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Abstract

Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of 
child morbidity, growth faltering and mortality in low- and middle- income countries. Despite evidence of high incidence and 
differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed 
to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory- 
genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter 
isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteri-
tis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST- 21 clonal 
complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle- specialist CC42 were under- 
represented, with a total absence of CC61. Core- and accessory- genome sharing was compared among isolates from Egypt 
and a comparable collection from the UK (Oxford). Lineage- specific accessory- genome sharing was significantly higher among 
isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no 
geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. 
A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results 
suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for 
controlling the spread of antimicrobial resistance among this important pathogen.

DATA SUMMARY
Short- read data are available from the National Center for Biotechnology Information (NCBI) Sequence Read Archive, associated 
with BioProject PRJNA576513 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA576513). Assembled genomes and supplemen-
tary material are available from FigShare (https://doi.org/10.6084/m9.figshare.19927469 [1]); individual accession numbers and 
assembled genome statistics are given in Table S1 (available with the online version of this article). Phylogenetic trees can be 
visualized and manipulated on Microreact for the whole dataset: https://microreact.org/project/Campy-Egypt.
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INTRODUCTION
Diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle- income countries 
(LMICs) [2, 3]. Campylobacter is the most common cause of bacterial gastroenteritis worldwide [4] and typically human campylo-
bacteriosis is readily diagnosed as a disease associated with consumption of contaminated food, especially poultry [5, 6]. Extremely 
high incidence in LMICs, high exposure rates [7] and endemism among young children suggests a different epidemiology 
[4, 8, 9]. Frequent or chronic (re)infection is allied to significant morbidity, cognitive development impairment and even death 
[10–13]. In Egypt, campylobacteriosis is common and a leading cause of paediatric diarrhoea, with an incidence of 1.2 episodes 
per child, per year [14, 15] and up to 85% of children infected in their first year [16]. Despite the high frequency of reported 
cases of Campylobacter- associated diarrhoea in Egypt [14], there are no detailed surveillance studies on the dominant sequence 
types (STs) and proliferation of genotypes associated with the onset of post- infectious sequelae, such as irritable bowel syndrome, 
Guillain- Barré syndrome or Miller Fisher syndrome [17].

Campylobacter species are often part of the gut microbiota of various wild and farmed animals, leading to frequent contamina-
tion of human food products [18, 19]. In Egypt, farming practices often lack adequate biosecurity and regulation. Only limited 
studies have reported the prevalence and distribution of Campylobacter in Egyptian campylobacteriosis cases [4], and little is 
known about the dominant source reservoirs driving infection and transmission [20]. In Europe, potential source reservoirs have 
been identified through source attribution studies, with poultry products regarded as the primary source of infection [6, 21–23]. 
Host- adaptation of Campylobacter to a wide range of hosts is reflected in its population structure [24–28], with many common 
human infection lineages able to infect multiple host species. These host generalist lineages include Campylobacter jejuni ST- 21, 
ST- 45 clonal complexes (CCs) and the Campylobacter coli ST- 828 complex [22, 25]. Other genotypes are only found in a single 
reservoir species, often associated with global poultry or cattle production. Host specialist CCs common in human disease include 
the poultry- associated ST- 353, ST- 354 and ST- 257 [6, 29], and cattle specialist ST- 61 [30, 31].

Human infection in developed countries is typically sporadic and self- limiting, not requiring treatment with antibiotics. However 
global rates of antimicrobial resistance (AMR) are rising [31, 32] in line with other Gram- negative gastrointestinal pathogens 
[33, 34]. Widespread agricultural usage has also driven the proliferation of tetracycline resistance through its use as a growth 
promoter in some food processing animals [35, 36]. In particular, C. coli has shown an ability to acquire erythromycin- resistance 
genes from other species [31]. This has not been explored for Egyptian Campylobacter isolates, where agricultural antibiotic 
usage is poorly regulated [37] and self- medication for gastrointestinal disease is common [38, 39]. Global differences in the use 
of quinolones are also likely responsible for the geographical differences observed in quinolone resistance [40–42].

Here, we aim to better understand Campylobacter epidemiology in countries with differences in farm animal husbandry, slaughter, 
meat sale and consumption. Based on our recent study reporting the AMR phenotypes in this population [43], we aimed to 
quantify accessory- genome sharing among divergent lineages in well sampled Campylobacter populations from Egypt and the 
UK. By screening genome content, including virulence and AMR determinants, we show enhanced local gene sharing between 
divergent lineages is greater in Egypt, which may be linked to the spread of AMR. This provides a basis for considering complex 
transmission networks in LMICs and highlights the importance of globally transmitted AMR Campylobacter lineages.

METHODS
Isolate collection
In total, 112 Campylobacter isolates were collected in Cairo, Egypt, from September 2017 to December 2018, including 31 
isolates from broiler carcasses, 24 isolates from milk and dairy products, and 57 clinical isolates. The clinical isolates were 
obtained from stool samples of patients admitted to two different hospitals in Northern Giza (Egypt) suffering from gastro-
enteritis symptoms. A total of 31 isolates were recovered from 87 samples obtained from Imbaba General Hospital and 26 
recovered from 59 samples obtained from Al Haram Hospital. Patient names were anonymous. Among 146 stool specimens 
collected, the prevalence of Campylobacter spp. among patients suffering from gastroenteritis was 39 % (57/146) as confirmed 
at the genus level by culture, biochemical and microscopic examination, and PCR amplification of the 16S rRNA gene [44]. 
C. jejuni and C. coli were differentiated at the species level by PCR of the mapA gene [45] and ceuE gene [46], respectively. 
A questionnaire was distributed to all admitted patients requesting details of clinical presentation (e.g. duration of illness, 

Impact Statement

In this paper, we describe genomic evidence for the spread of antimicrobial resistance among Campylobacter isolates from 
Egypt. We found that more Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni and that hori-
zontal transfer of accessory genes was spreading resistance genes between strains in Egypt. This suggests that differences in 
food production systems and antimicrobial usage may impact on the emergence of resistance in important pathogens.
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symptoms, medication prescribed), dietary record of the previous 2 weeks, including consumption of specific or undercooked 
meats or unpasteurized milk, exposure to animal manure or faeces, and any retail outlets commonly used by patients for food 
consumption prior to the onset of illness. Based on this questionnaire, food samples were obtained from different small retail 
outlets in close proximity with the study hospitals (19 stores for broiler carcasses and 25 stores for dairy products), following 
a stratified randomized sampling strategy. Briefly, each district surrounding the two hospitals served as a stratum and, within 
each district, simple random sampling from the stores was conducted. Store names were de- identified, and no permits were 
required for food sample collection. All samples were transferred within 2–4 h in an ice box for microbiological analysis. 
The prevalence rates of Campylobacter species among samples broiler carcasses and dairy products were 27.7% (31/112) and 
13.8% (24/174), respectively.

Sample culturing and whole-genome sequencing
The isolation and enumeration of Campylobacter strains from different food matrices intended for human consumption was 
performed according to the ISO 10272–1 (selective enrichment method) with minor modifications. In brief, samples were seeded 
into 90 ml Bolton selective enrichment broth (Oxoid) and incubated at 37 °C for 4 h, followed by further incubation at 42±1 
°C for 48 h under microaerophilic conditions. The enrichment broth cultures were plated onto modified charcoal cefoperazone 
deoxycholate agar (m- CCDA agar; Oxoid). Plates were incubated at 42±1 °C in microaerophilic conditions using AnaeroGen 2.5L 
sachets (Oxoid) for 40 to 48 h. Following incubation, viable Campylobacter colonies were counted using serial dilutions. Subcul-
turing of colonies presumed to be Campylobacter was done on Columbia blood agar (Oxoid), and confirmation was performed 
using morphological characters, oxidase test and PCR amplification of the 16S rRNA genes (for molecular identification at the 
genus level), and mapA and ceuE genes (for molecular differentiation of C. jejuni and C. coli at the species level, respectively). For 
Campylobacter isolation from human patients, stool samples were cultured on m- CCDA agar. Plates were incubated at 42±1 °C 
under microaerophilic conditions usingAnaeroGen2.5L sachets for 48 h. All isolates were subcultured from −80 °C frozen stocks 
onto Mueller- Hinton agar (Oxoid). Plates were incubated at 42±1 °C under microaerophilic conditions using AnaeroGen 2.5L 
sachets. Following enumeration step, we picked one colony from each plate for subculture and confirmation. It is possible that 
more than one species, CC or ST is present in the same sample and methods exist for investigating multi- lineage samples [47]. 
However, here, we use the more common single colony approach that assumes that the first single colony that is picked likely 
represents one of the most common lineages in that sample.

As previously described [43], genomic DNA was extracted from 112 Egyptian isolates using the QIAamp DNA mini kit (Qiagen), 
according to the manufacturer’s instructions, and concentrations were quantified using a NanoDrop spectrophotometer before 
genome sequencing using an Illumina MiSeq. Nextera XT libraries (Illumina) were prepared following the manufacturer’s 
protocols and short paired- end reads were sequenced using a 2×300 bp paired end v3 reagent kit (Illumina).

Genome datasets
Raw sequencing reads were quality trimmed and filtered using Trimmomatic (version 0.33) [48], and genomes assembled de novo 
using SPAdes (version 3.8.0) [49]. The mean number of contigs was 72 (range: 12–471) for a mean total assembled sequence size 
of 1.70 Mbp (range: 1.56–1.86 Mbp). The mean N50 contig length (L50) was 14577 (range: 3794–55 912) and the mean G+C 
content was 30.8 % (range: 30.5–31.6 %). We augmented our collection by assembling a context dataset of previously published 
isolates (n=204) to represent the known diversity of C. jejuni and C. coli [28, 50–52]. In addition, we also compared our single 
city survey with a previously published survey of clinical isolates from Oxford in the UK (n=874 isolates collected over 1 year) 
[53]. The Oxford data was selected to be matched, as much as possible, with the Cairo dataset in terms of population density 
(Fig. 1). Of course, this is not perfect. However, well characterized Campylobacter isolates collected in Oxford from 2011 to 2012 
(https://pubmlst.org/organisms/campylobacter-jejunicoli), a subset of which have been described by Cody et al. [54], offered 
the opportunity to compare genomes from different populations. Simpson’s index showed that the datasets had similar diversity.

Core-genome characterization
Isolate genomes were archived in BIGSdb and multilocus sequence typing (MLST) STs derived through blast comparison 
with the pubMLST database [52, 55–58]. An alignment of all 112 Campylobacter isolates was constructed from concatenated 
gene sequences of all core genes (found in ≥95 % isolates) using mafft (version 7) [59], on a gene- by- gene basis. A maximum- 
likelihood phylogeny was reconstructed for C. jejuni and C. coli isolates combined using a GTR+I+G substitution model and 
ultra- fast bootstrapping (1000 bootstraps) [60] implemented in iq- tree (version 1.6.8) [61], and visualized on Microreact (https:// 
microreact.org/project/Campy-Egypt) [62]. Simpson’s index of ST diversity was calculated for the Cairo and Oxford datasets 
using the equation:

 
D = 1−

∑
n
(
n−1

)
N
(
N−1

)
  

where n is the number of isolates of each ST and N is the total number of isolates [63].

https://pubmlst.org/organisms/campylobacter-jejunicoli
https://microreact.org/project/Campy-Egypt
https://microreact.org/project/Campy-Egypt
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Quantifying accessory-genome variation
All unique genes present in at least one isolate (the pangenome) were identified by automated annotation using prokka (version 
1.13) [64]; followed by pirate, a pangenomics tool that allows for orthologue gene clustering in bacteria [65]. We defined genes 
in pirate using a wide range of amino acid percentage sequence identity thresholds for Markov cluster algorithm (MCL) clus-
tering (45, 50, 60, 70, 80, 90, 95, 98). Genes in the pangenome were ordered initially using the NCTC 11168 reference, followed 
by the order defined in pirate based on gene synteny and frequency [66, 67]. As described previously, a matrix was produced 
summarizing the presence/absence and allelic diversity of every gene in the pangenome list, with core genes defined as present 

Fig. 1. (a) Demographic data for Cairo, Egypt, from which we collected Campylobacter spp. isolates (n=112; red circle) from clinical cases, broiler 
carcasses and dairy products collected over a 14 month sampling period. Our collection was compared to a similar published survey from Oxford, UK 
(n=874; blue circle) [53, 54]; and isolates from pubMLST.org (n=192) for additional genetic context. (b) CCs of isolates collected from Cairo were ranked 
according to the frequency in our local dataset and how often they have been sampled from human disease isolates (data from pubMLST; https://
pubmlst.org/). Alignments were made from concatenated gene sequences of all core genes (found in ≥95 % isolates) using mafft version 7 [59], on a 
gene- by- gene basis. Separate maximum- likelihood phylogenies were reconstructed with a GTR+I+G substitution model and ultra- fast bootstrapping 
(1000 bootstraps) [60] implemented in iq- tree (version 1.6.8) [61] for (c) C. jejuni (n=1048) and (d) C. coli (n=132), and visualized on Microreact (https://
microreact.org/project/Cjejuni_Egypt; https://microreact.org/project/Ccoli_Egypt) [62]. Scale bars represent genetic distance of 0.01.

https://pubmlst.org/
https://pubmlst.org/
https://microreact.org/project/Cjejuni_Egypt
https://microreact.org/project/Cjejuni_Egypt
https://next.microreact.org/project/Ccoli_Egypt
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in 95 % of the genomes and accessory genes as present in at least one isolate . This pangenome matrix was visualised using 
phandango, alongside a core genome phylogeny (Fig. S1) [68, 69]. Pairwise core- and accessory- genome distances were compared 
using PopPUNK (version 2.1.1) [70], which uses pairwise nucleotide k- mer comparisons to distinguish shared sequence and 
gene content to identify divergence of the accessory genome in relation to the core genome. A two- component Gaussian mixture 
model was used to construct a network to define clusters, comparable to other Campylobacter studies [71].

Core- genome variation between isolates was quantified by calculating the pairwise average nucleotide identity (ANI) of all 
(n=112+874) Campylobacter genomes using FastANI v.1.058 [72]. The gene presence matrix produced by pirate was used 
to generate a heatmap of shared pairwise accessory- genome genes. Averages were calculated for within and between country 
comparisons in addition to focussed analysis on the ST- 21 (C. jejuni) and ST- 828 (C. coli) CCs. Antimicrobial- resistance genes 
and putative virulence genes were detected through comparison with reference nucleotide sequences using ABRicate (version 0.8) 
(https://github.com/tseemann/abricate) and the VFDB (Virulence Factor Database) and NCBI (National Center for Biotechnology 
Information) database, respectively [73, 74]. Point mutations related to antibiotic- resistance genes were identified by PointFinder 
[75] using the star- amr software package (https://github.com/phac-nml/staramr).

RESULTS
Globally circulating genotypes among Egyptian Campylobacter isolates
We sequenced and characterized a collection of Campylobacter spp. isolates (n=112) from clinical cases, broiler carcasses and dairy 
products collected over a 14 month sampling period in Cairo, Egypt (Fig. 1a, Table S1). Isolate genotypes were compared with all 
genomes deposited in the pubMLST database (97 012 profiles, data accessed 17th February 2020) and ranked according to how 
frequently they were found associated with human disease (Fig. 1b). Egyptian C. jejuni isolates belonged to 15 CCs with diverse 
assemblage of STs. Nearly half of the isolates (n=29, 47%) were from common lineages, isolated many times before and recorded 
in pubMLST (>50 MLST profiles; Fig. 1b), with the globally disseminated lineages of ST- 21 CC (n=37, 41%), ST- 206 CC (n=10, 
11%) and ST- 464 CC (n=7, 8%) the most abundant. Several other poultry- associated CCs, which are common in human disease 
[29, 76], including ST- 353 (n=3, 3.2%,), ST- 354 (n=4, 4.3%) and ST- 257 (n=4, 4.3%), were identified. Other globally disseminated 
lineages were found less often in Egypt (n≤2), i.e. ST‐460 (n=2), ST‐1034 (n=2), ST‐42 (n=1), ST- 45 CC (n=1), ST‐573 (n=1), 
ST‐574 (n=1) and ST‐658 (n=1) [77, 78].

Local STs
Comparison with a collection representing the known genetic diversity of C. jejuni and C. coli identified some common STs 
(>1000 profiles in pubMLST) that were completely absent in our Egyptian collection, i.e. ST- 53 and ST- 829 (C. coli), and ST- 22, 
ST- 61, ST- 51 and ST- 1068 (C. jejuni) (Fig. 1c, d). Two isolates belonging to ST- 1287 CC, a genotype that has previously been 
isolated from poultry and the environment [79], were observed exclusively among our Egyptian isolates, yet absent in UK and 
global datasets. Furthermore, there were also some STs belonging to ST- 21 CC that were found in the Egyptian isolate collection 
(n≥3) that are rare in global collections (<100 profiles in pubMLST), i.e. ST- 1519 (n=4) and ST- 3769 (n=3). It was also observed 
that more C. coli were found among Egyptian clinical isolates than is typically observed, specifically the C. coli lineage ST- 828 
CC (Table S1), 90.4% C. coli isolates (19/21) belonged to the ST- 828 CC within the Egyptian dataset, and two C. coli isolates with 
unassigned CC of STs, ST- 7951 and ST- 1681. Three rare STs belonging to ST- 828 CC were exclusively found in the Egypt dataset, 
which are ST- 1058 (n=1), ST- 1059 (n=1) and ST- 7950 (n=1) (Table S1).

Increased sharing of accessory genes contributes to a local gene pool
Our Egyptian dataset was compared directly with a previously published study of a single city, ~1 year survey from Oxford in 
the UK. Both populations were similarly diverse, specifically there were 50 STs (16 CCs) among the Egyptian isolate collection, 
with a Simpson’s diversity index of 0.817, compared to 205 STs (32 CCs) among the Oxford collection of genomes (Simpson’s 
diversity index=0.895; Fig. 1c, d). Therefore, as phylogeographic population structuring is known not to be a major factor in 
Campylobacter (compared to host) [41, 71, 80], major differences identified using Simpson’s index are likely linked to other factors 
such as different food production systems.

First, we compared population- wide accessory- genome diversity using pirate to construct a pangenome of all Egyptian 
and Oxford isolates (n=986). Consistent with other studies, we identified an open pangenome, meaning that the number 
of genes in the pangenome continues to increase with each additionally sequenced isolate. Accessory genes represented 
nearly three- quarters of the pangenome (3781 genes; 74 % of pangenome) with a quarter of the genes identified (1336, 26%) 
considered core genes present in 95 % or more of the isolates (Fig. S1, Table S2). Pairwise comparison of the core nucleotide 
sequence (%ANI) and accessory- genome sharing of all isolates reflected the clonal frame, with clusters of closely related 
isolates sharing a large percentage of ANI, seen as darker blocks on the diagonal of the heat maps. This indicates high 
sequence similarity among isolates of the same CC (Fig. 2a, b). Direct comparison between the Oxford and Cairo datasets 
suggested an increase in within- country, local accessory gene sharing (Fig. 2c, d). The structured clustering of pairwise 

https://github.com/tseemann/abricate
https://github.com/phac-nml/staramr
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comparisons of shared accessory genes suggested that this may vary between lineages and visualization of the differences 
in the distribution of pairwise genomic distances with PopPUNK also pointed towards lineage- specific shared gene pools 
(Fig. 2e). Box plots (Fig. 2b, d) show that the mean similarity between core and accessory genome is significantly greater 
within country. Repeating these analyses for the two most common CCs, ST- 21 CC and ST- 828 CC, again showed greater 
genome similarity within country (Fig. 2f).

Locally diverged STs within the globally disseminated ST-21 CC
As one might expect of within lineage (CC) comparisons, all ST- 21 CC isolates shared more than 99 % core- genome nucleotide 
identity and shared more accessory genes than the population average (852 genes; Fig. 2c, f) and significantly more genes were 
shared between isolates from the same country (t- test with Welch correction; P<0.0001). A maximum- likelihood phylogeny of 
all CC21 isolates (n=251), the most common CC identified in our collection from Cairo, identified geography- specific clusters 
of isolates (Fig. 3a). These clones also clustered together when visualizing the distribution of pairwise genomic distances with 
PopPUNK (Fig. 3b). While some specific STs were common in both Oxford and Cairo (ST- 21 and ST- 50), others were much 
more common in one specific location, e.g. ST- 53 in Oxford, and ST- 1519 and ST- 3769 in Cairo (Fig. 3c). There was evidence 
that some lineages associated with AMR (Fig. 3d). While the ST- 50 genotype is very common and has been reported more than 
3900 times in pubMLST from 40 countries, this is the first report from Africa, to our knowledge. In both Oxford and Cairo 
datasets, ST- 50 was often predicted to be multidrug resistant (MDR). ST- 21 is also very common, with more than 4000 reports 
from 33 countries in pubMLST but was much less likely to be MDR. Four isolates of the Cairo specific ST- 3769 also represented 
a high proportion of MDR (Fig. 3e).

Fig. 2. (a) Core- genome variation between isolates was quantified by calculating the pairwise ANI of all UK and Oxford Campylobacter genomes 
(n=112+874) using FastANI v.1.058 [72]. (b) The ANI for each isolate was estimated and averages compared within and between countries. (c) The gene 
presence matrix produced by pirate was used to generate a heatmap of shared pairwise accessory- genome genes. (d) Averages were calculated for 
within and between country. (e) Clustering of pairwise core- and accessory- genome distances were compared using PopPUNK. Interactive visualization 
on Microreact: https://microreact.org/project/Campy-Egypt. (f) Comparisons of within and between country ANI and accessory- gene sharing were also 
analysed for our two most common Egyptian lineages, ST- 21 (C. jejuni) and ST- 828 (C. coli) CCs.

https://microreact.org/project/Campy-Egypt
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Extensive multi-drug resistance in local C. coli STs
Greater admixture was noted between UK and Egyptian ST- 828 CC isolates than for ST- 21 CC – no geographical clustering 
was observed in either the core or accessory genomes (Fig. 4a, b). However, only ST- 827 was common in both datasets (Fig. 4c). 
Several STs were found in the Oxford dataset that were not identified in our Egyptian isolates, including the frequently isolated 
STs 829, 828, 855, 962,1145 and 5734. Several lineages were highly resistant to lincosamides, with more than half the isolates 
from ST- 828, ST- 830 and ST- 872 predicted to be resistant (Fig. 4d). All isolates from ST- 828 and ST- 872 were also predicted to 

Fig. 3. (a) Sub- tree of all Egyptian and UK ST- 21 CC (CC21) isolates (n=251). Common STs are annotated and ST- 50 (yellow) and ST- 21 (blue) are 
highlighted. Scale bar indicated genetic distance. (b) Within CC clustering of pairwise core- and accessory- genome distances with PopPUNK according 
to two priciple components (PCA). (c) Prevalence of the most common STs found within CC21. (d) Prevalence of AMR determinants grouped by antibiotic 
class for each CC21 ST. (e) Prevalence of MDR isolates (AMR determinants for three or more antibiotic classes) in CC21 STs.
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be resistant to chloramphenicol. Overall, C. coli isolates (6 of 105, 5.7%) were far more likely to be considered MDR than C. jejuni 
isolates (6 of 876, 0.68%) and ST- 828 complex isolates from Cairo (2 of 19, 10.5%) demonstrated much higher rates of MDR than 
in Oxford (3 of 77, 3.9 %; Fig. 4e).

Antimicrobial-resistance genes are distributed across isolates
Each bacterial genome was screened for the presence of genes associated with AMR (Table S3). In Egypt, the mean number of 
AMR genes per isolate was similar between C. jejuni (1.3) and C. coli (2.1) (Fig. S2a). The most common AMR determinants 

Fig. 4. (a) Sub- tree of all Egyptian and UK ST- 828 CC (CC828) isolates (n=94). Common STs are annotated and ST- 827 is highlighted (in orange). Scale 
bar indicated genetic distance. (b) Within CC clustering of pairwise core- and accessory- genome distances with PopPUNK according to two principle 
components. (c) Prevalence of the most common STs found within CC828. (d) Prevalence of AMR determinants grouped by antibiotic class for each 
CC828 ST. (e) Prevalence of MDR isolates (AMR determinants for three or more antibiotic classes) in CC828 STs.



9

Mouftah et al., Microbial Genomics 2022;8:000834

identified in Egyptian isolates included the tet(O) gene (50 % of all isolates; 61/112), conferring tetracycline resistance, present in 
76 and 44 % of C. coli and C. jejuni isolates, respectively. This pattern contrasts with Oxford where 41 % of C. jejuni but only 35 
% of C. coli isolates were found to harbour tet(O) (Table S3). ST- 21 CC had a high prevalence of genes associated with β-lactam 
resistance (particularly the blaOXA- 193, blaOXA- 450 and blaOXA- 605 alleles). C. coli held a greater breadth of genes across classes of 
antimicrobials and the proportion of MDR isolates (resistant to three or more different antibiotic classes) was 28% for C. coli 
compared to 1% for C. jejuni [81]. The majority (88%) of MDR isolates in Egypt were C. coli, despite C. coli representing about a 
fifth of the dataset (Fig. S2b). The C. jejuni isolates that were MDR were all host generalists – ST- 21, ST- 48 or ST- 206. Differences 
in the presence of AMR genetic determinants of these isolates have been further investigated in another publication, including 
comparisons with phenotypic susceptibility [43].

DISCUSSION
Diarrhoeal disease is a major threat to human health and the second leading cause of death in children under 5 years of age in 
LMICs [8]. Campylobacteriosis is a major cause of diarrhoeal disease worldwide [7, 14, 82] but, despite the potential importance, 
little is known about Campylobacter in countries where it potentially poses the greatest health risk. As studies begin to take a 
worldview of Campylobacter epidemiology and transmission [83], and based on our recent study reporting the AMR phenotypes 
and genetic determinants among Egyptian Campylobacter isolates [43], we aimed in this study to extend our investigation to 
describe globally disseminated agriculture- associated disease- causing lineages based on core- and accessory- genome content, 
with evidence that local accessory genome sharing driving acquisition of AMR genes in specific lineages.

The Egyptian Campylobacter isolates included a diverse set of STs, including common disease- causing lineages and regional STs 
that have rarely been reported from other parts of the world. Industrialized agriculture globalization has dispersed livestock 
worldwide [83], expanding the geographical range of C. jejuni. This is evident in the Egyptian collection as two of the most 
predominant genotypes belonged to the ST- 21 and ST- 206 CCs (Fig. 1d). These two host generalist CCs have been extensively 
reported worldwide and frequently isolated from various reservoir hosts, including human clinical samples [22, 29, 55, 76, 84, 85]. 
The ST- 21 CC exhibits considerable genome plasticity with a clear association with several virulence genes and resistance to 
various antimicrobial agents [86–90]. Poultry- associated CCs, ST- 206, ST- 464, ST- 48, ST- 257 and ST- 354, were also common 
among the Egyptian isolates, all of which are among the most prevalent CCs isolated in Europe [91–94].

Further comparison of isolate genotypes collected in Cairo with a large global collection revealed the absence of certain lineages, 
most notably the lack of the cattle- associated genotype ST- 61 [95, 96]. There was only one isolate, of dairy product origin, that 
could be attributed to a cattle- specialist CC (ST- 42), which is unexpected as several (n=24) isolates were sampled from dairy 
products. Campylobacter isolates from cattle have predominantly been sampled from meat, milk products and faecal sources 
(n=2726 in pubMLST) [96–98], suggesting that dairy products isolates might represent a different source population in Egypt.

There were also no isolates belonging to the ST- 22 CC, a particularly high- risk lineage that is commonly found among patients with 
post- infectious complications of campylobacteriosis, such as Guillain- Barré syndrome and irritable bowel syndrome [99, 100]. 
Although one isolate in our collection was from ST- 45 CC, this host generalist CC is often one of the most commonly isolates 
lineages in clinical surveillance studies worldwide [6, 101–103]. Notably, however, it is often absent (or under- represented) in 
studies conducted in LMICs [71, 104, 105]. This is consistent with observations from other LMICs, where local differences in 
disease epidemiology are reflected by the absence of common Campylobacter lineages, and the presence of rare or unique STs 
[71, 106–108]. Among our Egyptian isolates, the ST- 1287 CC (n=2) has been reported less than four times from other parts of 
the world [91, 101, 108, 109].

Geographical differences have been noted in ST- 21 CC [41, 78, 110–113]. ST- 21 CC isolates are among the most common C. 
jejuni genotypes isolated worldwide, with one quarter of C. jejuni isolates recorded in the pubMLST database are ST- 21 CC. 
Isolates of the ST- 50 (n=3915) alone have been sampled from 6 continents and 44 countries, although this will be their first report 
from Africa to our knowledge [56]. Our Egyptian ST- 50 isolates do cluster together on a maximum liklihood (ML) phylogeny 
of ST- 21 CC isolates and away from the Oxford ST- 21 CC when grouped by PopPUNK. Two STs were unique to Egypt, ST- 1519 
and ST- 3769, with nearly 10 % of the ST- 3769 isolates being MDR. A slightly greater proportion of the Egyptian ST- 50 isolates 
were also MDR, although this ST has been observed to be MDR in other parts of the world [114].

The C. coli ST- 828 CC did not show as much geographical segregation, and when grouping our Egyptian isolates by core- and 
accessory- genome distances they clustered with the UK clinical isolates, despite several STs being isolated in only one of the 
datasets. STs found in the Egyptian dataset were more often MDR than UK isolates and, overall, C. coli from Cairo were far more 
MDR than C. coli isolates from developed countries [31, 115, 116]. The most compelling clarification for such abundance could 
be that C. coli of ST- 828 CC have a great recombination potential besides the accumulation of C. jejuni DNA throughout the 
genome of this lineage, which could have led to the acquisition of multiple AMR genes [117].

Overall, there is clear evidence of local sharing and recent acquisition of accessory- gene content of AMR genes within the 
Egyptian isolates. Specifically, pairwise clustering of isolates by core and accessory- genome distances recapitulated clusters 
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according to ST and CC (Fig. 2); however, most Egyptian isolates were more tightly clustered than the Oxford clinical dataset, 
consistent with shared acquisition of accessory genes. Overall, ANI and shared accessory genes were similar between Oxford 
and Egyptian isolates (per isolate). While temporal variation could influence comparisons, AMR is known to be relatively stable 
in UK Campylobacter isolates [118]. However, the two most common CCs found in our Cairo dataset demonstrated greater 
sharing of accessory genes, indicative of a shared gene pool. Our study suggested that while geographical partitioning doesn’t 
impact the composition of the core genome, represented by the shared STs and CCs, the accessory genome is influenced. Within 
the Egyptian isolates, the most prevalent genotypes (ST- 21 CC and ST- 206 CC) showed clear evidence of transmission of MDR 
determinants among lineages. Multiple factors could influence this, such as livestock and food production practices and the 
segregation of MDR isolates. However, selective pressure for MDR is clearly attributable to antibiotic usage and potentially 
zoonotic transmissions, as well as the rate of horizontal gene transfer [94]. Our study provides evidence to support programmes 
aimed at improved antibiotic stewardship in clinical and veterinary settings. With strict control measures, and an understanding 
of transmission of strains from animal reservoirs through the food production chain, it may be possible to reduce contamination 
with MDR Campylobacter in Egypt.
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