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Genetic risk prediction and neurobiological understanding of
alcoholism
DF Levey1, H Le-Niculescu1, J Frank2, M Ayalew1, N Jain1, B Kirlin1, R Learman1, E Winiger1, Z Rodd1, A Shekhar1, N Schork3, F Kiefe4,
N Wodarz5, B Müller-Myhsok6, N Dahmen7, GESGA Consortium, M Nöthen8, R Sherva9, L Farrer9, AH Smith10, HR Kranzler11,
M Rietschel2, J Gelernter10 and AB Niculescu1,12

We have used a translational Convergent Functional Genomics (CFG) approach to discover genes involved in alcoholism, by gene-
level integration of genome-wide association study (GWAS) data from a German alcohol dependence cohort with other genetic and
gene expression data, from human and animal model studies, similar to our previous work in bipolar disorder and schizophrenia. A
panel of all the nominally significant P-value SNPs in the top candidate genes discovered by CFG (n= 135 genes, 713 SNPs) was
used to generate a genetic risk prediction score (GRPS), which showed a trend towards significance (P= 0.053) in separating
alcohol dependent individuals from controls in an independent German test cohort. We then validated and prioritized our top
findings from this discovery work, and subsequently tested them in three independent cohorts, from two continents. A panel of all
the nominally significant P-value single-nucleotide length polymorphisms (SNPs) in the top candidate genes discovered by CFG
(n= 135 genes, 713 SNPs) were used to generate a Genetic Risk Prediction Score (GRPS), which showed a trend towards significance
(P= 0.053) in separating alcohol-dependent individuals from controls in an independent German test cohort. In order to validate
and prioritize the key genes that drive behavior without some of the pleiotropic environmental confounds present in humans, we
used a stress-reactive animal model of alcoholism developed by our group, the D-box binding protein (DBP) knockout mouse,
consistent with the surfeit of stress theory of addiction proposed by Koob and colleagues. A much smaller panel (n= 11 genes, 66
SNPs) of the top CFG-discovered genes for alcoholism, cross-validated and prioritized by this stress-reactive animal model showed
better predictive ability in the independent German test cohort (P= 0.041). The top CFG scoring gene for alcoholism from the initial
discovery step, synuclein alpha (SNCA) remained the top gene after the stress-reactive animal model cross-validation. We also
tested this small panel of genes in two other independent test cohorts from the United States, one with alcohol dependence
(P= 0.00012) and one with alcohol abuse (a less severe form of alcoholism; P= 0.0094). SNCA by itself was able to separate
alcoholics from controls in the alcohol-dependent cohort (P= 0.000013) and the alcohol abuse cohort (P= 0.023). So did eight other
genes from the panel of 11 genes taken individually, albeit to a lesser extent and/or less broadly across cohorts. SNCA, GRM3 and
MBP survived strict Bonferroni correction for multiple comparisons. Taken together, these results suggest that our stress-reactive
DBP animal model helped to validate and prioritize from the CFG-discovered genes some of the key behaviorally relevant genes for
alcoholism. These genes fall into a series of biological pathways involved in signal transduction, transmission of nerve impulse
(including myelination) and cocaine addiction. Overall, our work provides leads towards a better understanding of illness,
diagnostics and therapeutics, including treatment with omega-3 fatty acids. We also examined the overlap between the top
candidate genes for alcoholism from this work and the top candidate genes for bipolar disorder, schizophrenia, anxiety from
previous CFG analyses conducted by us, as well as cross-tested genetic risk predictions. This revealed the significant genetic overlap
with other major psychiatric disorder domains, providing a basis for comorbidity and dual diagnosis, and placing alcohol use in the
broader context of modulating the mental landscape.
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INTRODUCTION

‘Drunkenness is nothing but voluntary madness.’
—Seneca

Alcohol use and overuse (alcoholism) have deep historical and
cultural roots, as well as important medical and societal
consequences.1 Whereas there is evidence for roles for both
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genes and environment in alcoholism, a comprehensive biological
understanding of the disorder has been elusive so far, despite
extensive work in the field. Most notably, there has been until
recently insufficient translational integration across functional
and genetic studies, and across human and animal model
studies, resulting in missed opportunities for a comprehensive
understanding.
As part of a translational Convergent Functional Genomics

(CFG) approach, developed by us over the last 15 years,2 and
expanding upon our earlier work on identifying genes for
alcoholism,3–5 we set out to comprehensively identify candidate
genes, pathways and mechanisms for alcoholism, integrating the
available evidence in the field to date. We have used data from a
published German genome-wide association study for
alcoholism.6 We integrated those data in a Bayesian-like manner
with other human genetic data (association or linkage) for
alcoholism, as well as human gene expression data, post-
mortem brain gene expression data and peripheral (blood and
cell culture) gene expression data. We also used relevant animal
model genetic data (transgenic and quantitative trait loci (QTL)), as
well as animal model gene expression data (brain and blood)
generated by our group and others (Figures 1 and 2). Human data
provide specificity for the illness, and animal model data provide
sensitivity of detection. Together, they helped to identify and
prioritize candidate genes for the illness using a polyevidence CFG
score, resulting in essence in a de facto field-wide integration
putting together all the available lines of evidence to date. Once
that is done, biological pathway analyses can be conducted and
mechanistic models can be constructed.
An obvious next step is developing a way of applying that

knowledge to genetic testing of individuals to determine risk for
the disorder. On the basis of our comprehensive identification of
top candidate genes described in this paper, we have chosen all
the nominally significant P-value SNPs corresponding to each of
those 135 genes from the GWAS data set used for discovery (top
candidate genes prioritized by CFG with the score of 8 and above
(≥ 50% maximum possible CFG score of 16) and assembled a
Genetic Risk Prediction panel out of those 713 SNPs. We then
developed a Genetic Risk Prediction Score (GRPS) for alcoholism
based on the presence or absence of the alleles of the SNPs
associated with the illness from the discovery GWAS, and tested
the GRPS in an independent German cohort,51 to see whether it

can differentiate alcohol-dependent subjects from controls,
observing a trend towards significance.
In order to validate and prioritize genes in this panel using a

behavioral prism, we then looked at the overlap between our
panel of 135 top candidate genes and genes changed in
expression in a stress-reactive animal model for alcoholism
developed by our group, the DBP knockout mouse.4,5 We used
this overlap to reduce our panel to 11 genes (66 SNPs).
This small panel of 11 genes was subsequently tested and

shown to be able to differentiate between alcoholics and controls
in the three independent test cohorts, one German51 and two US-
based,52 suggesting that the animal model served in essence as a
filter to identify from the larger list of CFG-prioritized genes the
key behaviorally relevant genes. Our results indicate that panels of
SNPs in top genes identified and prioritized by CFG analysis and
by a behaviorally relevant animal model can differentiate between
alcoholics and controls at a population level (Figure 3), although at

Figure 1. Convergent Functional Genomics.

Figure 2. Top candidate genes for alcoholism.
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an individual level the margin may be small (Supplementary
Figure S2). The latter point suggests that, similar to bipolar
disorder53 and schizophrenia,54 the contextual cumulative combi-
natorics of common gene variants and environment55 has a major
role in risk for illness.
Lastly, we have looked at overlap with genes for other major

psychiatric disorder domains (bipolar disorders, anxiety disorders,
schizophrenias) from our previous studies and provide evidence

for shared genes (Figures 4 and 5) as well as shared genetic risk
(Figure 6).
Overall, this work sheds light on the genetic architecture and

pathophysiology of alcoholism, provides mechanistic targets for
therapeutic intervention and has implications for genetic testing
to assess risk for illness before the illness manifests itself clinically,
opening the door for enhanced prevention strategies at a young
age. As alcoholism is a disease that does not exist if the exogenous

Figure 3. Genetic Risk Prediction using a panel of top candidate genes for alcoholism (GRPS-11). Testing in independent cohorts 3 and 4.

Figure 4. Overlap of alcoholism versus other major psychiatric
disorders. Top candidate genes for alcoholism identified by CFG
(n= 135) in the current study versus top candidate genes for other
psychiatric disorders and a stress-driven animal model of alcoholism
(DBP knockout mouse) from our previous work.

Figure 5. Mindscape (mental landscape)-dimensional view of genes
that may be involved in alcoholism and other major psychiatric
disorders.
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agent (alcohol) is not consumed, the use of genetic information to
inform lifestyle choices could be quite powerful.

MATERIALS AND METHODS
Human subject cohorts
Discovery cohort (cohort 1): GWAS for alcohol dependence from Germany.
Data for the discovery CFG work (Cohort 1) were obtained from a GWA
study of self-reported German descent subjects, consisting of 411 alcohol-
dependent male subjects and 1307 population-based controls (663 male
and 644 female subjects).6 Individuals were genotyped using HumanHap
550 BeadChips (Illumina Inc, San Diego, CA, USA). SNPs with a nominal
allelic P-value o0.05 were selected for analysis. No Bonferroni correction
was performed.

Test cohort 2 (alcohol dependence, Germany). An independent test cohort
of German descent51 consisting of 740 alcohol-dependent male subjects
and 861 controls (276 male and 585 female subjects) was used for testing
the results of the discovery analyses. Individuals were genotyped using
Illumina Human610Quad or Illumina Human660w Quad BeadChips
(Illumina Inc). The controls were genotyped using Illumina HumanHap550
Bead Chips.

Test cohort 3 (alcohol dependence, United States) and test cohort 4 (alcohol
abuse, United States). The sample consisted of small nuclear families
originally collected for linkage studies, and unrelated individuals,
Caucasians and African-American, male and female subjects. The subjects
were recruited at five US clinical sites: Yale University School of Medicine
(APT Foundation; New Haven, CT, USA), the University of Connecticut
Health Center (Farmington, CT, USA), the University of Pennsylvania
Perelman School of Medicine (Philadelphia, PA, USA), the Medical
University of South Carolina (Charleston, SC, USA) and McLean Hospital
(Belmont, MA, USA). All subjects were interviewed using the Semi-
Structured Assessment for Drug Dependence and Alcoholism to derive
diagnoses for lifetime alcohol dependence, alcohol abuse and other major
psychiatric traits according to the DSM-IV criteria. There were 1687 male
subjects with alcohol dependence, 366 male subjects with alcohol abuse
and 475 male controls. There were 1081 female subjects with alcohol
dependence, 234 female subjects with alcohol abuse and 786 female
controls (Table 1). Individuals were genotyped on the Illumina
HumanOmni1-Quad v1.0 microarray (988 306 autosomal SNPs). GWAS
genotyping was conducted at the Yale Center for Genome Analysis and
the Center for Inherited Disease Research. Genotypes were called using the

Figure 6. Genetic load for bipolar disorder and schizophrenia in
alcoholism. A total of 34 out of 66 SNPs in our alcohol GRPS-11 panel
(current work; in n= 10 genes), 42 out of 224 SNPs in our bipolar
GRPS53 (in n= 34 genes) and 151 out of 542 SNPs in our
schizophrenia GRPS54 (in n= 35 genes) were present and tested in
the alcohol cohorts 3 and 4. See also Supplementary Table S7.
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GenomeStudio software V2011.1 and genotyping module version 1.8.4
(Illumina Inc).52

Gene identification in discovery cohort 1
Quality control. Genotype data had been filtered using stringent quality-
control criteria as described earlier51 and accounted for call rate,
population substructure, cryptic relatedness, minor allele frequency and
batch effects.

Association test in discovery sample. Association testing was performed
using PLINK 1.07 (http://pngu.mgh.harvard.edu/ ~ purcell)56 software
package. A logistic regression modelling approach was applied to correct
for population stratification. Therefore, principal component analysis was
conducted considering only independent autosomal SNPs with minor
allele frequency >0.05 and pairwise R2o0.05 within a 200-SNP window. LD
filtering resulted in a set of 28 505 SNPs used for principal component
analysis, which was carried out using GCTA 1.04 (http://www.complex-
traitgenomics.com/software/gcta/).57 The first two principal components
resulting from this analysis were included as covariates in the logistic
regression model.

Assignment of SNPs to genes. Genes corresponding to SNPs were
identified initially using the annotation file from the Illumina website
(http://www.illumina.com, HumanHAP550v3_Gene_Annotation). Next,
genes were cross-checked with GeneCards (http://www.genecards.org) to
ensure that each gene symbol was current. Any gene symbol that matched
to a different gene symbol in Gene Cards was checked to verify
chromosome number and location match with the original gene, and
was replaced with the current GeneCards gene symbol. SNPs from the
original annotation files that had no gene matches in the annotation file
and UCSC Genome Browser (that is, not falling within an exon or intron of
a known gene) were assumed to regulate and thus implicate the gene
closest to the SNP location, using the refSNP database from NCBI (http://
www.ncbi.nlm.nih.gov/snp/?SITE =NcbiHome&submit =Go).

Convergent functional genomic analyses
Databases. We have established in our laboratory (Laboratory of
Neurophenomics, Indiana University School of Medicine, www.neurophe-
nomics.info) manually curated databases of all the human gene expression
(post-mortem brain, blood and cell cultures), human genetic (association,
copy number variants (CNVs) and linkage), animal model genetic and
animal model gene expression studies published to date on psychiatric
disorders. Only the findings deemed significant in the primary publication,
by the study authors, using their particular experimental design and
thresholds, are included in our databases. Our databases include only
primary literature data and do not include review papers or other
secondary data integration analyses to avoid redundancy and circularity.
These large and constantly updated databases have been used in our CFG
cross-validation and prioritization (Figure 1).

Human post-mortem brain, blood and other peripheral tissue gene expression
evidence. Information about genes was obtained and imported in our
databases searching the primary literature with PubMed (http://ncbi.nlm.
nih.gov/PubMed), using various combinations of keywords. For this work,
the keywords were as follows: alcohol, alcoholism, human, brain,
postmortem, lymphocytes, blood, cells and gene expression.

Human genetic evidence (association, linkage). To designate convergence
for a particular gene, the gene had to have independent published
evidence of association or linkage for alcoholism. We sought to avoid using
any association studies that included subjects who were also included in
our discovery or test cohorts. For linkage, the location of each gene was
obtained through GeneCards (http://www.genecards.org), and the sex-
averaged cM location of the start of the gene was then obtained through
http://compgen.rutgers.edu/old/map-interpolator/. For linkage conver-
gence, per our previously published criteria, the start of the gene had to
map within 5 cM of the location of a marker linked to the disorder with a
lod score of ≥ 2.

Animal model brain and blood gene expression evidence. For animal model
brain and blood gene expression evidence, we have used our own rat

model data sets,3 as well as published reports from the literature curated in
our databases.
The rat animal model experimental work from our group was previously

described.3 The experimental approaches used to produce the animal
model data for CFG analysis were carried out in two rat lines selectively
bred for divergent alcohol preference: inbred alcohol-preferring (iP) versus
inbred alcohol-non-preferring (iNP) rats. Following five brain regions were
chosen for gene expression studies in these rat lines: the frontal cortex,
amygdala, caudate–putamen, nucleus accumbens and hippocampus.
Animal studies, as well as human imaging and post-mortem analyses,
had previously provided evidence that these regions are implicated in
alcoholism.
Data for the analysis came from studies of three experimental

paradigms. Paradigm 1 examined basal level of gene expression in the
brains of the alcohol-naive iP and iNP lines of rats. This basal comparison
was performed to determine innate differences between these two lines
with a marked divergence in the willingness to consume alcohol. We
hypothesized that the innate differences in gene expression between the
iP and iNP would involve some of the genes associated with an increased
susceptibility for alcohol dependence. Paradigm 2 examined the effects of
chronic 24-h free-choice alcohol consumption on gene expression in iP rats
compared with alcohol-naive iP rats. This paradigm looked for gene
expression changes in the brain associated with the direct influence of
peripherally self-administered alcohol in the genetically susceptible rats. In
Paradigm 3, iP rats were allowed to self-infuse alcohol directly into the
posterior ventral tegmental area, the originating area of the mesolimbic
dopamine system. The advantage of this latter procedure is that it isolates
the neurocircuitry involved in alcohol reinforcement, and eliminates the
peripheral effects of alcohol. Following the establishment of alcohol self-
administration into the posterior VTA, gene expression levels in target
brain areas were measured and compared with P rats that received
artificial cerebral spinal fluid infusions into the posterior VTA.

Animal model genetic evidence. To search for mouse genetic evidence
(transgenic and QTL) for our candidate genes, we utilized PubMed as well
as the Mouse Genome Informatics (http://www.informatics.jax.org; Jackson
Laboratory, Bar Harbor, ME, USA) database, and used the search ‘Genes
and Markers’ form to find transgenic in categories for abnormal alcohol
consumption, alcohol preference, alcohol aversion, impaired behavioral
response to alcohol, hyperactivity elicited by ethanol administration and
enhanced behavioral response to alcohol. For QTL convergence, the start
of the gene had to map within 5 cM of the location of these markers.

CFG scoring. We used a nominal P-value threshold (having at least one
SNP with Po0.05) for including genes from the discovery GWAS in the
CFG analysis. No Bonferroni correction was performed.
Internal score: For each of these genes implicated by SNPs, we
calculated the percent of SNPs that were nominally significant (ratio of
number of nominally significant SNPs over total number of SNPs tested for
that gene, multiplied by 100), obtaining a distribution of values. The genes
in the top 0.1% of the distribution were given an internal score of 4 points,
those in the top 5% of the distribution were given 3 points and the
remaining genes all received 2 points. The internal score provides a
prioritization of genes based on GWAS results and might prioritize genes
that have higher biological relevance and heterogeneity.
External score: Human and animal model data, genetic and gene
expression were integrated and tabulated, resulting in a polyevidence CFG
score. All six cross-validating lines of evidence (human data and animal
model data) were weighted such that evidence from human studies was
prioritized 2x over evidence from animal models, gene expression
evidence was prioritized 2x over genetic evidence and brain evidence
was prioritized 2x over peripheral tissue evidence (Figure 1). For human
genetic evidence, 2 points were assigned if it was from association and 1
point if it was from linkage studies. For animal model genetic evidence, 2
points if it was from transgenic and 1 point if it was from QTL. The
maximum possible external score for each gene is 12.
We have capped (one positive study scores maximum points) the

hypothesis-driven candidate gene genetic association evidence and
animal model genetic (transgenic) lines of evidence, regardless of how
many other such studies support that gene, to avoid potential ‘popularity’
biases, where some genes are more studied than others. For discovery-
driven gene expression studies, we have capped (one positive study scores
maximum points) the human post-mortem brain work because of the
paucity of brain collections and the fact that such studies often use the
same brain bank sources. However, we have not similarly capped the
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animal model brain and blood gene expression evidence, as such studies
are not only discovery-based, but use independent cohorts of animals.
These were scored differentially, based on the number of studies showing
evidence for a given gene: three or more different studies received full
maximum points, two studies 0.75 of maximum points and one study 0.5
of the maximum points. Our group generated data sets for three
independent animal studies for this analysis (see above).
The more lines of evidence for a gene—that is, the more times a gene

shows up as a positive finding across independent studies, platforms,
methodologies and species—the higher its external CFG score (Figure 1).
This is similar conceptually to the Google PageRank algorithm, in which the
more links to a page, the higher it comes up on the search prioritization
list. It has not escaped our attention that other ways of weighing the lines
of evidence may give slightly different results in terms of prioritization, if
not in terms of the list of genes per se. Nevertheless, we think this simple
scoring system provides a good separation of genes, with specificity
provided by human data and sensitivity provided by animal model data.

Prioritizing top alcoholism candidate genes that overlap with a stress-reactive
animal model of alcoholism. Stress has been proposed as a driver of
alcoholism, notably by Koob and colleagues,58,59 as well as by Heilig and
colleagues.60 We have previously identified the circadian clock gene DBP
as a candidate gene for bipolar disorder,61 as well as for alcoholism,3 using
a CFG approach. In follow-up work, we established mice with a
homozygous deletion of DBP (DBP KO) as a stress-reactive genetic animal
model of bipolar disorder and alcoholism.4 We reported that DBP KO mice
have lower locomotor activity, blunted responses to stimulants and gain
less weight over time. In response to a stress paradigm that translationally
mimics what can happen in humans (chronic stress-isolation housing for
4 weeks, with acute stress, on top of that- experimental handling in week
3), the mice exhibit a diametric switch in these phenotypes. DBP KO mice
are also activated by sleep deprivation, similar to bipolar patients, and that
activation is prevented by treatment with the mood stabilizer drug
valproate. Moreover, these mice show increased alcohol intake following
exposure to stress. Microarray studies of brain and blood revealed a
pattern of gene expression changes that may explain the observed
phenotypes. CFG analysis of the gene expression changes identified a
series of candidate genes and blood biomarkers for bipolar disorder,
alcoholism and stress reactivity. Subsequent studies by us showed that
treatment with the omega-3 fatty acid docosahexaenoic acid (DHA)
normalized the gene expression (brain and blood) and behavioral
phenotypes of this mouse model, including reducing alcohol
consumption.5

We examined the overlap between the top candidate genes for
alcoholism from the current analysis and the top candidate genes from the
DBP KO stress mice, thus reducing the list from 135 to 11 (Figure 4).

Pathway analyses. IPA 9.0 (Ingenuity Systems, www.ingenuity.com, Red-
wood City, CA, USA) was used to analyze the biological roles, including top
canonical pathways and diseases, of the candidate genes resulting from
our work (Table 2 and Supplementary Table S2), as well as used to identify
genes in our data sets that are the targets of existing drugs
(Supplementary Table S3). Pathways were identified from the IPA library
of canonical pathways that were most significantly associated with genes
in our data set. The significance of the association between the data set
and the canonical pathway was measured in 2 ways: (1) a ratio of the
number of molecules from the data set that map to the pathway divided
by the total number of molecules that map to the canonical pathway is
displayed; (2) Fisher’s exact test was used to calculate a P-value
determining the probability that the association between the genes in
the data set and the canonical pathway is explained by chance alone. We
also conducted a KEGG pathway analysis through the Partek Genomic
Suites 6.6 software package, Partek Inc, Saint Louis, MO, USA), and GeneGo
MetaCore from Thomson Reuters, New York, NY, USA) pathway analyses
(https://portal.genego.com/).

Epistasis testing. The test cohort 2 data were used to test for epistatic
interactions among the best P-value SNPs in the 11 top candidate genes
from our work. SNP–SNP allelic epistasis was tested for each distinct pair of

SNPs between genes, using the PLINK software package (Supplementary
Table S5).

Genetic risk prediction
The software package PLINK 1.07 (http://pngu.mgh.harvard.edu/ ~ pur-
cell)56 was used to extract individual genotype information for each
subject from the test cohorts 2, 3 and 4 data files.
As we had previously performed for bipolar disorder and schizophrenia,

we developed a polygenic GRPS for alcoholism based on the presence or
absence of the alleles of the SNPs associated with illness in the discovery
GWAS cohort 1, and tested the GRPS in three independent cohorts, from
different geographic areas, ethnicities and different types of alcoholism.
We tested two panels: a larger panel containing all the nominally
significant SNPs in top CFG scoring candidate genes (n=135) from the
discovery GWAS1 in the top CFG-prioritized genes (Supplementary Tables
S1 and S4) and a smaller one (n= 11) containing genes out of the larger
panel that were cross-validated using an animal model of alcoholism.
Of note, our genes, SNP panels and choice of affected alleles were based

solely on analysis of the discovery GWAS1, which is our discovery cohort,
completely independently from the test cohorts. Each SNP has two alleles
(represented by base letters at that position). One of them is associated
with the illness (affected), the other not (non-affected), based on the odds
ratios from the discovery GWAS1. We assigned the affected allele a score of
1 and the non-affected allele a score of 0. A two-dimensional matrix of
subjects by GRP panel alleles is generated, with the cells populated by 0 or
1. A SNP in a particular individual subject can have any permutation of 1
and 0 (1 and 1, 0 and 1, 0 and 0). By adding these numbers, the minimum
score for a SNP in an individual subject is 0, and the maximum score is 2.
By adding the scores for all the alleles in the panel, averaging that and
multiplying by 100, we generated for each subject an average score
corresponding to a genetic loading for disease, which we call Genetic Risk
Predictive Score.53,54

To test for significance, a one-tailed t-test with unequal variance was
performed between the alcoholic subjects and the control subjects,
looking at differences in GRPS.

Receiver operating characteristic curves. Receiver operating characteristic
curves were plotted using IBM SPSS Statistics 21. Diagnosis was converted
to a binary call of 0 (control) or 1 (alcohol-dependent or abuser) and
entered as the state variable, with calculated GRPS entered as the test
variable (Supplementary Figure S2).

RESULTS
Top candidate genes
To minimize false-negatives, we initially cast a wide net, using as a
filter a minimal requirement for a gene to have both some GWAS
evidence and some additional independent evidence. Thus, out of
the 6085 genes with at least a SNP at Po0.05 in the discovery
GWAS cohort 1, we generated a list of 3142 genes that also had
some additional line of evidence (human or animal model data),
implicating them in alcoholism (CFG score ≥ 2.5 (≥ 2 internal)
+(≥ 0.5 external)). This suggests, using these minimal thresholds
and requirements, that the repertoire of genes potentially
involved directly or indirectly in alcohol consumption and
alcoholism may be quite large, similar to what we have previously
seen for bipolar disorder62 and schizophrenia.54 To minimize false-
positives, we used an internal score based on percent of SNPs in a
gene that were nominally significant, with 4 points for those in the
top 0.1% of the distribution (n= 77), 3 points for those in the top
5% of the distribution (n= 561) and 2 points for the rest of the
nominally significant SNPs (n= 5447). We then used the CFG
analysis and scoring integrating multiple lines of evidence to
prioritize this list of genes (Figure 1) and focused our subsequent
analyses on only the top CFG scoring candidate genes. Overall,
135 genes had a CFG score of 8 and above (≥ 50% of maximum
possible score of 16).
Of note, there was no correlation between CFG prioritization

and gene size, thus excluding a gene-size effect for the observed
enrichment (Supplementary Figure S1).
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Biological pathways and drug targets
Pathway analyses were carried out on the top candidate genes
(Table 2). Notably, Gαi signaling, cocaine addiction and transmis-
sion of nerve impulses were the top biological pathways in
alcoholism, which may be informative for treatments and drug
discovery efforts by pharmaceutical companies. Of note, these top
candidate genes were identified and prioritized only for evidence
for alcoholism before pathway analyses; therefore, the overlap
with cocaine addiction is a completely independent result,
suggesting a shared drive and neurobiology. Consistent with that,
two of our 135 top candidate genes for alcoholism (CPE and VWF)
had SNPs with Po10− 5 in a recent GWAS of cocaine addiction.63

Some of the top alcohol candidate genes have prior evidence of
being modulated by the omega-3 fatty acid DHA in our DBP
mouse animal model (Table 3 and Supplementary Table S1). That
is of particular interest, as we have previously shown that
treatment with the omega-3 fatty acid DHA decreased alcohol
consumption in that animal model, as well as in another
independent animal model, the alcohol-preferring P rats.5

Omega-3 fatty acids, particularly DHA, have been described to
have alcoholism, mood, psychosis and suicide-modulating proper-
ties, in preclinical models as well as some human clinical trials and
epidemiological studies. For example, deficits in omega-3 fatty
acids have been linked to increased depression and aggression in
animal models64,65 and humans.66,67 DHA prevents ethanol
damage in vitro in rat hippocampal slices.68 Omega-3 supple-
mentation can prevent oxidative damage caused by prenatal
alcohol exposure in rats.69 Of note, deficits in DHA have been
reported in erythrocytes70 and in the post-mortem orbitofrontal
cortex of patients with bipolar disorder, and were greater in those
that had high versus those that had low alcohol abuse.71 Low DHA
levels may be a risk factor for suicide.72,73 Omega-3 fatty acids
have been reported to be clinically useful in the treatment of both
mood74–77 and psychotic disorders.78–80

Other existing pharmacological drugs that modulate alcohol
candidate genes identified by us include, besides benzodiaze-
pines, dopaminergic agents, glutamatergic agents, serotonergic
agents, as well as statins (Supplementary Table S3).

Genetic risk prediction score
Once the genes involved in a disorder are identified, and
prioritized for likelihood of involvement, then an obvious next
step is developing a way of applying that knowledge to genetic
testing of individuals to determine risk for the disorder. On the
basis of our identification of top candidate genes described above
using CFG, we pursued a polygenic panel approach, with digitized
binary scoring for presence or absence, similar to the one we have
devised and used in the past for biomarkers testing53,81 and for
genetic testing in bipolar disorder53 and schizophrenia.54 Some-
what similar approaches but without CFG prioritization, attempted
by other groups, have been either unsuccessful82 or have required
very large panels of markers.83

We chose all the nominally significant P-value SNPs (Po0.05) in
each of our top CFG-prioritized genes (n= 135 with CFG score ≥8;
Supplementary Table S1) in the GWAS1 data set used for
discovery, and assembled a GRPS-135 panel out of those SNPs
(Table 4). We then tested the GRPS-135 in the independent
German test cohort 2, based on the presence or absence of the
alleles of the SNPs associated with the illness, comparing the
alcoholic subjects to controls (Table 4), and showed that, although
there was a trend, we were not able to distinguish alcoholics from
controls in both independent test cohorts.
We then prioritized a smaller panel of 11 genes (Table 3) out of

this larger panel, by using as a cross-validator the top genes from
a stress-reactive mouse animal model for alcoholism, the DBP
knockout mouse4 (Figure 4). The small panel (GRPS-11) showed

more robust results than the larger panel (Table 4), suggesting
that it captures the key behaviorally relevant genes.

DISCUSSION
Our CFG approach helped to prioritize a very rich-in-signal and
biologically interesting set of genes (Table 3 and Supplementary
Table S1). Some, such as SNCA, CPE, DRD2 and GRM3, have weaker
evidence based on the GWAS data but strong independent
evidence in terms of gene expression studies and other prior
human or animal genetic work. Conversely, some of the top
previous genetic findings in the field,84 such as ADH1C85 (CFG
score of 9), GABRA286 (CFG score of 8), as well as AUTS2 (CFG score
of 7), CHRM2 and KCNJ6 (CFG scores of 4) have fewer different
independent lines of evidence, and thus received a lower CFG
prioritization score in our analysis (Supplementary Table S1),
although they are clearly involved in alcoholism-related processes.
Whereas we cannot exclude that more recently discovered genes
have had less hypothesis-driven work performed and thus might
score lower on CFG, it is to be noted that the CFG approach
integrates predominantly non-hypothesis-driven, discovery-type
data sets, such as GWAS data, linkage, quantitative traits loci and,
particularly, gene expression. We also cap each line of evidence
from an experimental approach (Figure 1), to minimize any
‘popularity’ bias, whereas multiple studies of the same kind are
conducted on better-established genes. In the end, it is gene-level
reproducibility across multiple approaches and platforms that is
built into the approach and gets prioritized most by CFG scoring
during the discovery process. Our top results subsequently show
good reproducibility and predictive ability in independent cohort
testing, the litmus test for any such work.
At the very top of our list of candidate genes for alcoholism,

with a CFG score of 13, we have SNCA, a pre-synaptic chaperone
that has been reported to be involved in modulating brain
plasticity and neurogenesis, as well as neurotransmission,
primarily as a brake.87,88 On the pathological side, low levels of
SNCA might offer less protection against oxidative stress,89

whereas high levels of SNCA may have a role in neurodegenera-
tive diseases, including in Parkinson disease. SNCA has been
identified as a susceptibility gene for alcohol cravings7 and
response to alcohol cues.90 The evidence provided by our data
and other previous human genetic association studies suggest a
genetic rather than purely environmental (alcohol consumption
and stress) basis for its alteration in disease, and its potential utility
as trait rather than purely state marker.
Alcoholics carry a genetic variant that leads to reduced baseline

expression of SNCA.8 SNCA is also downregulated in expression in
the frontal cortex and caudate–putamen of inbred alcohol-
preferring rats,17 as well as in the brain (amygdala) and blood of
our stress-reactive DBP animal model of alcoholism, before
exposure to any alcohol. SNCA is upregulated in expression in
blood in human alcoholism,12,13 as well as in the blood of
monkeys consuming alcohol, and in rats after alcohol administra-
tion.3 Thus, it may serve as a blood biomarker. Overall, we may
infer that, whereas low levels of SNCA may predispose to cravings
for alcohol and consequent alcoholism, possibly mediated
through increased neurobiological activity and drive (the SNCA
deficit hypothesis), excessive alcohol consumption then increases
SNCA expression beyond that seen in non-alcohol-consuming
controls, potentially compounding risk for neurodegenerative
diseases in individuals that have mutations that lead to its
aggregation. This observation is also biologically consistent with
the fact that dementia is often observed late in the course of
alcohol dependence.
GFAP (glial fibrillary acidic protein), a top candidate gene with a

CFG score of 9.5, is an astrocyte intermediate filament-type
protein involved in neuron–astrocyte interactions, cell adhesion,
process formation and cell–cell communication. It is decreased in
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expression in post-mortem brain of alcoholics, but increased in
expression in brains of animal models of predisposition to
alcoholism, before exposure to alcohol (Table 3). This is consistent
with a model for increased physiological robustness in individuals
predisposed to alcoholism,3 as well as with the neurodegenerative
consequences of protracted alcohol use.
DRD2 (dopamine receptor D2), another top candidate gene with

a CFG score of 9, has prior human genetic association evidence. It
is reduced in expression in the frontal cortex in the human brain
from alcoholics, as well as in the DBP animal model before any
exposure to alcohol. One possible interpretation would be that
lower levels of dopamine receptors are associated with reduced
dopaminergic signaling and anhedonia, leading individuals to
overcompensate by alcohol and drug abuse. Another interpreta-
tion, consistent with the low SNCA and consequently higher
neurotransmitter (including dopamine) levels, would be that these
individuals are in fact in a compulsive, hyperdopaminergic state,
which drives them to hedonic activities and leads to compensa-
tory homeostatic downregulation of their DRD2 receptors.
Consistent with this later scenario, mice that have a constitutive
knockout of their DRD2 receptors, not because of a hyperdopa-
minergic state, in fact consume less alcohol,29 unless they are
exposed to stress.91

Another top candidate gene, GRM3, is also involved in
neurotransmitter signaling. Prior evidence in the field had
implicated another metabotropic glutamate receptor, GRM2.92

Other top candidate genes in the panel (MOBP, MBP and MOG)
are involved in myelination (Table 3). They are decreased in
expression in the prefrontal cortex of human alcoholics, as well as
in our stress-reactive DBP animal model of alcoholism, before
exposure to any alcohol. Decreased myelination may lead to
decreased connectivity. Interestingly, MOBP and MBP are
increased in expression in the amygdala in the DBP mice, opposite
to the direction of change in the PFC, consistent with a frontal

deactivation and a limbic hyperactivity, which could lead to
impulsivity.

Epistasis testing of top candidate genes for alcoholism
For the top 11 candidate genes, best P-value SNPs from GWAS1
were used to test for gene–gene interactions in GWAS2
(Supplementary Table S5). Nominally significant interactions were
found between SNPs in SNCA and RXRG, DRD2 and SYT1, MOBP
and TIMP2. As a caveat, the P-value was not corrected for multiple
comparisons. The corresponding genes merit future follow-up
work to elucidate the biological and pathophysiological relevance
of their interactions.

Pathways and mechanisms
Our pathway analysis (Table 2 and Supplementary Table S2)
results are consistent with the accumulating evidence about the
role of neuronal excitability and signaling in alcoholism.83,93,94

Overlap with other psychiatric disorders
Despite using lines of evidence for our CFG approach that have to
do only with alcoholism, the list of genes identified has a notable
overlap at a pathway analysis level (Table 2B and Supplementary
Table S2B) and at a gene level (Figures 4 and 5) with other
psychiatric disorders. This is a topic of major interest and debate in
the field. We demonstrate an overlap between top candidate
genes for alcoholism and top candidate genes for schizophrenia,
anxiety and bipolar disorder, previously identified by us through
CFG (Figure 4), thus providing a possible molecular basis for the
frequently observed clinical comorbidity and interdependence
between alcoholism and those other major psychiatric disorders,
as well as cross-utility of pharmacological agents. Moreover, we
tested in alcoholics genetic risk predictive panels for bipolar

Table 4. Genetic Risk Prediction Score (GRPS)-Panels from Discovery Cohort 1

Test in cohort 2
alcohol-dependent versus control

GRPS-135,
genes with CFG score of ≥ 8
all nominally significant SNPs in each gene (n= 713)

P= 0.053
(135 genes, 713 SNPs)

GRPS-11, top animal model (DBP mouse) prioritized genes
out of genes with CFG score of ≥ 8
all nominally significant SNPs in each gene (n= 66)

P= 0.041
(11 genes, 66 SNPs)

Test in cohort 3
alcohol-dependent versus control

GRPS-11,
top animal model (DBP mouse) prioritized genes
out of genes with CFG score of ≥ 8
all nominally significant SNPs in each gene (n= 66)

P= 0.00012
(10 genes, 34 SNPs present)

GRPS-SNCA,
top CFG gene
all nominally significant SNPs in it (n= 4)

P= 0.000013
(1 gene, 1 SNP rs17015888 present)

Test in cohort 4
alcohol abuse versus control

GRPS-11,
top animal model (DBP mouse) prioritized genes
out of genes with CFG score of ≥ 8
all nominally significant SNPs in each gene (n= 66)

P= 0.0094
(10 genes, 34 SNPs present)

GRPS-SNCA,
top CFG gene
all nominally significant SNPs in it (n= 4)

P= 0.023
(1 gene, 1 SNP rs17015888 present)

Abbreviations: CFG, Convergent Functional Genomics; DBP, DNA-box-binding protein; SNCA, synuclein alpha; SNP, single-nucleotide length polymorphism.
Differentiation between alcoholics and controls in three independent test cohorts using, GRPS-135, a panel composed of all the nominally significant SNPs
from GWAS1 in the top candidate genes prioritized by CFG; GRPS-11, a panel additionally prioritized by a stress-reactive animal model for alcoholism, the DBP
KO-stressed mouse; and GRPS-SNCA, the top candidate gene from our analyses. P-values depict one-tailed t-test results between alcoholics and controls.
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Table 5. Individual top genes and genetic risk prediction in independent cohorts

Gene/SNPs CFG score Mean GRPS t-test

Control (n= 861) Alcohol dependence cohort 2 (n= 740)

(A) Test cohort 2
Panel of 11 top genes
66 SNPs ≥8 53.98 54.61 0.041

SNCA
rs7668883
rs17015888
rs17015982
rs6532183

13 93.93 92.84 0.086

GFAP
rs3744473
rs3169733
rs736866
rs744281

9.5 63.99 64.69 0.303

DRD2
rs4648317
rs4938019

9 13.07 15.51 0.024

GRM3
rs17160519
rs6944937
rs13236080
rs17315854
rs12668989
rs41440
rs2373124
rs13222675
rs2708553
rs12673599
rs4236502
rs1554888
rs10499898
rs1527769
rs17161018

9 55.44 54.94 0.271

MBP
rs470131
rs2282566
rs736421
rs1789094
rs9951586
rs1667952
rs1789105
rs1789103
rs1812680
rs1789139
rs4890912
rs9947485
rs1562771
rs1015820
rs1124941
rs11877526

8.5 44.92 47.07 0.002

MOBP
rs562545
rs2233204

8.5 49.88 49.93 0.487

GNAI1
rs4731111
rs6466884
rs7803811
rs17802148
rs7805663
rs10486920
rs2523189
rs2886611
rs2886609
rs12706724
rs4731302

8 72.97 72.71 0.393

MOG
rs3117292
rs2747442
rs3117294

8 34.53 34.56 0.493

RXRG
rs10800098 8 6.04 5.27 0.174

SYT1
rs1569033
rs10735416
rs1245810
rs1245819
rs1268463

8 39.16 40.89 0.113
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disorder53 and for schizophrenia54 generated in previous studies
by us, and show that they are significantly different in alcoholics
versus controls (Figure 6), beyond the overlap in genes with
alcohol. There seems to be an increased genetic load for bipolar

disorder, consistent with increased drive, and a decreased genetic
load for schizophrenia, consistent with increased connectivity
before alcohol use. These results led us to develop a heuristic,
testable model of alcoholism (Figure 5). Some people may drink to

Table. 5. (Continued)

Gene/SNPs CFG score Mean GRPS t-test

Control (n= 861) Alcohol dependence cohort 2 (n= 740)

rs1245840
rs10861755

TIMP2
rs7502935 8 67.65 70.61 0.038

Gene/SNPs CFG
score

Mean GRPS t-test

Control
(n=1261)

Alcohol dependence cohort 3
(n=2768)

Alcohol abuse cohort 4
(n= 600)

Alcohol dependence
cohort 3

Alcohol abuse
cohort 4

(B) Test cohorts 3 and 4
Panel of 10 top genes
34 SNPs ≥ 8 47.58 48.51 48.49 0.00012 0.0094

SNCA
rs17015888 13 72.28 76.96 75.58 0.000013 0.023

GFAP
rs3169733 9.5 58.92 60.38 60.17 0.042 0.158
rs736866

DRD2
rs4648317 9 15.38 14.92 15.61 0.293 0.429

GRM3
rs17160519 9 35.13 37.38 35.55 0.000061 0.309
rs6944937
rs17315854
rs4236502

MBP
rs470131
rs2282566
rs736421
rs1789094
rs9951586
rs1789103
rs4890912
rs9947485
rs1124941

8.5 47.23 48.01 48.31 0.0443 0.059

MOBP
rs562545
rs2233204

8.5 50.28 50.80 50.75 0.233 0.337

GNAI1
rs4731111
rs6466884
rs17802148
rs10486920
rs2523189
rs2886611
rs2886609

8 61.58 63.03 62.87 0.006435 0.072

MOG
rs3117292
rs2747442
rs3117294

8 48.78 46.44 46.08 0.020216 0.056

RXRG
rs10800098 8 2.62 3.42 3.33 0.024279 0.126

SYT1
rs1569033
rs1245819
rs1268463
rs10861755

8 41.56 42.48 44.25 0.11474 0.0087

Abbreviations: GRPS, Genetic Risk Prediction Score; SNCA, synuclein alpha; SNP, single-nucleotide length polymorphism. Italic, nominally significant; bold italic,
survived Bonferroni correction.
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be calm, mitigating the effects of stress and anxiety, some people
may drink to be happy, the common drive with bipolar disorder,
and some people may drink to be drunk, to disconnect from
reality and/or get unstuck from internal obsessions and
ruminations.

Genetic risk prediction
Of note, our SNP panels and choice of affected alleles were based
solely on analysis of the discovery GWAS, completely indepen-
dently from the test cohorts. Our results show that a relatively
limited and well-defined panel of SNPs identified based on our
CFG analysis could differentiate between alcoholism subjects and
controls in three independent cohorts. The fact that our genetic
testing worked for both alcohol dependence and alcohol abuse
suggests that these two diagnostic categories are actually
overlapping, supporting the DSM-V reclassification of a single
category of alcohol use disorders.

Reproducibility among studies
Our work provides striking evidence for the advantages,
reproducibility and consistency of gene-level analyses of data, as
opposed to SNP level analyses, pointing to the fundamental issue
of genetic heterogeneity at a SNP level. In fact, it may be that the
more biologically important a gene is for higher mental functions,
the more heterogeneity it has at a SNP level and the more
evolutionary divergence, for adaptive reasons. On top of that, CFG
provides a way to prioritize genes based on disease relevance, not
study-specific effects (that is, fit-to-disease as opposed to fit-to-
cohort). Reproducibility of findings across different studies,
experimental paradigms and technical platforms is deemed more
important (and scored as such by CFG) than the strength of
finding in an individual study (for example, P-value in a GWAS).

Potential limitations and confounds
The GWAS study (cohort 1) on which our discovery was based
contained males as probands but contained males and females as
controls. This was the case for the German test cohort (cohort 2) as
well. It is possible that some of the nominally significant SNPs
identified in the discovery GWAS have to do with gender
differences rather than to alcoholism per se, or at least may have
to do with male alcoholism. Stratification across gender and
ethnicities may also be a factor in our test cohorts 3 and 4
(Table 1). The issue of possible ethnicity differences in alleles,
genes and the consequent neurobiology may need to be explored
more in the future, with larger sample sizes, and with environ-
mental and cultural factors taken into account. However, the use
of a CFG approach using evidence from other studies of
alcoholism, including animal model studies, to prioritize the
findings decreases the likelihood that our final top results are
ethnicity- or gender-related. Of note, our GRPS predictions
separate alcoholics from controls in independent test cohorts, in
both genders, and in fact work even better at separating female
alcoholics from female controls (Figure 3). Moreover, a series of
individual genes from the panel, not just SNCA, separates
alcoholics from controls in independent cohorts (Table 5).
The conversion from SNPs to genes as part of our discovery

assumed the rule of proximity—that is, an intragenic SNP
implicates the gene inside which it falls, or if it falls into an
intergenic region, it implicates the most proximal gene to it. That
may not be true in reality in all cases, generating potentially false-
positives and false-negatives. However, the convergent approach
and focus on the top CFG scoring genes reduce the likelihood of
false-positives.
The only SNP for SNCA that was present/tested for in cohorts 3

and 4 (rs17015888) was relatively far away upstream (0.13 MB)
from SNCA. However, no other known genes are present in that

region, SNCA is the closest gene, and the distance is well within
the range of known examples of regulatory regions (enhancers). In
addition, the risk allele for this SNP (G/G) seems to be the major
variant in the population (Supplementary Table S6), suggesting
that this allele per se is evolutionarily advantageous, when not
coupled with the exogenous ingestion of alcohol.
A relatively large list of genes (n= 6085) was implicated by

nominally significant SNPs from the discovery GWAS. There is a
risk that out of such a large list CFG will find something to
prioritize. We have tried to mitigate that by developing an internal
score for each gene based on the proportion of SNPs tested in a
gene that were nominally significant. Moreover, in the end, we
tested the reproducibility and predictive ability of our top findings
in multiple independent cohorts, which is the ultimate litmus test
for any genetic or biomarker study.

CONCLUSION
Overall, whereas multiple mechanistic entry points may contribute
to alcoholism pathogenesis, it is likely at its core a disease of an
exogenous agent (alcohol) modulating different mind domains/
dimensions (anxiety, mood and cognition),95 precipitated by
environmental stress on a background of genetic vulnerability
(Figure 5). The degree to which various mind domains/dimensions
are affected in different individuals is a fertile area for future
research into subtypes of alcoholism and lends itself to
personalization of diagnosis and treatment, by integrating genetic
data, blood gene expression biomarker data and clinical data.
Lastly, it is important to note that individuals with a predisposition
to alcoholism but no exposure to alcohol may in fact have a robust
physiology and strong neurobiological drive that can be
harnessed for other, more productive endeavors.
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