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Abstract

The intensity damages caused by nutritional deficiency in growing plants can vary with nutri-

ents. The effects caused by nutrient omission in the plant nutritional efficiency in relation to

the absorption and use of the missing nutrient, and the reasons why these damages reflect

in other nutrients have not yet been reported in the culture of scarlet eggplant. A better

understanding of the nutritional mechanisms involved may clarify why certain nutrients

cause greater limitations than other during plants growth. Thus, this study was designed

with the aim of evaluating the damages caused by macronutrients deficiency in the culture

of scarlet eggplant in the accumulation of these nutrients, nutritional deficiency, plants

growth and in visual symptoms. The experiment was carried out in a controlled environment

where plants were cultivated in a hydroponic system. Treatments consisted of supplying a

complete Hoagland and Arnon solution (CS), and other nutrient solutions with individual

omissions of nitrogen (-N), phosphorus (-P), potassium (-K), calcium (-Ca), magnesium

(-Mg) and sulphur (-S). When a nutrient deficiency arose, nutritional analyses, growth and

visual symptoms were analyzed. The omissions of N, S and K in the nutrient solution

resulted in lower accumulation of all macronutrients in both the above and below ground bio-

mass. Individual omissions resulted in nutritional imbalances with reflexes in the absorption

efficiencies and use of the missing nutrient, as well as of other nutrients, revealing that the

metabolism involves multiple nutritional interactions. Losses of nutritional efficiencies of

macronutrients caused detrimental effects on plants growth, with reduced height, stem

diameter, number of leaves, leaf area, and biomass production in above ground and below

ground. From the losses in production in above ground biomass, the order of macronutrients

limitation was N, S, K, Ca, Mg, and P, with reductions of 99, 96, 94, 76, 51 and 46%, respec-

tively, in comparison to plants cultivated in CS. The most limiting nutrients were N, S, and K,

seen that its deficiencies affected the metabolism of all other nutrients. This study demon-

strates the importance of an adequate nutritional management of N, S, and K in the cultiva-

tion of scarlet eggplant.
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1. Introduction

The scarlet eggplant (Solanum gilo) belongs to the family Solanaceae and its cultivation is

intended for human consumption, due to its nutritional value [1]. This species is commonly

recommended in healthy diets, as it has antioxidant properties and low caloric value, being

considered a source of calcium, phosphorus, iron, vitamins C and B5, flavonoids, alkaloids,

and steroids [2]. The elevated nutritional value stimulates the consumption of this vegetable of

high economic importance, which has a planted area of 839 hectares where 21865 tonnes are

yearly produced in the State of São Paulo, generating an approximate income of U$4,800 [3].

The proper nutrition of eggplant plants improves its visual and nutritional quality, as well

as its flavor [4]; however, plant nutrition is a complex factor, due to the interactions between

nutrients. These interactions can affect the processes of nutrient absorption and use and thus

reflect in the mineral composition of crops, and consequently in its nutritional status, final

production and quality [5]. Such deficiencies can cause nutritional imbalances, leading to the

occurrence of deformities in organic tissues, reduced leaf area, limited growth and dry matter

production [6–8]. Therefore, it is necessary to investigate the mechanisms involved in scarlet

eggplant nutrition, as well as the symptomatology caused by the deficiency of macronutrients

in this species with high agronomic potential.

The symptoms and severity of nutritional deficiency in plants may vary due to several bio-

logical functions and interactions that occur between nutrients and the environment [9], thus

reflecting in its growth. For instance, a plant that is deficient in K inhibits the biological func-

tions of this nutrient in the plant, such as the activity of multiple enzymes, some of which are

involved in the proteins synthesis [8, 10]. This occurrence may hamper the metabolism of

other nutrients, such as N, which plays an important role in relation to the increment of pro-

tein synthesis, but this function is in turn interrupted due to the low activity of enzymes

involved in the assimilation of N [5, 8]. Therefore, even though the plant has an adequate sup-

ply of N via the nutrient solution, its metabolism could be impaired because of a lack of K, and

the use efficiency of N will be low, increasing the biological damage in the organism [4]. These

biological interactions occur with other nutrients that affect its nutritional efficiencies, and

consequently the severity of deficiency symptoms that vary according to the species.

The effects of macronutrients deficiency in scarlet eggplants were poorly investigated to

date, with one limited study developed by Haag et al. [11], in which the authors did not investi-

gate nutritional interactions. Studies involving the nutritional deficiency of most species focus

only in the evaluated nutrient and do not consider its interaction with other nutrients [7].

Thus, it is important to advance research in order to elucidate such interactions in plants, opti-

mize fertilization and improve the efficiency of nutrients use by crops [12].

The hypothesis of this study is that the extent of biological damages caused by nutritional

deficiency in scarlet eggplant plants depends on the omitted nutrient in the nutrient solution,

associated with its interaction with other nutrients, as it may affect the efficiency of nutrients

absorption and use by the plant. In case this hypothesis is accepted, it would be possible to

comprehend the reasons why certain nutrients cause greater limitations in the growth of this

species.

Thus, the aims of this study were to evaluate the effects of macronutrients omissions in the

growth of scarlet eggplants and in the nutritional mechanisms of this culture, as well as

describing the visual symptoms presented by plants under macronutrient omission.

2. Material and methods

The experiment was carried out in a greenhouse at the São Paulo State University (UNESP)—

Campus of Jaboticabal, Brazil, from August to October 2018. Temperature and humidity data
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were collected throughout the experimental period. There were high variations in the mini-

mum (25 ± 5%) and maximum relative humidity (80 ± 5%), as well as minimum (18 ± 2˚C)

and (35 ± 5˚C) temperature throughout the experimental period.

2.1 Treatments and experimental design

The treatments consisted in providing the Hoagland and Arnon [13] solution with all nutri-

ents, also called complete solution (CS) (containing N, P, K, Ca, Mg, S, B, Mn, Zn, Cu, Fe and

Mo), and the solution with selective nutrients being omitted (-): nitrogen (-N), phosphorus

(-P), potassium (-K), calcium (-Ca), magnesium (-Mg) and sulfur (-S). The experimental

design was entirely randomized with four replicates per treatment.

Scarlet eggplant seeds were sown in polystyrene trays containing vermiculite. After emerg-

ing, seedlings were irrigated daily with distilled water, and 20 days after emergence, these were

transplanted into 0.7 dm3 plastic pots filled with washed sand. The pots had holes in their bot-

toms and they were placed inside a plastic tray containing the nutrient solution, which could

reach the roots by capillarity.

The source of iron (Fe) of the nutrient solution that was used was chelated Fe (Fe-

EDDHMA). The concentration of nutrients in the solution was maintained at 15% throughout

the first week of cultivation, being raised by 15% on a weekly basis, until it reached a concen-

tration of 60% in the fourth week, as it remained until the end of the experiment. Its pH was

maintained between 5.3–5.7.

After transplantation, the plants were cultivated with the complete nutrient solution during

14 days. After this adaptation period, nutrient omissions were imposed and the plants were

then cultivated in this condition until the occurrence of deficiency symptoms that are charac-

teristic of each nutrient. This occurred seven days after the start of omission (DAO) for plants

grown in -N (21 days after transplanting—DAT); at 21 DAO for plants grown in -S and -K (35

DAT); at 30 DAO for plants grown in -Ca and -Mg (44 DAT); and at 33 DAO for plants

grown in -P (47 DAT).

2.2 Analysis performed

Plants’ height was evaluated using a graduated scale, considering from the base to the top of

the plant. Stem diameter was determined with the aid of a digital caliper at 2 cm from the base

of the plant, while the number of leaves was obtained by counting the completely expanded

leaves.

Leaf area was measured with the aid of an equipment L-3100, LICOR, USA. At the end of

the experiment, plants were separated into aerial parts (above ground biomass) and roots

(below ground biomass). All plant materials were washed with tap water, submerged into a

neutral detergent solution (0.1% v/v), then in a hydrochloric acid solution (0.3% v/v) and

washed again in deionized water. Subsequently, these samples were dried in an oven with

forced air circulation (65 ± 5˚C) until a constant weight was obtained.

All samples of plant material were ground before analysis. The N content was determined

by adding concentrated sulfuric acid to samples, followed by distillation and titration with sul-

furic acid [14]. The levels of P, K, Ca, Mg, and S were determined by the digestion of samples,

using a digestive mixture of perchloric and nitric acid (1:2), with readings of K, Ca, and Mg

performed in spectrophotometry of atomic absorption with air-acetylene flame, while P and S

readings were carried out by means of spectrophotometry [14]. The accumulation of each

nutrient was calculated based on the plant biomass.

In addition, the absorption and use efficiency of nutrients were calculated using the data of

macronutrients accumulation and plant biomass, as recommended by Fageria and Baligar
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[15]. For this purpose, distinct equations were used to calculate the absorption efficiency:

(accumulation in the whole plant/biomass of root); and use efficiency: ((biomass of whole

plant)2/accumulation in the whole plant). Regarding the visual effects on plants, these were

daily monitored for symptoms of nutritional deficiency, and representative images of the

symptoms were acquired.

2.3 Statistical analysis

All data were submitted to a variance analysis by the F test, and means were compared by the

Tukey’s test at a 5% probability level. Statistical analyses were carried out with the aid of the

software SAS1 (Cary, NC, USA). The data were also subjected to hierarchical cluster analysis

as described by Teixeira et al. [16]. For this purpose, data were standardized by the following

equation: Zij = (Xij-Xj)/Sj, wherein j = number of variables; i = number of treatments;

Zij = standardized value of Xij; Xj and Sj = mean and standard deviation of the variables,

respectively. Euclidean distance was used as a similarity coefficient and the UPGMA method

(unweighted pair-group method using arithmetic averages) as a group connection algorithm.

The statistical tests were performed using the free software environment R and the package

“pheatmap”.

3. Results

The omission of macronutrients in the nutrient solution reduced the accumulation of N, P, K,

Ca, Mg and S in both above (Fig 1) and below ground biomass (Fig 2), highlighting the preci-

sion of this study in using a decontaminated nutrient solution. Thus, the accumulation of

macronutrients in the aerial parts of plants (mg per above ground biomass) under CS in rela-

tion to each omission (-) was 581/4 for CSN/-N, 96/15 for CSP/-P, 896/6 for CSK/-K, 192/7 for

CSCa/-Ca, 77/8 for CSMg/-Mg and 58/1 for CSS/-S, respectively (Fig 1).

The omission of each macronutrient affected the nutritional balance and the growth vari-

ables of plants in specific ways. The omission of N reduced the accumulation of N in the above

(Fig 1A) and below ground biomass (Fig 2A). Additionally, plants cultivated in the condition

-N presented a lower accumulation of P (Figs 1B and 2B), K (Figs 1C and 2C), Ca (Figs 1D and

2D), Mg (Figs 1E and 2E), and S (Figs 1F and 2F) in both above and below ground biomass, in

comparison to the plants cultivated under all other conditions.

Both the absorption and use efficiencies of N were lower in plants under N deficiency in

comparison to CS (Figs 3A and 4A). The absorption and use efficiencies of P (Figs 3B and 4B),

K (Figs 3C and 4C), Ca (Figs 3D and 4D), Mg (Figs 3E and 4E), and S (Figs 3F and 4F) were

also reduced in plants cultivated in the condition of–N, in comparison to CS.

These effects resulted in impaired growth, reducing its height (Fig 5A), stem diameter (Fig

5B), number of leaves (Fig 5C), and leaf area (Fig 5D), as well as the accumulation of above

(Fig 5E) and below ground biomass (Fig 5F).

Nitrogen was the most limiting nutrient for the growth of scarlet eggplant plants, with

losses observed in the dry matter production in both the above and below ground biomass,

from up to 99 and 97% in relation to CS, respectively (Fig 5E and 5F). The visual symptoms of

N deficiency were characterized by smaller height and generalized chlorosis of leaves from the

lower third, which subsequently evolved to all other leaves (Figs 6A and 7A).

The omission of P also reduced the accumulation of this nutrient in the above (Fig 1B) and

below ground biomass (Fig 2B), being accompanied by lower accumulations of N (Figs 1A and

2A), K (Figs 1C and 2C), Mg (Figs 1E and 2E) and S (Figs 1F and 2F) in both above and below

ground biomass, and Ca in below ground biomass (Fig 2D), in relation to CS. Plants that were

deficient in P presented the lowest absorption efficiency of this macronutrient in comparison
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to other treatments (Fig 3B). However, the use efficiency of P in plants under–P was the high-

est among all treatments (Fig 4B). Nevertheless, the use efficiency of N (Fig 4A), K (Fig 4C),

Ca (Fig 4D), Mg (Fig 4E) and S (Fig 4F) decreased in relation to CS, and for this reason, plants

Fig 1. Accumulation of nitrogen (N) (a), phosphorus (P) (b), potassium (K) (c), calcium (Ca) (d), magnesium (Mg) (e), and sulphur (S) (f) in the

above ground biomass of scarlet eggplants in complete solution (CS), and under the omission (-) of macronutrients (−N, −P, −K, −Ca, −Mg, and −S).

Means followed by the same letter in each bar did not differ from each other by the Tukey’s test (p�0.05). Bars represent the standard error of the

mean.

https://doi.org/10.1371/journal.pone.0252866.g001
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growth was hampered in terms of height (Fig 5A), stem diameter (Fig 5B), number of leaves

(Fig 5C), leaf area (Fig 5D) and biomass accumulation in above ground (Fig 5E) and below

ground (Fig 5F).

Fig 2. Accumulation of nitrogen (N) (a), phosphorus (P) (b), potassium (K) (c), calcium (Ca) (d), magnesium (Mg) (e), and sulphur (S) (f) in the

below ground biomass of scarlet eggplants in complete solution (CS), and under the omission (-) of macronutrients (−N, −P, −K, −Ca, −Mg, and −S).

Means followed by the same letter in each bar did not differ from each other by the Tukey’s test (p�0.05). Bars represent the standard error of the

mean.

https://doi.org/10.1371/journal.pone.0252866.g002
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P was the least limiting nutrient for plants growth, with a slight reduction in biomass pro-

duction in above ground and below ground of 46 and 40% in relation to CS, respectively (Fig

5E and 5F). The visual symptoms associated with P deficiency were mainly characterized by

reduced height and mild chlorosis in older leaves (Figs 6B and 7B).

Fig 3. Absorption efficiencies of nitrogen (N) (a), phosphorus (P) (b), potassium (K) (c), calcium (Ca) (d), magnesium (Mg) (e), and sulfur (S) (f) in

scarlet eggplants in complete solution (CS), and under the omission (-) of macronutrients (−N, −P, −K, −Ca, −Mg, and −S). Means followed by the

same letter in each bar did not differ from each other by the Tukey’s test (p�0.05). Bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0252866.g003
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The suppression of K also led to a smaller accumulation of this nutrient in the above (Fig

1C) and below ground biomass (Fig 2C), which in turn reduced the accumulation of N (Figs

1A and 2A), P (Figs 1B and 2B), Ca (Figs 1D and 2D), Mg (Figs 1E and 2E), and S (Figs 1F and

2F) in above and below ground biomass, when compared with the CS. Plants grown in a

Fig 4. Use efficiencies of nitrogen (N) (a), phosphorus (P) (b), potassium (K) (c), calcium (Ca) (d), magnesium (Mg) (e), and sulfur (S) (f) in scarlet

eggplants in complete solution (CS), and under the omission (-) of macronutrients (−N, −P, −K, −Ca, −Mg, and −S). Means followed by the same

letter in each bar did not differ from each other by the Tukey’s test (p�0.05). Bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0252866.g004
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condition of K deficiency reduced the absorption efficiency of this nutrient (Fig 3C), as well as

of P (Fig 3B), in comparison to CS. The use efficiency of all macronutrients was reduced in the

condition–K (Fig 4A–4F), in comparison to plants cultivated with CS. This nutritional imbal-

ance caused a reduction of plants’ height (Fig 5A), stem diameter (Fig 5B), number of leaves

Fig 5. Plant height (a), stem diameter (b), number of leaves (c), leaf area (d), above ground biomass (e), and below ground biomass (f) in scarlet

eggplants in complete solution (CS), and under omission (-) of macronutrients (−N, −P, −K, −Ca, −Mg, and −S). Means followed by the same letter

in each bar did not differ from each other by the Tukey’s test (p�0.05). Bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0252866.g005
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(Fig 5C), and leaf area (Fig 5D), which in turn undermined the biomass production above

ground (Fig 5E) and below ground (Fig 5F).

Potassium was the third most limiting nutrient for plants growth, being responsible for

losses of 94 and 93% in the biomass production in above ground and below ground in relation

Fig 6. Side view of scarlet eggplants with visual symptoms of nitrogen deficiency (-N) (a), phosphorus (-P) (b), potassium (-K) (c), calcium (-Ca) (d),

magnesium (-Mg) (e) and sulphur (-S) (f) compared to the complete solution (CS).

https://doi.org/10.1371/journal.pone.0252866.g006
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to CS, respectively (Fig 5E and 5F). The symptoms related to K deficiency were characterized

by an interruption of growth, as well as irregularities in the limb of leaves and yellowing of its

edges, with an advanced symptomatology revealing chlorotic spots suffering necrosis (Figs 6C

and 7C).

Fig 7. Top view of scarlet eggplants with visual symptoms of nitrogen deficiency (-N) (a), phosphorus (-P) (b), potassium (-K) (c), calcium (-Ca) (d),

magnesium (-Mg) (e) and sulphur (-S) (f) compared to the complete solution (CS).

https://doi.org/10.1371/journal.pone.0252866.g007
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Plants cultivated in the condition of–Ca presented a low accumulation of this nutrient in

above (Fig 1D) and below ground biomass (Fig 2D). In addition, Ca deficiency reduced the

absorption of N (Figs 1A and 2A), K (Figs 1C and 2C) and Mg (Figs 1E and 2E) in above and

below ground biomass, as well as P (Fig 2B), and S (Fig 2F) in below ground biomass, in com-

parison to plants grown in CS. The absorption efficiency of Ca (Fig 3D) decreased in–Ca; how-

ever, despite the fact that this condition of Ca deficiency caused a reduced use efficiency of N,

P, K, Mg and S, the use efficiency of Ca was increased, being equal to the plants cultivated in

CS (Fig 4A–4F). In this sense, reductions in nutritional efficiencies caused detrimental effects

in plants growth, observed in its height (Fig 5A), stem diameter (Fig 5B), number of leaves

(Fig 5C), and leaf area (Fig 5D), which in turn resulted in lower biomass production in above

(Fig 5E) and below ground (Fig 5F).

Ca was the fourth most limiting nutrient for plants growth, resulting in a reduced biomass

production in both above ground and below ground of 76 and 84% in relation to CS, respec-

tively (Fig 5E and 5F). The symptoms caused by Ca deficiency were initially characterized by

an under development, which subsequently evolved to deformed limbs of new leaves that had

irregular textures, with curved edges facing down (Figs 6D and 7D).

The deficiency of Mg was characterized by a reduction of Mg accumulated in above (Fig

1E) and below ground biomass (Fig 2E), causing an imbalance in the accumulation of other

macronutrients, such as N (Figs 1A and 2A), P (Figs 1B and 2B), K (Figs 1C and 2C), and Ca

(Figs 1D and 2D), in both the above and below ground biomass, and S in below ground bio-

mass (Fig 2F), in relation to CS. Plants cultivated in the absence of Mg displayed a lower

absorption of this nutrient (Fig 3E); however, the absorption efficiencies of N (Fig 3A), P (Fig

3B), K (Fig 3C), Ca (Fig 3D), and S (Fig 3F) were higher in comparison to plants grown in CS.

The use efficiency of Mg in plants cultivated under–Mg was higher in comparison to all

other treatments (Fig 4E). Nevertheless, the use efficiencies of N, P, K, Ca and S were reduced

in comparison to the ones observed in plants in CS (Fig 4A–4D and 4F). These effects com-

bined reflected in reduced height (Fig 5A), stem diameter (Fig 5B), number of leaves (Fig 5C),

and biomass production of above (Fig 5E) and below ground (Fig 5F), in comparison to CS.

Mg was the fifth most limiting nutrient to plants development, reducing by 51 and 82% the

dry matter production of above and below ground biomass in relation to CS, respectively (Fig

5E and 5F). Plants grown under Mg deficiency presented lower height and leaves of the third

inferior part with irregular limb and chlorosis among veins (Figs 6E and 7E).

The absence of S in the solution reduced its accumulation in above (Fig 1F) and below

ground biomass (Fig 2F). Associated with this, lower accumulations of N (Figs 1A and 2A), P

(Figs 1B and 2B), K (Figs 1C and 2C), Ca (Figs 1D and 2D) and Mg (Figs 1E and 2E) were

observed in above and below ground biomass, in relation to CS. The absorption efficiency of S

was severely reduced in the condition of–S (Fig 3F), which was accompanied by losses in the

use efficiency of all other macronutrients (Fig 4A–4F). As a reflex of damages, a reduction in

plants height (Fig 5A) was observed, as well as lower stem diameter (Fig 5B), number of leaves

(Fig 5C), leaf area (Fig 5D), biomass of above ground (Fig 5E) and below ground (Fig 5F).

Sulfur was the second most limiting nutrient for plants growth, leading to reductions of 96

and 92% in the production of biomass in above and below ground in relation to CS, respec-

tively (Fig 5E and 5F). The visual symptoms of plants were evidenced initially by an inter-

rupted growth, followed by generalized chlorosis in new leaves that evolved to other leaves

(Figs 6F and 7F).

From the losses of biomass production above and below ground, the limiting order of mac-

ronutrients was N, S, K, Ca, Mg, and P, with respective reductions of 99, 96, 94, 76, 51 and

46%, in comparison to plants grown in CS (Fig 5E). Considering the losses associated with the

development of below ground biomass, the limiting order of macronutrients was N, K, S, Ca,
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Mg, and P, with total reductions of 97, 93, 92, 84, 82 and 40%, respectively, in comparison to

plants grown in CS (Fig 5F). Thus, the omissions of N, S and K in the nutrient solution resulted

in the lowest accumulation of all macronutrients in above ground biomass of plants, while

the omissions of Mg and Ca caused reduced accumulations of N, Ca and Mg in above ground

biomass of scarlet eggplant plants, in comparison to plants cultivated under CS condition

(Fig 1A–1F).

The cluster analysis grouped the omissions of N, S and K, demonstrating that the deficien-

cies of these nutrients caused the greatest imbalances in the absorption of other macronutri-

ents, with reflexes in losses of nutrients use and absorption that decreased biomass production

in up to 90%. The suppression of Ca and Mg were grouped due to its similarity in limiting

scarlet eggplants growth, with losses of up to 80%. However, the omission of P did not lead to

significant damages in relation to plants’ development. The condition of P omission was

grouped with plants cultivated under CS, even though the losses related to the lack of this

nutrient were around 40% (Fig 8).

4. Discussion

Nutritional deficiencies can limit plants growth by causing imbalances and reducing the nutri-

ent use efficiency, which in turn decreases biomass production [6, 9]. In this study, we demon-

strated that the effects caused by the lack of a nutrient ends up hampering the growth of scarlet

eggplants, due to modifications in the absorption and use of the lacking nutrient, as well as

other nutrients. This occurs because of the interactions between nutrients during the process

of absorption and use by the plant’s metabolism in converting them into dry matter [5, 8, 17].

Based on the results obtained in this study, it was evident that N was the most limiting

nutrient for the growth of scarlet eggplant, due to the nutritional damages caused by this and/

or other nutrients. A limited supply of N reduced the accumulation and the efficiencies of

absorption and use of other nutrients, in comparison to plants that were cultivated in a condi-

tion of N sufficiency. This response occurred because the plants grown under N deficiency had

a reduced accumulation of P, K, Ca, Mg and S, in both above and below ground biomass, dem-

onstrating a severe nutritional imbalance, caused by a lower absorption efficiency of these

nutrients. By participating in the constitution of enzymes and cell membrane transporters in

roots [6], N is involved in the process of active absorption of nutrients, thus its deficiency

affects this process negatively. Associated with this, the nutritional imbalances caused by N

deficiency reduced its use efficiency, which was accompanied by the ones of P, K, Ca, Mg

and S.

The biological functions performed by nutrients in plants induce interactions between mul-

tiple nutrients [9], and due to this reason, the nutritional deficiency of N compromises the

metabolism of other nutrients, even if those are not lacking in the nutrient solution. The low

use efficiency of S as a result of N shortage is due to the participation of both nutrients in the

protein synthesis, seen that both are constituents of essential amino acids [18]. In addition,

low concentrations of N in leaves result in a reduced production of photosynthetic pigments

[19], which ends up affecting the metabolism of Mg, as both constitute the structure of chloro-

phyll molecules that are essential for the absorption of photons and for the transportation of

electrons during photosynthesis [20].

This disturbance caused by N deficiency in electron transportation affects the whole photo-

synthetic metabolism by reducing the use efficiency of P, seen that this nutrient acts in several

metabolic activities related to photosynthesis and in the activity of 1,5-biphosphate carboxylase

ribulose (Rubisco) [21]. When these factors are combined, the enzymes involved in both pro-

tein synthesis and photosynthesis have their activity reduced, because N deficiency also
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compromises the absorption of K, preventing them to be activated, given the role of K in the

enzymatic activity [22]. In this sense, N deficiency reduced growth and biomass production of

plants by affecting several physiological mechanisms that depend on nutritional homeostasis.

These events culminated in the appearance of visual symptoms in the foliar tissue, which con-

sisted of generalized chlorosis in old leaves that over time progressed to all leaves, in a similar

way as described by Haag et al. [11] in scarlet eggplants.

The second nutrient that limited the most the development of plants was S, and the dam-

ages caused by its omission were exacerbated because plants cultivated under S deficiency

accumulated less of this and other nutrients. It was evidenced that S deficiency compromised

the absorption of this nutrient, but did not affect the absorption efficiency of other nutrients;

Fig 8. Hierarchical cluster analysis with standardized data on absorption efficiencies (EA) and use (EU) of macronutrients in scarlet eggplants under

nitrogen (-N), phosphorus (-P), potassium (-K), calcium deficiency (-Ca), magnesium (-Mg) and sulfur (-S) and complete solution (CS).

https://doi.org/10.1371/journal.pone.0252866.g008

PLOS ONE Nutritional interactions in scarlet eggplant macronutrient deficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0252866 June 4, 2021 14 / 20

https://doi.org/10.1371/journal.pone.0252866.g008
https://doi.org/10.1371/journal.pone.0252866


however, the use efficiency of S was reduced by 84% in comparison to plants cultivated in CS,

beings accompanied by reductions in the use efficiencies of other macronutrients. This result

demonstrates that the growth of scarlet eggplants is more affected by reductions in the nutri-

ents use efficiency, in comparison to absorption efficiencies.

The reduced use efficiency of N as a result of S deficiency occurred for the same reason

described in the condition of–N, i.e. the participation of both nutrients in the protein synthe-

sis, because both are constituents of essential amino acids [18]; therefore, S deficiency also

impaired the functions performed by N. This deficiency also affected the metabolism of Mg,

possibly due to the participation of both nutrients in the formation of photosynthetic pig-

ments, seen that chloroplasts’ tilacoidal membranes are constituted by sulpholipid compounds

[23]. Thus, with a reduction of these compounds, chlorophyll formation is inhibited and the

metabolism of Mg is impaired [24]. Additionally, Mg acts together with P in the assimilatory

reduction of SO3
-2 [4], and for this reason, the depletion of S affects these nutrients’ metabo-

lism. Still, S acts plays an important role in the composition of ferredoxins, which are enzy-

matic complexes involved in photosynthesis [4]; thus it is another path that may justify the

damages caused by P metabolism in plants cultivated under S deficiency.

Sulphur deficiency also resulted in a reduced use efficiency of K, seen that both the loading

of K in the plant’s xylem and its translocation to the aerial part are partially determined by the

amount of sulphate translocated, and accumulated in the aerial part of the organism, due to its

action as counter-ion [12]. Therefore, K accumulates in roots when sulphate is lacking in the

plant. This effect was evidenced in this study, in which 40% of the K in plants cultivated

under–S was accumulated in below ground biomass, reaching a value about twice higher in

comparison to plants cultivated in CS.

The nutritional imbalance caused by S deficiency compromised the role of Ca in plants,

which is involved in the formation of the tissues’ cell well [4], also affecting its metabolism, as

observed by the lower use efficiency of this nutrient and consequently in the formation of new

leaves. Such nutritional imbalances led to a reduced growth of scarlet eggplants, and induced

visible symptoms such as uniform chlorosis of new leaves.

It was possible to verify that K was the third most limiting nutrient in relation to biomass

accumulation and growth of scarlet eggplants, because it also affected the nutritional homeo-

stasis and reduced the concentration of all other nutrients in the plants. However, the absorp-

tion efficiency of N, P, Ca, and Mg was augmented in comparison to plants grown in CS,

demonstrating that this species has nutritional mechanisms that interact in order to reduce the

damages caused by K deficiency. It is currently known that plants cultivated in environments

with deprivation of K might use the mechanism of absorption by transporters with high affin-

ity by K+, which involves high-energy expenditures (ATP) [10], thus justifying the increased

absorption efficiency of P in plants deficiency in K, as observed in this study. In addition,

plants may also stimulate the influx of K+ using NO3
- as counter-ion for electrical balance, a

fact that was also observed in this study by the increased absorption efficiency of N, which cor-

roborates the findings of Kellermeier et al. [25]. The role of K+ in osmotic functions may also

be partially replaced by other cations, such as Mg2+ or Ca2+ [7], and there is evidence that

plants cultivated under K+ restriction tend to absorb more of these cations in order to main-

tain the cellular ionic equilibrium [12, 26]. These events contribute to justify the increased

absorption efficiency of Ca and Mg by scarlet eggplants under K deficiency.

The scenario of potassic deficiency caused prejudices in the metabolism of several nutrients

because a reduction of 52% in the use efficiency of K was observed, which was accompanied by

reductions in the use of N, P, Ca, Mg and S, all of approximately 97% in comparison to plants

cultivated in CS. The lowest concentration of K in the foliar tissue causes reductions in the syn-

thesis of proteins and in the accumulation of soluble nitrogen compounds, with putrescine, N-
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carbamoyl putrescine and agmatine [27]. This effect reflects in a lower use efficiency of N and

K, seen that these nutrients are involved in the synthesis of proteins and interfere in the biolog-

ical function of other nutrients, seen that putrescine is toxic to plants and causes necrosis in

tissue. In addition, K deficiency induces the production of ethylene, which in turn regulates

positively the production of oxygen reactive species in roots [10], inducing oxidative stress and

interfering in vital metabolisms of plants. This nutrient is also strongly linked to the loading of

photo-assimilated compounds in the phloem, to the maintenance of the membrane potential

and activation of different enzymes related to the metabolism of photosynthesis [28]. In this

sense, the low absorption of K also caused a reduced efficiency of the use of N, P, Ca, Mg and

S, by the function that this nutrient exerts in the enzymatic processes and in the plant’s

metabolism.

When facing nutritional disturbances, plants that were deficient in K displayed visual symp-

toms characterized by marginal chlorosis in old leaves that evolved to necrosis, because of the

accumulation of putrescine in this region. Associated with this, K deficiency was characterized

by irregularities in the leaf limb of old leaves, similar to the results reported by Haag et al. [11];

however, those authors did not describe chlorosis in the edges of leaves, as observed in the

present study.

Ca deficiency resulted in a nutritional imbalance in the plant by reducing the accumulation

of Ca, K, N, Mg and S. In addition, it was evidenced that the absorption efficiency of Ca

decreased, while the ones of N, K and Mg increased in comparison to plants cultivated in CS.

Similarly, to the results observed in plants grown under–K, we believe that plants under Ca

deficiency have increased the absorption of cations such as K+ and Mg2+, boosted by a charge

equilibrium [12, 26]. The increased efficiency of N absorption was due to the use of ammo-

nium-N in plants grown with the omission of Ca, as indicated by Hoagland and Arnon [13].

Therefore, the high efficiency of ammonium transporters [29] contributed for the increased

efficiency of N absorption by plants, which in turn reflected in the efficiency of S absorption,

seen that N is a constituent of the enzymes that transport all nutrients, including S [4].

The deficiency of Ca did not interfere in the use efficiency of this macronutrient, being sim-

ilar to the ones observed in plants cultivated in CS. This can be attributed to the function of

Ca, which is stimulated only in low concentrations of the element in the cellular cytosol, acting

as a signal for photosynthesis-related enzymes, and as a secondary messenger in abiotic stress

events [30], such as the ones caused by nutritional deficiencies. In addition, the plants received

Ca throughout its adaptation stage, which may have been accounted in the chemical analysis

performed in its aerial parts. Nevertheless, Ca was the fourth most limiting nutrient for the

growth of scarlet eggplants in this experiment. This fact occurred because Ca deficiency caused

an imbalance in the metabolism of other nutrients, reducing in 93, 91, 90, 89 and 86% the use

efficiencies of P, Mg, S, N and K, respectively.

The low efficiencies of use of other macronutrients in an environment deficient in Ca were

due to disturbances in the stability of the cytosol structure [31]. Ca deficiency causes cell wall

malformation, seen that this structure is maintained by Ca+2 bonds to pectates [30] that reflects

in the formation of organelles such as mitochondria, which play an important role in the accu-

mulation of ions [31]; thus, even though ions were absorbed, its incorporation in the plants

metabolism was hampered. The nutritional disturbances caused by Ca deficiency evolved and

reached tissue level, causing visual symptoms that start in young leaves with curved margins fac-

ing down due to cells’ malformation, similarly to the symptoms reported by Haag et al. [11].

Mg was the fifth most limiting macronutrient for the development of plants, and its defi-

ciency reduced the accumulation of N, P, K, Ca and Mg, both in above and below ground bio-

mass, and S in below ground biomass, in comparison to CS. Nevertheless, the absorption

efficiency of these macronutrients was higher in plants under Mg deficiency, which
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demonstrated that nutritional interactions can be strategic to reduce the impacts caused by Mg

deficiency in scarlet eggplants, seen that in this condition, plants tend to increase P absorption,

in order to maintain the activation of enzymes in photosynthetic processes, such as the Calvin

cycle, seen that the lack of Mg reduced the reaction speed and the affinity between the enzyme

Rubisco and the substrate [4]. Additionally, low concentrations of Mg in the nutrient solution

stimulated the absorption of cations (e.g. K+ and Ca2+), to maintain the equilibrium of charges

[12]. The increased efficiency of N absorption in plants deficient in Mg can also be attributed

to the use of a source of ammonium-N, inducing an increased absorption efficiency of N

because of the high affinity of ammonium transporters [29].

It was shown that the strategy of plants grown under Mg deficiency is not increasing its

absorption efficiency, but in the use efficiency of this macronutrient, which even surpassed

other nutrients. This was due to a greater internal cycling because plants redistributed the Mg

that was linked to molecules, and stored it in cellular vacuoles of old leaves, so it could be

transferred to vascular tissues and reach new leaves, ensuring Mg homeostasis [32]. Nonethe-

less, the damages caused by Mg deficiency impaired the metabolism of other nutrients, reduc-

ing the use efficiency of N, P, K, Ca and S.

The lowest use efficiency of N in plants deficient in Mg was due to the participation of Mg

in the stability of ribosomes, by keeping the subunits linked to amino acids and mRNA,

guaranteeing the effectivity of the protein synthesis [4]. In this sense, plants deficient in Mg

accumulated non-protein N, reducing the use efficiency of N. In addition, N and Mg as basic

components of chlorophyll molecules, and around 10–20% of the Mg present in plants are

linked to these pigments [24]. Thus, this could be one of the mechanisms by which the sup-

pression of Mg interferes in N metabolism. Furthermore, we believe that the reduced forma-

tion of these pigments has contributed for the reduction of the S use efficiency, given the

participation of this nutrient in the constitution of sulpholipid compounds in the membranes

of photosynthetic pigments [23].

The decreased chlorophyll content in plants deficient in Mg was also due to the degradation

caused by sugars and starch accumulation in the cells of deficient leaves [33], which caused a

super-reduction of the transport chain of photosynthetic electrons, generating reactive oxygen

species that degrade these pigments [34]. In this sense, the resulting oxidative stress may have

caused negative effects in Ca metabolism, as reactive species cause damages to the cell wall

[35]. In addition, Mg accompanies Ca in the formation of pectin in the cell wall [4], demon-

strating that Mg deficiency limits Ca metabolism by reducing the formation and increase the

degradation of the cell wall.

The reduction of photosynthetic pigments content caused by the condition of Mg defi-

ciency disturbed the transportation of electrons, compromising the photosynthetic system

[20], and consequently the metabolism of P. When associated to the participation of Mg as a

cofactor of a series of enzymes involved in the photosynthetic fixation of carbon [33], those

events demonstrate that the reactions triggered by Mg reduction in the cell content reflect in

the use efficiency of P by plants. In addition, Mg deficiency generates an inhibition in sucrose

loading in the phloem, seen that this process is catalyzed by a cotransporter H+/sucrose, which

its activity requires a gradient of protons and is maintained by a H+-ATPase located in the

plasmatic membranes of the cells in the vascular system. Evidence suggests that Mg-ATP is an

important ATP complex in cells, essential to the activity of H+-ATPase [33]. This accumula-

tion of sugars has also impaired the metabolism of K.

The symptoms of Mg deficiency were initially characterized by an appearance of an inter-

nerve chlorosis in older leaves, which occurs by low concentrations of this nutrient in the foliar

limb. The symptomatology described in this study are similar to the ones previously reported

in scarlet eggplants [11].
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In the experimental conditions of this study, even though P deficiency harmed plants in

comparison to plants cultivated in CS, P was the macronutrient with the lowest interference in

plants growth, which can also be attributed to an increased efficiency of this nutrient. The high

use efficiency of P by plants deficient in this nutrient occurred because of a reduced structure

of tilacoidal membranes of chloroplasts, which induce an increased capture of photons and

consequently in the photosystem II efficiency [36]. Associated to this, the suppression of P

maintained the use efficiencies of Ca, N, K, S and Mg at a moderate level, with reductions of

66, 59, 57, 54 and 52%, respectively, in comparison to plants cultivated in CS. In this sense,

plants that were deficient in P presented higher metabolic activity, especially regarding enzy-

matic activities, and had reduced losses in the protein synthesis, which in turn caused a lower

effect in the metabolism of N, S and K, as well as in the formation of new tissues without affect-

ing Ca metabolism. In spite of this, P suppression reduced the use efficiency of Mg, due to the

low demand of Mg in enzyme activation [4]. Thus, plants submitted to P deficiency presented

a later symptomatology, characterized by a darker green color in young leaves, and yellowish

tones on the lower third of old leaves. These results corroborate the ones presented by Haag

et al. [11] in scarlet eggplants.

The results presented in this study support the hypothesis that a macronutrient’s deficiency

modifies both the absorption and use efficiency of other nutrients, causing a series of biological

signaling events that are related to the adaptive responses of plants, whose integration interfere

in the growth and development of scarlet eggplants. The study proposes in an unprecedented

way that future research evaluating the biological damages caused by the lack of a certain

nutrient should take into account other nutrients as well, even if these are found in adequate

concentrations in the nutrient solution, in order to better understand the extension of nutri-

tional damages in the growth of plants.

5. Conclusion

The biological damages caused by nutritional deficiency in scarlet eggplant depend on the

nutrient omitted in the nutrient solution associated with its interaction with other nutrients, as

it affects the absorption efficiency and use efficiency of these elements by plants. The most lim-

iting nutrients were N, S and K, seen that their deficiencies resulted in deleterious effects in the

metabolism of all other nutrients, demonstrating the importance of an adequate nutritional

management in scarlet eggplant crops.
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nutricionais em jiló (Solanun jilo cultivar morro grande oblongo) cultivado em solução nutritiva. An da

Esc Super Agric Luiz Queiroz. 1978; 25: 327–339.

12. Reich M, Shahbaz M, Prajapati DH, Parmar S, Hawkesford MJ, De Kok LJ. Interactions of sulfate with

other nutrients as revealed by H2S fumigation of Chinese cabbage. Front Plant Sci. 2016; 7: 1–8.

https://doi.org/10.3389/fpls.2016.00001 PMID: 26858731

13. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Berkeley: The Col-

lege of Agriculture University of California; 1950.

14. Bataglia OC, Furlani AMC, Teixeira JPF, Furlani PR, Gallo JR. Métodos de análise quı́mica de plantas.

Campinas; 1983. Report No.: 78.

15. Fageria NK, Baligar VC. Enhancing nitrogen use efficiency in crop plants. Adv Agron. 2005; 88: 97–

185.

PLOS ONE Nutritional interactions in scarlet eggplant macronutrient deficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0252866 June 4, 2021 19 / 20

https://doi.org/10.1016/j.aoas.2019.12.008
https://doi.org/10.1016/j.jarmap.2019.100238
https://doi.org/10.1016/j.jarmap.2019.100238
https://doi.org/10.1016/j.cj.2020.10.005
https://doi.org/10.1016/j.cj.2020.10.005
https://doi.org/10.5897/ajar2015.9888
https://doi.org/10.5897/ajar2015.9888
https://doi.org/10.1371/journal.pone.0234512
http://www.ncbi.nlm.nih.gov/pubmed/32511280
https://doi.org/10.1111/nph.17074
http://www.ncbi.nlm.nih.gov/pubmed/33175410
https://doi.org/10.21273/HORTSCI13807-18
https://doi.org/10.3389/fpls.2019.00281
http://www.ncbi.nlm.nih.gov/pubmed/30949187
https://doi.org/10.3389/fpls.2016.00001
http://www.ncbi.nlm.nih.gov/pubmed/26858731
https://doi.org/10.1371/journal.pone.0252866


16. Teixeira GCM, Prado R de M, Rocha AMS, Piccolo M de C. Root- and foliar-applied silicon modifies C:

N: P ratio and increases the nutritional efficiency of pre-sprouted sugarcane seedlings under water defi-

cit. PLoS One. 2020; 15: 1–24. https://doi.org/10.1371/journal.pone.0240847 PMID: 33057406

17. Campos CNS, Teixeira GCM, Prado R de M, Caione G, da Silva Júnior GB, David CHO De, et al. Mac-

ronutrient deficiency in cucumber plants: impacts in nutrition, growth and symptoms. J Plant Nutr. 2021;

0: 1–18. https://doi.org/10.1080/01904167.2021.1921205

18. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms:

molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol.

2011; 62: 157–184. https://doi.org/10.1146/annurev-arplant-042110-103921 PMID: 21370978

19. Zhang XC, Yu XF, Ma YF. Effect of nitrogen application and elevated CO2 on photosynthetic gas

exchange and electron transport in wheat leaves. Photosynthetica. 2013; 51: 593–602. https://doi.org/

10.1007/s11099-013-0059-5

20. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New

Phytol. 1993; 125: 27–58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x PMID: 33874604

21. Santos KR, Pereira MP, Ferreira ACG, Rodrigues LC de A, Castro EM de, Corrêa FF, et al. Typha dom-

ingensis Pers. growth responses to leaf anatomy and photosynthesis as influenced by phosphorus.

Aquat Bot. 2015; 122: 47–53. https://doi.org/10.1016/j.aquabot.2015.01.007

22. Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, et al. Functions of macronutri-

ents. Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Elsevier Ltd; 2011. pp. 135–189.

https://doi.org/10.1016/B978-0-12-384905-2.00006–6

23. Imsande J. Iron, sulfur, and chlorophyll deficiencies: A need for an integrative approach in plant physiol-

ogy. Physiol Plant. 1998; 103: 139–144. https://doi.org/10.1034/j.1399-3054.1998.1030117.x

24. Verbruggen N, Hermans C. Physiological and molecular responses to magnesium nutritional imbalance

in plants. Plant Soil. 2013; 368: 87–99. https://doi.org/10.1007/s11104-013-1589-0

25. Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A. Analysis of the root system

architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals.

Plant Cell. 2014; 26: 1480–1496. https://doi.org/10.1105/tpc.113.122101 PMID: 24692421

26. Rietra RPJJ, Heinen M, Dimkpa CO, Bindraban PS. Effects of nutrient antagonism and synergism on

yield and fertilizer use efficiency. Commun Soil Sci Plant Anal. 2017; 48: 1895–1920. https://doi.org/10.

1080/00103624.2017.1407429

27. Bianco MS, Filho ABC, De Carvalho LB. Nutritional status of the cauliflower cultivar “Verona” grown

with omission of out added macronutrients. PLoS One. 2015; 10: 1–17. https://doi.org/10.1371/journal.

pone.0123500 PMID: 25856380

28. Mak M, Babla M, Xu SC, O’Carrigan A, Liu XH, Gong YM, et al. Leaf mesophyll K+, H+ and Ca2+ fluxes

are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environ

Exp Bot. 2014; 98: 1–12. https://doi.org/10.1016/j.envexpbot.2013.10.003
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