,u

√
Dm(θu)ρ

−α
u and B =

(1+ν
(t)
m,u)cm,u

M(χ(t)+η)
.

pbest
m =

A2(1+v2
m,uψm,u)

2
+2A(1+v2

m,uψm,u)

√
4A
√

Dm(θu)ρ
−α
u [ln2(1+v2

m,uψm,u)
2−2Bvm,u ]

4Avm,u
√

Dm(θu)ρ
−α
u

+
ln2(1+v2

m,uψm,u)
2−2Bvm,u

vm,u

. (29)

The values of νm,u and χ is updated by a sub-gradient-based method that guarantees
convergence [21], and the iterations can be written as:

∇ν
(t+1)
m,u = [ν

(t)
m,u − ξ

(t)
1 (cm,uR̃m,u − Rmin

m,u )]
+

∇χ(t+1) = [χ(t) − ξ
(t)
2 (Pt −

M
∑

m=1
p(t)m )]+

(30)

where [x]+ = max{x, 0}. ξ
(t)
1 and ξ

(t)
2 are iteration step sizes that should be chosen appro-

priately [22], i.e., ξ
(t)
1 = 0.1

/√
t and ξ

(t)
2 = 0.1

/√
t.

In Algorithm 1, the two sub-problems, beam allocation and power optimization are
solved in an interleave manner until convergence. For the inner loop, we calculate Q with
a given p, and calculate p with a fixed Q. For the outer loop, we calculate η and update it.
Note that as long as the goal of beam allocation and power optimization in each iteration is
to maximize the one objective function, Algorithm 1 is guaranteed to converge.

3.3. Service Ratio

It should be noted that some users might not be served due to the strategy that one
beam can only serve one user. If a user can not get service for a long time, long service
delay appears and leads to the decline of user service quality, which is undesirable for the
delay sensitive services. Hence, service delay is of great significance to evaluate system
performance for massive MIMO systems. In this paper, we also study the service ratio
problem to evaluate the service delay. The service delay is defined as the ratio of the
number of users served to the total number of users, and can be written as:
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S =
∑U

u=1 ∑M
m=1 cm,u

U
. (31)

In order to accurately calculate the service ratio, we further define the average service
ratio because the result of beam allocation is closely related to the positions of users, and
can be written as:

S̄ ∆
= E{Υu |u=1,2,...,U}[S] (32)

where Υu denotes the position of user u, and the average service ratio for over all possible
positions of the users is denoted by E{Υu |u=1,2,...,U}. Obviously, the average delay perfor-
mance depends on the average service ratio. Therefore, the higher average service ratio
leads to a better average delay performance.

Algorithm 1 Proposed algorithm

1: Initialize η = 0, maximum tolerance ε, t = 0.
2: repeat
3: Initialize any feasible p;
4: repeat
5: Solve beam allocation problem (9) with fixed p;
6: Solve power optimization problem (20) with fixed Q;
7: until convergence or t = Tmax;

8: Calculate ϕ =
M
∑

m=1

U
∑

u=1
cm,uRm,u − η(

M
∑

m=1
pm + Mγ)

9: Update

10: η = (
M
∑

m=1

U
∑

u=1
cm,uRm,u)

/
(

M
∑

m=1
pm + γM)

11: until ϕ < ε;
12: Output optimal Qbest and pbest;

4. Simulation Results and Analsis

In this section, we evaluate the proposed algorithm and provide numerical results
and behavior simulation. The key simulation parameters are summarized in Table 1.

Table 1. Simulation parameters setting. UE: User; BS: Base station; RF: Radio frequency.

Parameters Values

No. of UEs in cell (U) 10∼50
Maximum number of BS antennas (M) 256

Cell radius 150 m
mmWave frequency ( fc) 28 GHz

Maximum transmission power (Pt) 43 dBm
convergence accuracy (ε) 0.001

Rmin
m,u 2 bits/s/Hz

maximum number of iterations (Tmax) 30
power consumption of RF circuit (γ) 250 mW

Noise spectral density (σ2
0 ) −174 dBm/Hz

4.1. Performance Evaluation

Figure 1 shows the increase of system EE during each iteration, and demonstrates
the easy convergence of our proposed algorithm with Pt = 30 dBm. As can be seen
from Figure 1, the proposed algorithm converges after about t = 15 iterations. As expected,
the system EE obtained by our proposed algorithm monotonically increased with the
number of iteration increases.
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Figure 1. EE (energy efficiency) versus iterative with Pt = 30 dBm, α = 2, U = 20.

Figure 2 shows that the behavior of the proposed algorithm is almost the same as that of
ES algorithm under wide transmit powers. For example, about 30.98- and 30.86-bits/J/Hz
EE values were obtained by ES and proposed algorithms when the transmit power was
30 dBm. Besides, the result show that our proposed algorithm has better performance
than that of the greedy beam allocation method (greedy beam allocation algorithm: First,
each user is associated with its candidate beams with the highest directivity. Second, the
greedy method is associate with every user u to the beam m that provides the highest
received signal power at each step (i.e., mu = arg max

m∈M
Dm(θu) )) [17] and suboptimal beam

allocation method (suboptimal beam allocation algorithm: It employs a two-step scheme
to solve the beam allocation problems. In the first step, each user is associated with the
beam with the highest directivity. In the second step, there are U users in total, if a beam is
associated with more than one user, then it is allocated to the user with the highest received
signal power, where U − 1 comparisons are needed to find the highest received signal
power) [15]. For example, when transmit power is 30 dBm, the system EE by the proposed
algorithm is higher than the greedy beam allocation method and suboptimal beam allo-
cation method approximately by 1.23- and 2.91-bits/J/Hz, respectively. As expected, the
system EE achieved by the four algorithms is slightly decreased when the transmit power
goes large. This phenomenon is attributed to the transmit power increase which causes the
the total power consumption increase, and leads to the decrease of the system’s EE.

Figure 3 show that the system EE of the four algorithms with adifferent active number
of users when the transmit power PT = 30 dBm. As can be seen from Figure 3, the proposed
algorithm performs almost identically to the ES method, while the greedy beam allocation
and suboptimal beam allocation methods are far from the ES. For example, when the active
UEs number equal to 30 (U = 30), the achieved values of the system’s EE by using the ES
method and our proposed algorithm are 36.95- and 36.75-bit/J/Hz, respectively. A total of
98.8% of the optimal system EE is obtained by our proposed algorithm. In addition, the
result shows that the proposed algorithm has a better performance compared with the
greedy beam allocation method and suboptimal beam allocation scheme. When the active
UEs number equal to 30 (U = 30), the proposed algorithm increased the system EE of
approximately 1.82 bit/J/Hz and 3.42 bit/J/Hz compared with the greedy beam allocation
method and suboptimal beam allocation scheme, respectively. As expected, the system EEs
from the four algorithms increases when the number of users is small. When the number
of users goes large, the system EE has slightly decrease due to the tradeoff between the
ergodic sum-rate and power consumption.
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Figure 3. EE versus the number of users with α = 2, Pt = 30 dBm.

Figure 4 shows the average service ratio of three algorithms with the different number
of users at transmit power PT = 30 dBm. The figure result show that the average service ratio
of proposed algorithm and both the greedy and suboptimal beam allocation algorithms
slightly decreases with the increase of active user numbers. This is because the probability
that one beam is the best beam for multiple users increases with the number of users U.
Therefore, the average service ratio slightly decreases as U increases. In addition, it can
be found that the proposed algorithm shows a better service ratio performance than the
greedy beam allocation method and the suboptimal beam allocation scheme.

Figure 5 shows the system average service ratio of three algorithms with the different
number of BS antennas at the transmit power PT = 30 dBm. The figure result show that the
system average service ratio of the proposed algorithm and both the greedy and suboptimal
beam allocation algorithms increase when the number of BS antennas M increases. In
fact, with a large number of BS antennas M, a large number of beams can be formed
and thus the number of served users is enlarged. As a result, the average service ratio
increase as number of BS antennas M increases. In addition, we can find that the proposed
algorithm shows a higher performance in terms of average service ratio than the greedy
beam allocation algorithm with equal power and the suboptimal beam allocation algorithm
with equal power.
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Figure 4. Average service ratio versus total number of users U with α = 2, M = 64, Pt = 30 dBm.
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Figure 5. Average service ratio versus total number of antennas M with α = 2, U = 10, Pt = 30 dBm.

Figure 6 shows the system EE versus the required minimum data rate Rmin
m,u . The

figure result show that the system EE of the compared four algorithms decrease as the
minimum data rate Rmin

m,u increases. When the minimum data rate Rmin
m,u increases, the QoS

constraints is maintained by the required multiple transmit antennas and larger power.
This introduces a substantial decrease to the system EE. The gap between the four beam
allocation schemes enlarges significantly as the minimum data rate Rmin

m,u increases. Again,
the proposed algorithm provided better system EE than the greedy beam allocation method
and suboptimal beam allocation scheme in terms of the system’s EE performance at the
minimum data rate Rmin

m,u = 5 bit/s/Hz.

4.2. Computational Complexity Analysis

In this part, we analyze the computational complexity of our proposed algorithm.
For the best beam selection, we used O(M) operations to compute formula (18). Then,
we used O(MU), O(U), and O(M) operations to update Lagrange multipliers in (19).
Therefore, the number of worst operations for the best beam to select and associated user
pairing is O(MU) in each iteration. Similarly, we used O(MU) and O(U) operations to
update Lagrange multipliers in (30), and used O(MU) operations to compute formula
(29). Hence, the total number of operations for obtaining optimal power is O(MUTmax).
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Therefore, the total complexity of our proposed algorithm is O(M2U2Tmax). The com-
plexity of the ES method is TmaxO(CU

M), where Tmax is the total number of iterations and
O(CU

M) >> O(M2U2). Our proposed algorithm have a very low computational complexity
compared to the ES method.
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Figure 6. EE versus the required minimum data rate Rmin
m,u with α = 2, Pt = 30 dBm.

5. Conclusions

In this paper, we studied the problem of beam allocation and power optimization
in downlink multiuser massive MIMO system working at a mmWave frequency band.
The aim is to reduce the hardware cost and power consumption while the system’s EE
gains improvement without obvious system performance loss. We decomposed the origi-
nal non-convex optimization problem into two sub-problems, which were solved using
convex optimization techniques. The two sub-problems were beam allocation and power
optimization problems. For the beam allocation, we proposed an algorithm based on
convex optimization technique. For the power optimization, first the non-convex problem
converted into a convex problem by using a quadratic transformation scheme. Then, we
used Lagrange dual and sub-gradient methods to solve the optimization problem. In our
experiments, the proposed algorithm produced promising results and achieved comparable
performance compared to the ES algorithm at a very low computational complexity. Fur-
thermore, the proposed algorithm had a better performance than a greedy beam allocation
method and suboptimal beam allocation scheme.
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Abbreviations
The following abbreviations are used in this manuscript:

5G Fifth-Generation
MIMO Multiple-Input Multiple-Output
ES Exhaustive Search
mmWave Millimeter Wave
RF Radio-Frequency
BS Base Staion
EE Energy-Efficiency
LOS Line of Sight
UE User
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