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Abstract

Background and aims: This study investigated the biochemical components present

in the leaves of Cissus assamica. The primary aim was to analyze these components

using advanced techniques and assess their potential therapeutic applications.

Methodology: Fourier Transform Infrared (FT‐IR) spectroscopy, Gas Chromatography‐

Mass Spectrometry (GC‐MS), and Mass Spectral analysis were employed to identify and

characterize the compounds in Cissus assamica leaves. The mass spectra of each com-

pound were compared with data from the Wiley and NIST libraries to determine their

names, molecular masses, and chemical structures. FT‐IR analysis identified characteristic

functional groups by their specific frequencies.

Results and discussion: FT‐IR spectroscopic analysis revealed significant molecular

vibrations at frequencies of 3265.63, 2853.81, 1638.60, 1469.21, and 1384.95 cm⁻¹,

indicating the presence of specific functional groups. The GC‐MS analysis identified

distinct compounds, such as “aR‐Turmerone,” “Curlone,” “7,8‐Epoxylanostan‐11‐ol,

3‐acetoxy‐,” “13‐Docosenamide, (Z)‐,” “Phenol, 3,5‐bis(1,1‐dimethylethyl)‐,” “9,19‐

Cyclolanostan‐3‐ol, 24,24‐epoxymethano‐, acetate,” and “Quinoline‐5,8‐dione‐6‐ol,

7‐[[(4‐cyclohexylbutyl)amino]methyl]‐.” These compounds exhibited potential ther-

apeutic applications. Their cytotoxic, antimicrobial, antidiarrheal, anti‐hyperglycemic,

and pain‐relieving properties were evaluated by comparing them with reference

ligands targeting specific receptors, including dihydrofolate reductase (DHFR), epi-

dermal growth factor receptor (EGFR), kappa opioid receptor (KOR), glucose

transporter 3 (GLUT 3), and cyclooxygenase 2 (COX‐2).

Conclusion: The results of this study suggest that Cissus assamica leaves contain

bioactive compounds with potential therapeutic benefits for treating infections,

diarrhea, hyperglycemia, and pain. However, further research is needed to conduct

comprehensive phytochemical screening and establish the precise mechanisms of

action for the crude extract or the plant‐derived compounds.
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1 | INTRODUCTION

New drug candidates have always come from nature, originating from

various sources, including plants, minerals, animals, and marine life.1

Since most novel or current medications found to date are metabo-

lites of plant origin, the plant origin is notably the most important

source for treatment from human existence.2–7 Eighty percent of

drug compounds are refined versions of natural plant extract com-

ponents or direct derivatives of those natural components.8,9 The

extraction of plant materials employs both traditional and innovative

techniques. These include maceration, infusion, percolation, diges-

tion, decoction, Soxhlet distillation, turbo‐extraction, ultrasound

assistance, supercritical fluid extraction, solid‐phase extraction, and

microwave methods. Modern extraction technologies encompass gas

chromatography, chiral phase chromatography, high‐performance

liquid chromatography, and ionic liquid extraction.10 Recent focus on

organic molecules from plants and their activities has led to increased

utilization of GC‐MS/MS and LC‐MS/MS, chosen based on com-

pound volatility.11 However, there is a lack of bioactivity evaluation

of the isolated compounds.12 Natural product scientists endeavor to

find scientific evidence to support the traditional uses of various

medicinal plant species in developing countries, where herbal medi-

cines are most popular.13 Based on conventional uses, plant crude

extracts are usually investigated for certain illness conditions in in‐

vitro or in‐vivo disease models.14,15 Bioactivity assays are useful but

not definitive for traditional usage validation. Despite its limitations,

molecular docking is valuable in drug discovery. It screens com-

pounds, saves time, offers unique scaffolds, and uncovers new

medicinal plant applications.16–18

There are over 350 species in the genus Cissus, at least 12 of

which are used worldwide in traditional medicine to cure various

illnesses.19 Cissum assamica (Lawson) Craib is a species in the Vita-

ceae family that is locally recognized as Amasha lata and tribally

known as Sarba amila or Murmuijja amila. This big, woody climber has

angular, reddish‐spotted stems; round, cordate or orbicular, cuspidate

leaves; tiny, umbellate‐opposed axillary leaf cymes of flowers; tur-

binate, black fruits the size of peas.20 In the literature survey, few

bioactive phytoconstituent of this plant, including 3,3′‐dimethyl el-

lagic acid, disco strain, beta‐sitosterol, bergenin, lupeol, n‐hexanoic

acid, isolariciresinol‐9‐O‐beta‐D glucopyranoside, and lupeol, ursolic

acid were isolated through preliminary chemical investigations.21

Fresh Cissus assamica stems were used to separate 55 different

components, including 11 triterpenes, 9 steroids, 5 tocopherols, 5

chlorophylls, 4 flavonoids, 2 benzoquinones, 2 tannins, and 3 other

compounds. Their structures were discovered by correlating their

spectrum results with those found in literature publications. They

were built using mass spectral data and 1D and 2D nuclear magnetic

resonance (NMR) data.22 However, extensive and further chemical

investigations of this plant's parts are necessary for it to be well‐

established.

It is reported that the methanolic leaf extract of C. assamica

possesses significant antipyretic (both central and peripheral) activ-

ity.20 Scholars have identified betulinic acid and epi‐glut‐5(6)‐en‐ol

from C. assamica as having significant cytotoxic effects on the human

cell line, suggesting the plant's anticancer properties.22 In China, this

plant is an endothelin antagonist popularly known as an anti‐snake

venom medicinal herb.23 C. araloides is proven to have antimicrobial

potentials caused by multiresistant infection.24 One study described

the antidiabetic, diuretic, anti‐inflammatory, and anticonvulsant

properties of the plant C. sicyoides.25

Earlier studies utilized NMR techniques (1H, 13C, or 2D NMR) for

substance separation from plants. In contrast, we adopted solvent‐

solvent extraction to isolate bioactive compounds. These compounds

were then analyzed using FTIR and GC‐MS/MS methods to deter-

mine their functional groups and chemical structure. Utilizing NIST

2020 software, we identified targeted compounds by analyzing their

fragmented mass and molecular base peak. Furthermore, we

assessed the binding affinities of our isolated molecules to five

receptors (kappa opioid receptor, GLUT 3, cyclooxygenase 2, DHFR,

and EGFR) and evaluated their ADME/T properties.

2 | METHOD

2.1 | Collection of plant

The leaves of the plant Cissus assamica (Figure 1) were collected in

February 2022 from Jahangirnagar University, which is 32 kilometers

from the west side of the Asian highway, sometimes referred to as

F IGURE 1 Leaves of Cissus assamica.

Highlights

• Compound isolation and characterization of the plant Cissus

assamica was done by GC‐MS/MS and FTIR analyses.

• A total of 15 Phytochemicals were identified.

• In silico analysis of the identified phytochemicals were

carried out for the evaluation of antidiarrheal, analgesic,

hypoglycemic, anticancer and antimicrobial potentiality

of the compounds.

• ADME/T were shown to observe potential drug likeliness.
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the Dhaka‐Aricha Road. The plant was taxonomically recognized and

stored for future use as a voucher specimen at the National Her-

barium of Bangladesh located in Mirpur, Dhaka.

2.2 | Extraction and partitioning of the crude

After being exposed to the sun for several days, dried leaves were pro-

cessed and ground into a coarse powder at the State University of

Bangladesh's Phytochemistry Research Lab using a high‐capacity grinding

machine. After grinding the leaves into a powder, 3 L of pure methanol

(MeOH) were added to a 5 L brown reagent jar. The jar was sealed and

stored for 25 days to allow thorough mixing, occasionally shaken or

stirred. Subsequently, the mixture was filtered once usingWhatman No. 1

filter paper and a new cotton plug. The filtrate was then dried under

vacuum using a rotary evaporator at less than 40°C, yielding approxi-

mately 85.5 g of gummy mass. The method developed26 and modified27

was used to fractionate the concentrated methanol extract. In brief, 5 g of

crude extract was dissolved in 90% methanol and water. The resulting

solution was partitioned using polar and non‐polar solvents including

petroleum ether (C6H14), chloroform (CHCl3), and ethyl acetate (EtOAc).

Organic fractions were dried using a low‐temperature rotary evaporator

for further analysis, focusing on the plant's crude methanol fractions.

2.3 | GC‐MS/MS system condition

Gas Chromatographic techniques (GC‐MS/MS) were used to examine the

bioactive chemicals that were extracted from the leaves of C. fistula

where a well‐established method electron impact ionization (EI) method

was used connected to a mass detector made by Shimadzu in Kyoto,

Japan, and the model name is GC‐MS TQ 8040. The column oven

temperature was fixed at 50°C. A capillary column fused with silica with

the following specifications (Rxi‐5 ms, 30m, 0.25mm ID, and 0.25m) was

utilized. By keeping the injection temperature constant at 250°C. The

sample injection method was in split mode. Preheating was performed in

the oven. Preheating the oven was 1min at 500°C, 2min at 200°C, and

7min at 300°C. The compound name, structures, and molecular weights

of each extract's bioactive ingredients were determined by comparing its

mass spectra with the data found in the NIST and Wiley libraries. Kim

et al.,.18,28,29 It took a total of 39min to complete the GC‐MS run.

2.4 | FTIR analysis

To identify different chemical connections and functional groups present

in compounds, one of the most useful instruments is the Fourier trans-

form infrared spectrophotometer c This has made it essential for struc-

tural and spectrochemical analytical examinations of a wide range of

materials, from tiny molecules30–32 to more complex materials, macro-

molecules, and supramolecular structures33,34 both theoretical and ex-

perimental. For the FTIR study, the plant extract was powdered and dried.

Setting the FTIR operation in an environment free of dampness is

advised. To prepare a translucent sample disc, 100mg of KBr pellet and

approximately 10mg of nonaqueous plant crude samples were mixed

according to a predetermined protocol. A FTIR imaging instrument of

Shimadzu made in Japan featuring a wavelength range of 400 to

4000 cm−1 and a spatial resolution of 4 cm−1 was used to evaluate the

powdered sample from the plant specimen.

2.5 | Molecular docking study

A method based on computing was used to evaluate the binding

affinities of compounds isolated from the methanolic leaves extract

of Cissus assamica against various target proteins. Several software

applications, such as PyMoL 2.3, PyRx, DiscoveryStudio 4.5, and

Swiss PDB viewer, were utilized to conduct the analysis.35

2.6 | Ligand preparation

PubChem (https://pubchem.ncbi.nlm.nih.gov/) was searched for, and

the 3D SDF structures of the chemicals indicated in Table 1 were

retrieved (accessed on September 28, 2023). Additionally, 3D SDF

structures of five standard compounds, namely Lapatinib (PubChem

CID_208908), Ciprofloxacin (PubChem CID_2764), Glibenclamide

(PubChem CID_3488), Loperamide (PubChem CID_3955), and Di-

clofenac (PubChem CID_3033), were obtained from the website

sources.36,38,39,41 A ligand library was generated by systematically

importing both the compounds and the standards into Discovery

Studio 4.5. Subsequently, plant derived compounds underwent

optimization using a semiempirical method featured as Pm6, thereby

enhancing the accuracy and precision of the docking process.37,42

2.7 | Target protein selection

Fifteen compounds isolated from the methanol fractions of Cissus assa-

mica leaf extract were subjected to computerized docking analysis to

explore their potential cytotoxic, antimicrobial, hypoglycemic, antidiar-

rheal, and analgesic properties. To assess cytotoxicity, the three Dimen-

sional crystal composition of the cytotoxic receptor epidermal growth

factor receptor (EGFR) [PDB ID: 1XKK],36,37 which was taken from the

source Protein Data Bank (https://www.rcsb.org/ (accessed on 28 Sep-

tember 2023)). Similarly, the 3D structures of dihydrofolate reductase

(DHFR) [PDB ID: 4M6J], (GLUT3) [PDB ID: 4ZWB], (KOR) [PDB ID: 6VI4],

and (COX‐2) [PDB ID: 1CX2] were downloaded from the same source to

evaluate their antimicrobial, hypoglycemic, antidiarrheal, and analgesic

activities, respectively.36,38,39,41

2.8 | Ligand‐protein binding

The affinities and potential binding patterns of phytocompounds with

target molecules were assessed using a computer‐aided ligand‐
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TABLE 2 Predicted Bioactive Compounds from GC‐MS/MS.

S/N R.T Area % Chemical Compound m/z MS Similarity %

1 3.7 5.54 3,3‐Dimethoxy‐2‐butanone 89 78

2 3.8 2.27 1,3‐Dioxolane‐4‐methanol, 2‐ethyl‐ 103 69

3 10.7 1.74 Phenol, 3,5‐bis(1,1‐dimethylethyl)‐ 191 70

4 12.3 36.9 aR‐Turmerone 83 92

5 12.8 9.57 Curlone 120 90

6 22.7 25.62 13‐Docosenamide, (Z)‐ 59 86

7 22.8 3.72 Quinoline‐5,8‐dione‐6‐ol, 7‐[[(4‐cyclohexylbutyl)
amino] methyl]‐

97 62

8 23.2 2.17 1‐Decanol, 2‐hexyl‐ 57 77

9 23.7 2.1 2‐Methylpiperidine‐1‐thiocarboxylic acid 2‐[1‐[2‐
thiazolyl]ethylidene]hydrazide

57 60

10 24.1 1.63 (E)−3,7,11‐Trimethyldodec‐2‐enoic acid, methyl ester 85 57

11 24.8 1.71 Triacontane, 1,30‐dibromo‐ 85 62

12 25.1 1.82 7,8‐Epoxylanostan‐11‐ol, 3‐acetoxy‐ 85 65

13 29.1 1.52 9,19‐Cyclolanostan‐3‐ol, 24,24‐epoxymethano‐,
acetate

57 52

14 29.4 2.19 Undec‐10‐ynoic acid, tetradecyl ester 57 60

15 33.0 1.44 tert‐Butyl (2‐aminophenyl)carbamate, 2TMS derivative 73 50

F IGURE 2 GC‐MS/MS Chromatogram of the plant C. assamica.

TAHER ET AL. | 5 of 19



protein interaction diagram. Advanced software, PyRxAutodock Vina,

was employed for this drug receptor interaction, utilizing semi‐

flexible modeling for the docking process. A literature‐based selec-

tion of specific amino acids with their IDs was made for individual

receptors to ensure precise target docking. The protein was prepared

by loading and formatting it as the necessary macromolecule, en-

suring ligands exclusively bind to the intended target.

Open Babel in PyRxAutoDock Vina software was used to import the

ligands' SD files and convert them into the pdbqt format for obtaining

the best possible docking in respect to these designated structures.

Active amino sites were defined within grid boxes using grid mapping,

with the center and dimension axes specified inTable 1 being maintained

during the docking process. Default supportive functions were retained at

this stage. Subsequently, Employing AutoDock Vina (version 1.1.2), a final

docking study was performed to ascertain the ligands' affinity for the

corresponding macromolecule. The final step involved interpreting the

results and employing BIOVIA Discovery Studio version 4.5 to predict the

most suitable 2D and 3D models.

2.9 | ADME/T analysis

In computer‐based molecular drug design, pharmacokinetic studies

are increasingly popular. These encompass absorption, distribution,

metabolism, excretion, and toxicity analysis. Bioavailability and drug‐

likeness determination, along with ADMET analyses, play key roles in

drug discovery, accessible through resources like http://biosig.

unimelb.edu.au/pkcsm/prediction. Online platforms like Swis-

sADME (http://www.sib.swiss) are widely employed to predict drug

likeness based on Lipinski rules and pharmacokinetic parameters.

According to Lipinski, a compound is considered orally accessible if it

meets specific criteria, including a molecular weight below 500 amu

F IGURE 3 Structure of the identified compounds from C. assamica.
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and a lipophilicity value (LogP) of ≤5. In addition, hydrogen bond

donor sites will be below five to fulfil the criteria, and hydrogen bond

acceptor sites will be less than.37,43

3 | RESULT

3.1 | Prediction of compounds by GC‐MS/MS

Through investigating the samples' chemical constitution and struc-

ture, different medicinal plant extracts can be found to have a wide

range of biological potential. To the best of our knowledge, however,

no research on GC‐MS/MS‐based characterization has been pub-

lished to identify different bioactive chemicals present in methanolic

extracts of the C. assamica plant. As a result, the GC–MS/MS eva-

luation was performed in a planned investigation. This plant fraction

showed a total of 15 peaks, each identifying a bioactive molecule that

was recorded by comparing its molecular mass, chemical formula, and

peak retention time to those of the compounds the NIST library

identified as recognized.

To show the relative concentration of each component, we mea-

sured the peak area percent. The most abundant bioactive compounds

are aR‐Turmerone (36.9%), 13‐Docosenamide, (Z)‐ (25.6%), Curlone

(9.57%), 3,3‐Dimethoxy‐2‐butanone (5.54%), Quinoline‐5,8‐dione‐6‐ol,

TABLE 3 FT‐IR fingerprint studies and functional groups of the extract of C. assamica.

Absorption (Cm−1) Peak Intensity Characteristics Group Assumed phyto‐compounds

3265.63 medium O‐H str. Hydroxyl Glycosides, Tannins,

Flavonoids, Saponins

2924.21 medium C‐H stretching Alkane

2853.81 Weak CH2 str. Aliphatic compounds, Steroids,
Saponins, flavonoids

1638.60 strong C =O stretching Steroidal glycosides,

Flavonoids, alkene
1619.31 medium C = C stretching

1469.21 medium CH2 bend (Alkane,
Asymmetrical)

Aliphatic compounds, Steroids,
Saponins, flavonoids

1384.95 sharp Steroidal glycosides,
Flavonoids, Saponins, hexose
sugars

1126.48 sharp C‐C‐C bend Flavonoid

616.28 sharp S‐S bond Glycosides

F IGURE 4 FTIR spectrum of the plant extract.
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7‐[[(4‐cyclohexylbutyl)amino]methyl]‐ (3.72%), and Phenol, 3,5‐bis(1,1‐

dimethylethyl)‐ (1.74%). The retention time of each compound has been

placed in Table 2 and Figure 2. By analyzing the data in Table 2, it is

evident that the mass spectrum of the compound closely aligns with

known spectra, resulting in the identification of the specific structure

shown in Figure 3.

3.2 | FTIR analysis for determining functional
group

In accordance with the absorbance range of the infrared radiation

spectrum, characteristics of the compounds nature was revealed.

Based on the peak ratio, the structural categories of the constituents

were divided following the FTIR processing of the extract. The ex-

istence of the functional groups C =O, C = C, S‐S, O‐H bonds, and

C‐H was assured which is shown in Table 3. It has been proven that

FTIR spectroscopy is an appropriate and sensitive method for figuring

out what kinds of molecules are in them.

Numerous peaks at different fingerprint areas were detected

by FT‐IR spectroscopy (Figure 4), showing the existence of many

functional groups, including tannins, steroids, glycosides, flavo-

noids, and sesquiterpenes. The most prevalent substances were

sesquiterpenes and steroids (Table 3). The confirmation of phe-

nolic or polyphenolic compounds such as steroids, flavonoids,

tannins, glycosides, and saponins is suggested by the existence of

phenolic O‐H group, which is represented at 3265.63 cm−1.

Additional prominent intensity peaks detected at 1126.48 and

616.28 cm−1 suggested the existence of flavonoids and glyco-

sides. Flavonoids, steroids, saponins, and hydrocarbon com-

pounds were detected by the absorbance at 2853.32 cm−1 with

CH2 elongation. Thus, the existence of the phenolic group, gly-

cosides, steroids, flavonoids, and saponins was demonstrated by

the FT‐IR spectral analysis.44,45

TABLE 4 Docking score (kcal/mol) of identified compounds from methanol extract of leaves of C. assamica.

Serial Compounds

Targets

EGFR DHFR GLUT‐3 KOR COX‐2

C1 3,3‐Dimethoxy‐2‐butanone −4.7 −4.1 −4.7 −4 −4.5

C2 1,3‐Dioxolane‐4‐methanol, 2‐ethyl‐ −5.1 −4.6 −5.1 −4.3 −5.1

C3 Phenol, 3,5‐bis(1,1‐dimethylethyl)‐ −7 −6.3 −7.6 −7.1 −6.6

C4 aR‐Turmerone −7.5 −6.4 −7.3 −7.4 −7.9

C5 Curlone −7.5 −6.5 −7.7 −7.5 −8.1

C6 13‐Docosenamide, (Z)‐ −6.6 −5.3 −6.7 −6.2 −7.3

C7 Quinoline‐5,8‐dione‐6‐ol, 7‐[[(4‐
cyclohexylbutyl)amino]methyl]‐

−8.9 −7.9 −9.1 −8.7 −8

C8 1‐Decanol, 2‐hexyl‐ −6.5 −5.1 −6.3 −5.8 −6.3

C9 2‐Methylpiperidine‐1‐thiocarboxylic acid
2‐[1‐[2‐thiazolyl]ethylidene]hydrazide

−7.2 −6.5 −7.2 −6.6 −7.3

C10 (E)−3,7,11‐Trimethyldodec‐2‐enoic acid,
methyl ester

−7 −5.6 −6.8 −6.6 −7.2

C11 Triacontane, 1,30‐dibromo‐ −5.5 −5.1 −6.6 −5.9 −6.5

C12 7,8‐Epoxylanostan‐11‐ol, 3‐acetoxy‐ −9 −7.3 −7.9 −8.1 1.6

C13 9,19‐Cyclolanostan‐3‐ol, 24,24‐
epoxymethano‐, acetate

−8.5 −7.8 −8.5 −9.8 −5.3

C14 Undec‐10‐ynoic acid, tetradecyl ester −6.3 −5.6 −6.2 −5.6 −4.7

C15 tert‐Butyl (2‐aminophenyl)carbamate,
2TMS derivative

−1.1 −0.9 −1.2 −0.9 −1

Standard Lapatinib −10.9 ‐ ‐ ‐ ‐

Ciprofloxacin ‐ −8.1 ‐ ‐ ‐

Glibenclamide ‐ ‐ −10.2 ‐ ‐

Loperamide ‐ ‐ ‐ −9.3 ‐

Diclofenac ‐ ‐ ‐ ‐ −7.8
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3.3 | Molecular docking result

The 15 identified compounds from methanol extract of leaves of

Cissus assamica has been gone through computational docking

studies against five different receptors. Table 4 represented binding

affinities of these compounds towards the receptors. For target

EGFR, the C12 exhibited prominent binding affinity with a values of

−9 kcal/mol followed by C7 (−8.9 kcal/mol) and C13 (−8.5) compared

to standard lapatinib which showed a value of −10.9 kcal/mol.

However, C4 and C5 were manifested promising affinity against the

receptor with value of −7.5 kcal/mol. In comparison to standard

ciprofloxacin's binding value −8.1 kcal/mol, the compound 7 and 13

F IGURE 5 m/z value of aR‐Turmerone with reference by GC‐MS/MS.

F IGURE 6 m/z value of Curlone with reference by GC‐MS/MS.
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exhibited very promising affinities towards DHFR with values of −7.9

and −7.8 kcal/mol respectively. Additionally, compound 3, 4, 5, and 9

showed lower value than −6 kcal/mol The highest binding against

GLUT‐3 was observed for C7 with a value of −9.1 kcal/mol which

almost reach the value of standard glibenclamide (−10.2 kcal/mol).

Khatun et al.,.37,38

In addition, C13 scored −8.5 kcal/mol, where C3, C4, and C5

illustrated lower affinities than −7 kcal/mol. Surprisingly, C13 ex-

hibited very prominent activity towards KOR with a value of

−9.8 kcal/mol which suppressed the standard lipoamide score

−9.3 kcal/mol. Moreover, C7 and C12 scored −8.7 and −9.1 kcal/mol

respectively. In the case of COX‐2 most of the compounds illustrated

promising binding affinities, specially C5 and C8 showed affinities

value of −8.1 and −8 kcal/mol respectively which suppressed stan-

dard diclofenac docking score −7.8 kcal/mol.

4 | DISCUSSION

4.1 | Characterization and pharmacology of
compounds

Despite having similar chemical structures, ar‐turmerone, turmerone,

and curlone can be easily identified from one another using split ions

peaks in mass spectrometry (GC‐MS/MS). Benzene and methylhep-

tenone are present in ar‐turmerone., which can be de‐electronized to

generate C15H20O + (m/z = 216), as can be seen in Figure 5 of the

mass spectrum. C14H17O + is produced by demethylation (‐CH3)

(m/z = 201). Higher abundances of C5H7O + (m/z = 83) and

C9H11 + (m/z = 119) result from further cleavage. This is due to the

ease with which aromatic compounds can delocalize to stabilize a

positive charge.46

Whereas, A cyclohexadiene and a methylheptenone combine to

form turmerone. After demethylating (‐CH3) to produce C14H19O+

(m/z =203), turmerone underwent further cleavage to produce the more

abundant form C5H7O+ (m/z = 83). Ar‐turmerone has been shown in

multiple instances to possess cytotoxic and analgesic properties.47,48 In

particular, ar‐turmerone inhibits the inflammatory activation of cultured

microglia caused by LPS or β‐amyloid.49 Additionally, it prevents glial

activation and memory impairment brought on by intraperitoneal and

chronic LPS administration50,51 and promotes neural stem cell prolifera-

tion and neuronal differentiation. When combined, ar‐turmerone may

shield dopaminergic neurons in Parkinson's disease models from the

inflammatory toxicity of activated microglia.

As a sesquiterpene chemical, curlone is classified in Figure 6.

C14H17O + (m/z = 201) was produced during dehydrogenation

(‐H) and demethylation (‐CH3), and it subsequently broke down to

produce C9H12 + (m/z = 120) in high abundance.46 Curlone

derived from Curcuma oil has been reported to scavenge free

radicals, which indicates its antioxidant properties and exerts

significant anti‐inflammatory as well as antinociceptive activi-

ties.52,53 Antidiabetic properties of the compound is well

F IGURE 7 m/z value of Phenol, 3, 5‐bis(1,1‐ dimethylethyl) with reference by GC‐MS/MS.
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reported by the scientist. In hamsters and rats, Curcuma oil

reduces insulin resistance and related thrombotic problems.54

The plant's cardiovascular activity was evaluated where Curcuma

oil‐derived compounds (Curlone, ar‐turmerone) appear to be a

safe and effective antiplatelet therapy that prevents vascular

clotting by promoting blood circulation.55 Scholars have reported

the antibacterial potentiality of the compounds.56 Another study

showed that compounds derived from Curcuma oil attenuate ni-

trosative and oxidative stress, considerably reducing ischemia's

negative effects.57 To ensure the safety of the compounds, a

genotoxicity and mutagenicity study was performed.58

In Figure 7, Phenol, 3,5‐bis(1,1‐dimethyl ethyl)‐ is 70% similar to

the mass spectrometry data of the reference. In the mass spectrum,

the highest abundance of m/z of 191 produced fragments m/z of 57

and 91. By increasing insulin secretion and blood insulin levels, insulin

secretagogues lower blood glucose and help control diabetes. Over

the past three decades, plenty of investigations have been carried out

to create an insulin‐secreting beta cell line that retains normal control

over insulin secretion, but very few these have been successful.59 In

this work, isolated mouse pancreatic islets were stimulated to pro-

duce insulin in a concentration‐dependent manner by nontoxic doses

of phenol, 3,5‐bis(1,1‐dimethylethyl).60

F IGURE 8 m/z value of 2‐Methylpiperidine‐1‐thiocarboxylic acid 2‐[1‐[2‐thiazolyl]ethylidene]hydrazide, Quinoline‐5,8‐dione‐6‐ol, 7‐[[(4‐
cyclohexylbutyl)amino]methyl]‐, 9,19‐Cyclolanostan‐3‐ol, 24,24‐epoxymethano‐, acetate, 7,8‐Epoxylanostan‐11‐ol, 3‐acetoxy‐ in GC‐MS/MS.
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TABLE 5 Bond and binding site of two highly active two compounds against different targets including EGFR, DGFR, GLUT‐3, KOL, and
COX‐2.

Receptor Compounds
Binding affinities
(kcal/mol) Bond type Amino acids

EGFR C7 −8.9 Alkyl Leu 718, Val 726, Ala 743, Lys 745, Cys 797, Leu 844

Carbon‐hydrogen Arg 841

C12 −9 Alkyl Leu 718, Val 726, Ala 743, Lys 745, Met 766, Leu 777, Leu 788, Leu

844, phe 856

Carbon‐hydrogen Asp 855

Lapatinib −10.9 Alkyl Leu 718, Val 726, Ala 743, Met 766, Cys 775, Leu 777, Leu 844

Hydrogen Lys 745, Phe 856

Unfavorabol donor Met 793

Carbon‐hydrogen Ser 720, Gly 721, Gln 791

DGFR C7 −7.9 Alkyl Leu 22, Phe 34

Hydrogen Ala 9, Ile 16, Val 115, Tyr 121

C13 −7.8 Alkyl Val 8, Ile 16, Leu 22, Lys 55, Tyr 121

Hydrogen Ala 9

Ciprofloxacin −8.1 Alkyl Ile 16, Leu 22

Hydrogen Ala 9, Glu 30, Ser 118

Carbon‐hydrogen Tyr 121

GLUT‐3 C7 −9.1 Alkyl Val 67, Phe 70, Ile 166, Ile 285, Phe 289, Phe 377

Pi‐sigma Thr 28

C13 −8.5 Alkyl Ile 19, Phe 22, Leu 157, Leu 160, Val 164, Phe 190, Pro 194, Leu 197

Glibenclamide −10.2 Alkyl Ala 68, Ile 285, Tyr 290, Phe 414, Gly 417, Leu 418

Hydrogen Asn 32, Val 67, Asn 286

KOR C7 −8.7 Alkyl Tyr 140, Trp 183, Ile 191, Val 195

Carbon‐hydrogen Ile 180

C13 −9.8 Alkyl Leu 103, Ile 137, tyr 140, Ile 180, Leu 184, Ile 191

Pi‐sigma Trp 183

Loperamide −9.3 Alkyl Ile 180, Val 195

Pi‐sigma Trp 183, Leu 184, Ile 191

Pi‐donor H‐donor Ser 136

Pi‐Pi Tyr 140

COX‐2 C5 −8.1 Alkyl Val 116, Val 349, Leu 352, Leu 359, Tyr 385, Trp 387, Val 523, Leu
531, Leu 359

Hydrogen Arg 120, Tyr 355

C7 −8 Alkyl Val 349, Leu 352, Tyr 355, Leu 384, Tyr 385, Trp 387, Val 523,
Ala 527,

Hydrogen Ser 530

Carbon‐Hydrogen Met 522

Amide‐pi Gly 526

Diclofenac −7.8 Alkyl Leu 352, Gly 526, Leu 531

Hydrogen Tyr 355

Pi‐sigma Val 349, Ala 527
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Quinoline‐5,8‐dione‐6‐ol, 7‐[[(4‐cyclohexylbutyl)amino]methyl]‐, in

which the main functional group is found to be 5,8‐quinolinedione

having a wide range of effects, including as antibacterial, antifungal,

anticancer, and antimalarial properties. The study of structure–activity

revealed that the biological action of 5,8‐quinoline‐dione is due to its

scaffold.61 This compound is found to be 62% similar with the mass

spectrum of the reference compound. Another compound,

2‐Methylpiperidine‐1‐thiocarboxylic acid 2‐[1‐[2‐thiazolyl]ethylidene]

hydrazide displayed 60% (Figure 8) resemblance with the mass data. In

this plant, 7,8‐Epoxylanostan‐11‐ol, 3‐acetoxy is found to be 65% similar

to the reference mass spectrum, which is comparatively new compounds

having antibacterial properties cited by scholars.44 The investigation

revealed the existence of several substances with significant medicinal

value. Previous investigations revealed that the alcoholic compound 7,8‐

Epoxylanostan‐11‐ol, 3‐acetoxy, had antibacterial and anti‐inflammatory

properties.62

4.2 | In Silico analysis of the compounds

EGFR, a crucial regulator of cellular processes like growth and apo-

ptosis, undergoes conformational changes upon ligand binding, such

as EGF. These changes lead to tyrosine phosphorylation in the

C‐terminal domain, activating downstream pathways like MAPK,

PI3K/AKT, and STAT3/STAT5. Consequently, apoptosis is inhibited,

and cancer‐related activities are promoted.63 Our observation implies

that certain identified compounds, particularly C7 and C12 (Table 5),

exhibited noteworthy affinities for EGFR. Specifically, C7 forms

bonds with six alkyl groups and one C‐H bond, whereas C12 forms

bonds with nine alkyl groups and a single C‐H bond. This is in contrast

to the standard lapatinib, which has seven alkyl groups, two H atoms,

three C‐H bonds, and one unfavorable donor bond (Table 5, Figure 9).

Within the folate pathway, the enzyme DHFR transforms

dihydrofolic acid (DHF) into tetrahydrofolic acid (THF). THF is

F IGURE 9 Molecular Interactions of Phytocompounds with EGFR, DHFR and GLUT‐3 Enzymes: (I) Graphical representation of the
molecular interactions of the most prominent phytocompounds with the EGFR enzyme in 3D visualization; (II) Graphical representation of the
molecular interactions of the most prominent phytocompounds with the DHFR enzyme in 3D visualization; (III) Graphical representation of the
molecular interactions of the most prominent phytocompounds with the GLUT‐3 enzyme in 3D visualization.
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essential for synthesizing amino acids and nucleic acids, critical

components for cellular development and proliferation. Disruptions

in the folate system lead to uncontrolled cell growth, contributing to

various malignancies.64 A couple of identified compounds exhibited

activity for DHFR, suggesting their probable action against

microbes. Figure 9 and Table 5 illustrate that C7 exhibited the

highest −7.9 kcal/mol binding affinity by making two alkyl and four

hydrogen bonds.

A specific glucose transporter protein called GLUT3 is es-

sential to the complex mechanism of passive glucose transport

through cell membranes, which is reliant on gradients in glucose

concentration. Its complex role is to enable glucose molecules to

migrate so they can enter or exit cells according to the relative

quantities of glucose in the surrounding atmosphere. This com-

plex regulatory mechanism is especially important in vital organs,

including the kidney, pancreatic cells, and liver, where accurate

F IGURE 10 Molecular Interactions of Phytocompounds with KOR and COX‐2 Enzymes: (I) Graphical representation of the molecular
interactions of the most prominent phytocompounds with the KOR enzyme with 3D visualization; (II) Graphical representation of the molecular
interactions of the most prominent phytocompounds with the COX‐2 enzyme with 3D visualization.
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blood glucose control is necessary for the body's general physi-

ological balance and metabolic stability.65 It has been shown that

C7 possessed the highest affinity (−9.1 kcal/mol) towards this

receptor by engaging six alkyl and a single pi‐sigma bond. How-

ever, the second highest affinity was observed for C13 (−8.5 kcal/

mol), having eight alkyl bonds. So, probably due to the non-

covalent pi‐sigma interaction, C7 showed more affinity toward

the receptor. Comparably, the standard glibenclamide is not only

bound with six alkyl bonds but also three hydrogen bonds

showing a binding affinity of −10.2 kcal/mol, suggesting elevated

affinity could be the result of three hydrogen bonds (Table 5,

Figure 9).

Opioid receptors in the human gastrointestinal (GI) tract, such as

μ, ƙ, and δ receptors, play a significant role in regulating GI signaling.

This is accomplished by blocking the enteric nerve's activity, pre-

venting neurotransmitter release, and interfering with the excitatory

and inhibitory motor pathways. As a result, these activities slow

down intestinal transit, lessen enteric neuronal excitability, and

alter fluid transport and secretion mechanisms. Variations in GI

motility and stool consistency are the end result of these complex

alterations.66 Here, the binding affinity of C13 was satisfactory

against KOR with an estimated free binding energy of −9.8 kcal/mol

which suppressed loperamide score of −9.3 kcal/mol. This could be

possible due to six alkyl and one pi‐sigma interactions between C13

and KOR, while loperamide was found to have two alkyl, three pi‐

sigma, and one pi‐pi and pi donor‐hydrogen donor bond (Figure 10).

Moreover, Table 5 represents that C7 interacted with four alkyl and

one C‐H bond to show a score of −8.7 kcal/mol.

Elevated COX‐2 expression, induced by inflammatory stimuli, leads

to the production of prostaglandins, notably PGE2. These substances are

vital for generating and regulating inflammatory pain. To alleviate

inflammation‐related discomfort and hypersensitivity, it is crucial to inhibit

COX‐2.67 The interaction between C5 and COX‐2 was characterized by

nine alkyl and two hydrogen bonds, resulting in a binding energy of

−8.1 kcal/mol. Additionally, C7 displayed significant affinity (−8 kcal/mol)

through eight alkyl bonds, one hydrogen bond, carbon‐hydrogen inter-

action, and amide‐pi bonds (Table 5, Figure 10). These interactions out-

performed the diclofenac score of −7.8 kcal/mol, as diclofenac only

formed three alkyl bonds, two pi‐sigma bonds, and one hydrogen bond

according to the standard criteria.

Additionally, Table 5 showed that surprisingly, C7 and C13

manifested very satisfactory binding scores against multiple recep-

tors, suggesting their vast medicinal properties against multiple dis-

eases. The ADME/T study represents these compounds' computa-

tional pharmacokinetics and toxicological profile.

Table 6 illustrates that C7 exhibits strong GI absorption and

adheres to three out of Lipinski's rules, indicating favorable oral

bioavailability, despite violating one rule. Additionally, it boasts a

significant bioavailability score of 0.55 and demonstrates negative

AMES toxicity, which means noncarcinogenic properties. However,

its potential hepatotoxicity poses a challenge for future drug dis-

covery efforts. On the contrary, C13 displays poor gastrointestinal

absorption and fails to comply with half of Lipinski's rules, posing a

notable limitation for oral dosage formulations. Nonetheless, it ex-

hibits negative AMES and hepatic toxicity, indicating a favorable

safety profile. C5 and C12 breach half of Lipinski's rules, but their oral

suitability differs significantly. C5, despite rule violations, exhibits

high gastrointestinal absorption and a commendable bioavailability

score of 0.55. In contrast, C12 displays low gastrointestinal absorp-

tion, indicating unsuitability for oral dosage forms. Notably, both

compounds demonstrate safety regarding AMES and hepatic toxicity.

5 | CONCLUSION

The results imply that the compounds under study exhibit qualities

that make them viable candidates for drugs targeting diverse health

issues like cancer, microbial infections, diabetes, diarrhea, and pain

management. Although these preliminary results are encouraging,

more preclinical research, including animal testing and human sub-

jects' clinical trials, is necessary to fully investigate the effectiveness

and safety of these treatments. These additional studies are neces-

sary to confirm the possible therapeutic uses of these substances and

open the door for the creation of strong drugs for a range of illnesses.
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