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INTRODUCTION 
 

Globally, lung cancer is the leading cause of cancer-

associated mortalities, and lung adenocarcinoma 

(LUAD) is the most common type of lung cancer 

accounting for 40% of all cases [1]. In recent years, 

immune therapy has significantly improved the 

prognosis of non-small-cell lung carcinoma (NSCLC) 

patients [2–4]. The use of traditional biomarkers such as 

tumor mutation burden (TMB), blood TMB, expression 

levels of PD-1/PD-L1 and circulating tumor DNA 

(ctDNA) for predicting immunotherapeutic responses is 

inhibited by several limitations [5]. Therefore, 

identification of new biomarkers for predicting immune 

responses and prognosis is urgently needed. There has 
been a growing awareness on the importance of the 

tumor microenvironment (TME). The TME is composed 

of different types of immune cells, extracellular matrix, 

blood and lymphatic vessels, which exhibit complex 

interactions with tumor cells and have the ability to 

influence tumor survival and progression in a beneficial 

or harmful way [6]. Among the TME components, 

immune cells are of great importance as they can 

directly kill the tumor cells, and there are many drug 

targets which improve or reinvigorate their functions [7]. 

 

Studies have documented the importance of metabolic 

reprogramming in immune cell functions [8]. Tumor 

metabolism can transform the TME by providing a 

favorable environment for tumor growth [9]. The 

transformed TME can enhance or decrease immune cell 

functions, thereby inhibiting or promoting tumor 

progression. Metabolic reprogramming in the immune 

cells inhibits their anti-tumor activities, thereby influencing 

tumor progress and immunotherapeutic efficacy. 

 

The LUAD is a unique lung cancer subtype with a 

complex TME [10], and the complex TME can impact on 
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ABSTRACT 
 
In this study, we constructed an eight-gene metabolic related signature for LUAD. The eight-gene prognostic 
signature (including PLAUR, F2, UGT2B17, GNG7, IDO2, ST3GAL6, PIK3CG, and GLS2) exhibited a good 
prognostic value in the TCGA LUAD training dataset and testing dataset. In addition, the risk score based on the 
signature model was significantly correlated with immune cell infiltration and expression levels of immune 
markers in LUAD patients. LUAD cohorts from GEO were used to validate the model, indicating the usefulness 
of the model. In summary, we developed and validated an eight-gene signature model for LUAD, which can 
reflect the immune microenvironment characteristics and predict the prognostic outcomes for LUAD patients. 
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the progression of LUAD. This study evaluated the 

immune cell and stromal cell landscape of TME in LUAD 

samples obtained from the TCGA database using 

algorithms based on the bulk mRNA expression of the 

tumor samples to determine the prognosis of LUAD. 

Metabolic associated differentially expressed genes from 

the two groups were identified based on the median of the 

estimated score. The relationship between the metabolic 

genes and the immune cells was then explored. Finally, 

we identified a metabolic gene set associated with a 

higher immune cell infiltration that can be used to predict 

the survival outcomes of LUAD patients. A flow chart of 

the study design used is shown in Figure 1. 

 

RESULTS 
 

Higher estimate score is correlated with better 

prognosis 

 

We first assigned the TCGA LUAD cohort into high and 

low groups according to their median immune score, 

stromal score, and estimate score, respectively. Then, we 

compared the differences in the distribution of clinical 

characteristics including gender, age, smoking status, 

TNM stage and survival outcomes between the two 

groups (Figure 2, Supplementary Figure 1 and 

Supplementary Figure 2). Clinical characteristics 

including gender and clinical stage were found to be 

significantly associated with immune score 

(Supplementary Figure 1A–1G), stromal score 

(Supplementary Figure 2A–2G), and estimate score 

(Figure 2A–2G). The tumor size was significantly 

associated with the estimate score (Figure 2E). The 

differences in overall survival time and progression-free 

survival time were then compared between the two 

groups. We observed statistically significant differences 

between the estimate score (Figure 2H) and immune 

score (Supplementary Figure 1H) and overall survival. 

However, there were no statistical differences between 

the estimate score (Figure 2I), stromal score 

(Supplementary Figure 2I), and immune score 

(Supplementary Figure 1I) and progression-free survival. 

 

GO function enrichment analysis of the DEGs 

 

The relative immune cell infiltration level in the TCGA 

LUAD cohort was estimated using the ssGSEA 

algorithm. Then, the relative quantity of the 28 immune 

 

 
 
Figure 1. Flow diagram showing the design of the study. TCGA, The Cancer Genome Atlas; DEG, differentially expressed gene; GEO, 
Gene Expression Omnibus; GO, Gene Ontology. 
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cells among the two estimate groups were compared. It 

was found that for most immune cell types, the estimate 

scores between the two groups were significantly 

different and the relative quantity of immune cells in the 

high estimate score group was significantly higher than 

that in the low estimate score group (Figure 3A). Figure 

3A shows that the activated B cell, activated CD4+ T 

cell, and activated CD8+ T cell exhibited a significant 

higher score in the high estimate score group than in the 

lower estimate score group. 

Metabolic reprogramming in the tumor environment can 

impact on the function and population of the infiltrating 

immune cells [11]. Therefore, the cancer cell metabolic 

gene set was downloaded from ccmGDB 

(https://bioinfo.uth.edu/ccmGDB/), and a total of 2,072 

metabolic genes were used to determine the association 

between metabolic gene expression and immune cell 

infiltration, as well as the relationship between the 

immune landscape and metabolic genes in the metabolic 

pathway. 

 

 
 

Figure 2. The relationship between the ESTIMATE score and clinical status, survival outcomes. (A–G) Boxplot showing the difference 

between the ESTIMATE score and the clinical characteristic. p value above the boxplot indicates the difference between the two groups. (H–I) The 
Kaplan–Meier curves for overall survival and progression free survival of LUAD risk groups divided using the median cutoff point of ESTIMATE score.

https://bioinfo.uth.edu/ccmGDB/
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The samples were assigned into high estimate and low 

estimate groups based on the median of the estimate 

score. R package limma was then used to determine the 

differentially expressed genes (DEGs) of the two groups 

using |logFC| > 0.5 and adjusted p < 0.05 criteria. A total 

of 4,331 up regulated DEGs and 1,113 down regulated 

DEGs were identified (Figure 3B). As shown in Figure 

3C–3D, of the differentially up-regulated and 

differentially down-regulated genes, 201 and 106 were 

metabolic-related genes, respectively. GO analysis 

showed that the upregulated metabolic DEGs were 

significantly associated with sulfur compound metabolic 

processes, glycoprotein metabolic processes, and 

aminoglycan metabolic processes (Figure 3E). However, 

mRNA catabolic processes, RNA catabolic processes, and 

cellular amino acid metabolic processes were the enriched 

pathways among the down-regulated metabolic DEGs 

(Figure 3F). These findings imply that the two estimate 

groups exhibited different metabolic phenotypes as well 

as different infiltration levels of immune cell types. 
 

 
 
Figure 3. Functional annotation of the DEGs. (A) Correlation of Immune score and Immune cell score based on the ssGSEA algorithm 

(B) Volcano plot showing the DEGs. The criteria of the DEGs were set as |logFC| > 0.05 and adjusted p < 0.05. Red dots and blue dots 
represent genes that are significantly downregulated or upregulated, respectively. (C–D) Venn diagram showing the up regulated and down 
regulated metabolic DEGs. (E–F) GO analysis of up regulated genes and down regulated metabolic genes. 
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Construction of the metabolic gene signature 

 

Univariate COX regression using the survival and gene 

expression data of LUAD patients was used to evaluate 

the overall survival prognostic value of the metabolic 

related DEGs. The 19 most significant genes were 

selected based on the p < 0.01 criteria. The hazard ratio 

of each gene is shown in the forest plot (Figure 4A). A 

heatmap representing the expression profiles of the 19 

genes is shown in Figure 4B. The dataset was then 

divided into the training and testing data set at a ratio of 

3:1 to construct a prognostic model (training data set 

n = 385; testing data set n = 128). LASSO regression 

was the performed in the training dataset to integrate the 

roles of these key molecules and to determine the genes 

that exhibited the greatest importance on the survival 

outcomes. A signature model of eight genes (PLAUR, 

F2, UGT2B17, GNG7, IDO2, ST3GAL6, PIK3CG, and 

GLS2) was constructed based on the LASSO regression 

results (Figure 4C–4E). The relationships among the 

relative expression levels of the eight signature genes in 

the TCGA LUAD cohort were then evaluated. The 

correlation analysis showed that F2 was significantly 

negatively correlated with ST3GAL6, GNG7, PIK3CG; 

 

 
 

Figure 4. Construction of a prognostic gene signature. (A) Hazard ratio and p values of the selected candidate genes. (B) Heatmap 

showing the expression profiles of the selected candidate genes. (C–D) LASSO cox regression identified eight signature genes that were most 
correlated with OS. These genes were used to construct a signature model. (E) The coefficient value of the selected eight signature genes. (F) 
Expression correlation analysis of the eight signature genes. (G) The expression profiles of the eight signature genes in tumor and cancer 
samples. (H) Mutation landscape of the eight signature genes in LUAD. 
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GLS2 was significantly negatively correlated with 

PLAUR, while UGT2B17 was significantly positively 

correlated with ST3GAL6, GNG7, PIK3CG, GLS2, and 

IDO2. However, PLAUR did not exhibit any significant 

correlation with IDO2, UGT2B17, and F2 (Figure 4F). 

Analysis of this eight-gene signature using the 

STRING-DB database revealed that GNG7 interacts 

with F2 and PIK3CG (Supplementary Figure 3A). Next, 

we evaluated the expression profiles of these signature 

genes. In the tumor samples, F2, GLS2, IDO2, and 

PLAUR were shown to be significantly upregulated, 

while GNG7, PIK3CG, and ST3GAL6 were 

significantly down-regulated (Figure 4G). 

 

EGFR mutations are highly prevalent in LUAD, 

especially among East Asian populations. The other main 

mechanisms of bypass signaling activation include 

IGF1R, MET, FGFR3, NTRK1, BRAF, ALK, RET, 

ROS1, and AXL [12]. Then, we elucidated on the 

correlation between these signature genes and other 

major drivers or bypass pathways in LUAD. It was found 

that PLAUR, ST3GAL6, GNG7, PIK3CG, GLS and 

IDO2 were significantly and positively correlated with 

most of the oncogenic drivers and bypass signaling, 

while F2 was negatively correlated with most of them 

(Supplementary Figure 3B). We also evaluated the 

mutation landscape of these genes in LUAD. Among the 

561 samples, 10.34% of patients exhibited mutations in at 

least one signature gene. The PIK3CG exhibited the 

highest mutation frequency followed by UGT2B17, 

while GNG7 exhibited the fewest mutations in LUAD 

samples. The waterfall plot presentation of the mutation 

landscape of the eight signature genes showed that the 

mutation types were mainly missense mutation (Figure 

4H). Most of the eight signature genes were differentially 

expressed in the tumor and normal tissues of LUAD and 

exhibited a certain rate of mutation in LUAD. 

 

Low risk score correlated with better LUAD outcomes 

 

The prognostic value of the eight signature genes was 

evaluated in the training and testing data sets. First, the 

risk score of each patient was calculated and ranked based 

on the risk score in the training data set (Figure 5A). The 

scatter plot was used to present the overall survival status 

of LUAD patients based on the risk score. Samples in the 

high-risk group were correlated with a higher mortality 

rate than those in the low-risk group (Figure 5B). A 

heatmap presenting the expression profiles of the 

signature genes showed that tumors with higher risk 

scores tended to exhibit elevated F2 and PLAUR levels, 

while those with lower risk scores tended to exhibit 

elevated UGT2B17, GNG7, IDO2, ST3GAL6, PIK3CG, 
and GLS2 levels (Figure 5C). This analysis was also 

performed on the testing dataset which showed consistent 

results with the training dataset (Figure 5D–5F). 

The correlation between the eight-gene signature and the 

estimate score in LUAD was then evaluated. The risk 

score was found to be significantly higher in the low 

estimate score group than in the high estimate score 

group in both the training (Figure 6A) and testing data 

sets (Figure 6D). Estimations of the overall survival and 

progression free survival using the signature score was 

performed in the training and testing datasets. The low 

risk score group was correlated with better OS compared 

to the high-risk score group in both the training (Figure 

6B, p = 0.00014) and testing datasets (Figure 6E, 

p = 0.0082). However, PFS was significantly different 

only in the training set (Figure 6C, p = 0.014) and not in 

the testing set (Figure 6F, p = 0.51). Collectively, these 

findings imply that the eight-gene signature model 

exhibits a good predictive prognostic power in LUAD, 

and the risk score of the signature model correlated with 

the estimate score of LUAD. 

 

The signature score is associated with immune 

infiltration in LUAD 

 

Since the metabolic eight-gene signature correlated with 

the estimate score, the correlation between the risk score 

and immune cell scores was then determined. A higher 

risk score was correlated with a lower abundance of 

activated CD4+ T cells, natural killer cells, and other 

immune cell types (Figure 7A). The relationship 

between the expression of the eight signature genes and 

the expression of the immune checkpoint molecules was 

also determined. The expression of PLAUR, GNG7, 

IDO2, ST3GAL6, and PIK3CG was significantly and 

positively correlated with the expression of the four 

checkpoint markers, PD-1, PD-L1, PD-L2, and CTLA-4 

(Figure 7B). We also evaluated the correlation between 

the eight signature genes and immune cell infiltration. 

The expression levels of PLAUR, UGT2B17, GNG7, 

IDO2, ST3GAL6, and PIK3CG were significantly and 

positively correlated with the infiltration of most 

immune cell types (Figure 7C). Finally, the relationship 

between risk score and the expression levels of the four 

immune checkpoint molecules was determined. Risk 

score was found to be negatively correlated with the 

expression levels of the four immune checkpoint 

markers (Figure 7D–7G). Together, these results indicate 

that the metabolic eight-gene signature is correlated with 

the expression of immune checkpoint molecules and 

with the infiltration level of immune cells. 

 

Verification of the prognostic value of the signature 

genes using the GEO data set 

 

Independent validation of the signature model was 
performed using the GEO LUAD cohort to verify the 

ability of the metabolic eight-gene signature model to 

predict the prognosis. The risk score for each sample of 
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the GEO LUAD cohort was determined using the 

signature model. The cohort was then divided into two 

groups based on the median of the risk score. Survival 

analysis of the four cohorts was then done to validate 

the prognostic value of the eight gene signature. A 

lower risk score was correlated with a better overall 

survival in all the four GEO datasets, including 

GSE31210 (p = 0.0064), GSE30219 (p = 0.01), 

GSE13213 (p = 0.057), and GSE50081 (p = 0.014) 

(Figure 8A–8D). Taken together, these results indicate 

that the eight-gene signature model has a good 

predictive power for the NSCLC cohort. 

 

DISCUSSION 
 

The application of RNA-seq and the rapid development 

of bioinformatics tools have enhanced our 

understanding of tumors through research. Bianchi et al. 

constructed a ten-gene predictive model for stage I 

LUAD [13]; Chen et al. constructed a five-gene 

 

 
 
Figure 5. Eight-gene signature predictor score analysis in training and testing data set. (A–C) Training data set, (D–F) Testing data 

set. The ranked dot plot illustrated the predictor-score distribution of the training data set (A) and testing data set (D). A scatter plot 
presenting the patients’ overall survival status from training data set (B) and testing data set (E). A heatmap showing the expression profile of 
the eight signature genes of LUAD patients from training data set (C) and testing data set (F). 
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signature model for the prediction of relapse-free and 

overall survival in NSCLC [14]; Shukla et al. 

constructed a four-gene prognostic signature for LUAD 

based on TCGA cohort [15]; Boutros et al. constructed 

a six-gene prognostic signature for NSCLC and 

validated it using other independent public microarray 

datasets that include multiple histology types and 

different stages [16]. However, few of these studies 

focused on the metabolic genes and their association 

with TME. Therefore, integrated analysis of metabolic 

genes in LUAD based on data from GEO and TCGA 

databases were performed and a metabolic eight-gene 

signature for predicting the prognosis of LUAD patients 

was constructed. 

 

We first evaluated LUAD immune infiltration using the 

TCGA LUAD cohort and identified the differentially 

expressed metabolic genes between the high estimate 

score group and the low estimate score group. The data 

set was then divided into training and testing data set. 

 

 
 
Figure 6. Eight-gene signature predict survival outcomes in training and testing data sets. (A–C) Training dataset (D–F) Testing 

dataset. LUAD cohort was divided into two groups using the median of estimate score and the risk score of the two groups was then 
compared. Kaplan–Meier curves for LUAD risk groups divided using the median cutoff point. Patients with higher risk score exhibited 
significantly poor OS outcomes. 
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A prognostic gene signature was then constructed and 

used to predict the survival outcomes of the LUAD 

patients using the training data set. The prognostic value 

of the model was evaluated in the training and testing 

data sets. A higher risk score was correlated with poor 

overall survival outcomes. Correlation of the risk scores 

and immune cells revealed that a lower risk score was 

associated with increased monocyte infiltration score 

and T cell infiltration score, which has recently been 

reported as a predictor for poor prognosis in pancreatic 

cancer [17]. Immune markers, particularly PD-L1, are 

used as predictive biomarkers for immunotherapy [18]. 

 

 
 

Figure 7. Evaluation of the correlation between the signature genes and immune characteristics. (A) Correlation between the 
risk score and immune cell infiltration score. (B) Correlation between the expression level of immune markers and the eight signature genes. 
(C) Correlation between each signature gene of the model and each immune cell type. (D–G) Correlation between the four immune 
checkpoint markers and the risk score. 
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We found that the expression levels of immune markers 

(PD-1, PD-L1, PD-L2, and CTLA-4) are associated with 

a lower risk score. This implies that the eight-gene 

signature model could be used to predict 

immunotherapeutic responses. Finally, we validated the 

gene signature using a GEO data set. A higher risk score 

was correlated with poor survival outcomes, which 

proved the prognostic value of the model (Figure 8). 

 

In this study, we identified the differentially expressed 

genes between the high estimate score group and the 

low estimate score group based on the expression 

profile of LUAD patients. The metabolic related genes 

were then selected from the DEGs. Nineteen candidate 

genes were obtained after evaluating the prognostic 

value of the metabolic DEGs. These genes were then 

reduced to eight potential predictor genes using the 

LASSO algorithm. Finally, eight genes (PLAUR, F2, 

UGT2B17, GNG7, IDO2, ST3GAL6, PIK3CG, and 

GLS2) were included in the signature model. These 

signature genes have been reported in previous studies. 

Some of them function in tumor progression or as 

prognostic markers for tumor patients. 

 

For example, PIK3CG encodes the 

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 

subunit gamma isoform (PI3Kγ) enzyme. PI3Kγ is 

involved in Akt/mTOR signaling, inhibition of NF-κB 

activation, and in the regulation of tumor immune 

inhibition by promoting MDSC migration to the tumor 

environment as well as by stimulating the 

immunosuppressive transformation of MDSCs [19]. 

GLS2 is a glutaminase (GLS) isoform, which converts 

glutamine into glutamate and provides nitrogen for 

nucleotide and protein synthesis. GLS2 knockdown was 

shown to inhibit cell proliferation by down-regulating 

the mTORC1 signaling and inducing autophagy in Gln-

dependent lung squamous cell carcinoma cell lines [20]. 

UGT2B17 is a member of the UDP-

glucuronosyltransferases (UGTs) family and is involved

 

 
 

Figure 8. External validation of the eight-gene signature model. (A–D) Survival curve of GSE31210 (p = 0.0064), GSE30219 (p = 0.01), 

GSE13213 (p = 0.057), and GSE50081 (p = 0.014) indicating that a lower risk score was associated with better overall survival outcomes. Red, 

low–risk group; blue, high–risk group. 
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in the formation of β-D-glucuronides. The function of 

UGT2B17 is to maintain androgen homeostasis in the 

prostate. Elevated UGT2B17 expression levels 

enhances the progression of castration-resistant 

prostate cancer by promoting independent androgen 

receptor signaling and cancer cell mitosis [21]. The 

cell maintains its cellular homeostasis by autophagy, 

whereby it consumes its organelles using lysosomes to 

generate energy for protein synthesis [22]. G protein γ 

7 (GNG7) is a heterotrimeric G protein subunit. It has 

been reported that GNG7 inhibits cell division and 

induces cell autophagy by inhibiting the mTOR 

pathway [23]. Moreover, it has been reported that 

GNG7 is a tumor suppressor gene in clear cell renal 

cell carcinoma and a lower expression of GNG7 

predicts poor overall survival outcomes [24]. 

ST3GAL6 is a member of the sialyltransferase (STs) 

family. Overexpression of STs contribute to 

hypersialylation on the cell surface. Hypersialylation 

plays an important role in tumor progression. Cancer 

cells can recruit Siglec-7 and increase sialylated 

glycans on its surface, thereby protecting it from being 

killed by natural killer cells [25]. ST3GAL6 

expression is significantly suppressed in hepatocellular 

carcinoma patients [26], and it mediates colorectal 

cancer progression through the PI3K/Akt signaling 

[27, 28]. Indoleamine 2,3-dioxygenase 2 (IDO2) is a 

member of the tryptophan catabolic enzyme. Studies 

have shown that IDO2 modulates dendritic cell 

functioning [28], and contributes to immune tolerance 

by controlling the Treg population [28]. However, the 

relationship between the IDO2 associated immune 

response and tumor progression has not been 

elucidated [29]. 

 

The aim of immunotherapy is to reactivate T cells by 

blocking the interaction of PD-1/PD-L1, thereby, 

inhibiting PD-1 signaling [30]. In this study, the risk 

score calculated from the eight-gene signature model 

was negatively correlated with the expression level of 

the commonly used immune markers such as PD-L1, 

PD-1, and CTLA-4, indicating that high risk score 

patients would not benefit from immune therapy. 

Correlation analysis showed that the expression level of 

the eight genes was significantly correlated with the 

level of immune checkpoint molecules. This finding 

shows that these genes function in immune responses. 

PIK3CG is highly expressed in TME and it prevents T 

cell mediated tumor elimination [31]. Therefore, the 

eight signature genes may provide clues on the different 

immunotherapeutic responses. Moreover, a lower risk 

score was correlated with a higher ssGSEA score of 

effector memory CD8+ T cell, natural killer cell, and 
macrophages. This implies that lower risk patients have 

a higher infiltration of immune cells and, therefore, 

have a higher probability of benefiting from immune 

therapy. Therefore, the eight-gene based signature score 

has the potential for predicting immunotherapeutic 

responses and LUAD prognosis. 

 

However, this study is associated with several 

limitations. First, it is a retrospective study. Further 

prospective studies are required to validate our 

findings. Secondly, the study did not verify the ability 

of the eight genes signature to predict immune 

responses in LUAD patients because we lacked the 

clinical data on patients receiving immunotherapy. 

Finally, other patient characteristics such as age, tumor 

size, and lymph node status were not included in our 

prognostic analysis. 

 

MATERIALS AND METHODS 
 

Data collection and pre-processing 

 

Clinical data, TCGA RNA-seq data, and probe 

annotation files of the LUAD patients were downloaded 

from the UCSC xena browser (https://xenabrowser.net/) 

and used to obtain the gene expression profiles of the 

human LUAD patients. Data for the normal tissue was 

discarded while samples with no clinical data were 

excluded. Finally, a total of 513 tumor samples were 

retained and the TCGA LUAD cohort was randomly 

divided into training and testing data set at a ratio of 3:1 

(training data set n = 385; testing data set n = 128). The 

two groups exhibited a similar estimate score 

distribution and other clinical characteristics. 

GSE31210, GSE30219, GSE13213, and GSE50081 

datasets were downloaded from Gene Expression 

Omnibus (GEO) database in R using R package 

“GEOquery” [32]. The probe IDs were then 

transformed into gene symbols according to the 

annotation files, and the cancer metabolism gene set 

was obtained from ccmGDB 

(https://bioinfo.uth.edu/ccmGDB/). 

 

Evaluation of the immune score and stromal score 

 

The R package “ESTIMATE” was used to infer the 

fraction of immune cells and stromal cells in the 

patient's tumor samples [33]. The ESTIMATE 

algorithm was designed to calculate the immune and 

stromal scores of each sample based on the expression 

of certain stromal cell and immune cell genes. The 

results obtained from the ESTIMATE algorithm are 

presented in three categories; where immune score 

represents the score of immune cell infiltration, stromal 

score represents stromal cell infiltration, and estimate 

score represents the sum of both the immune score and 

stromal score. The LUAD samples were divided into 

two groups based on the expression level of the estimate 

score of each sample. 

https://xenabrowser.net/
https://bioinfo.uth.edu/ccmGDB/
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Determination of the infiltration level of immune 

cells in LUAD 

 

The R package “GSVA” uses a method called Gene Set 

Variation Analysis (GSVA), which implements a non-

parametric unsupervised method to assess the 

underlying pathway activity using gene expression 

microarray and RNA-seq data. By applying this 

approach, we can use the traditional analytical methods 

such as correlation analysis and survival analysis in a 

pathway focused manner. A set of immune cells' gene 

marker, consisting of 782 genes representing 28 

immune cell types from innate and adaptive immunity, 

was obtained from a previous study and used to 

evaluate the infiltration of different immune cell types 

in the tumor microenvironment [34]. The immune cell 

types included dendritic cells, B cells, NK cells, MDSC, 

neutrophils, T cells, among others. Subsequently, the 

ssGSEA algorithm from R package “GSVA” was used 

to determine the infiltration level of each immune cell 

type in LUAD using the expression profiles [35]. Each 

sample was evaluated using the gene signature 

expressed by the immune cell and the calculation was 

then performed using the ssGSEA algorithm. 

 

Identification of Differentially Expressed Genes 

(DEGs) and functional enrichment analysis 

 

The LUAD cohort was divided into two groups based 

on the median of the estimate score. R package “limma” 

was used to determine the DEGs between the two 

groups [36]. Adjusted p < 0.05 and |logFC| > 0.5 were 

set as the cutoff criteria to determine the significantly 

differentially expressed genes. The gene Ontology 

system of classification was used to classify genes into 

different gene sets based on their functions. The genes 

were then assigned with their GO terms. Gene Ontology 

(GO) term enrichment can be used to interpret which 

GO terms are over-expressed or under-expressed when 

given a set of up-regulated or down-regulated genes. 

The metabolic genes with a criteria of adjusted p < 0.05 

were used to explore the metabolic landscape between 

the two groups. The metabolic genes were then used in 

the GO analysis using R package “ClusterProfiler” to 

identify the enriched biological pathways [37]. A cutoff 

value of 0.05 was set to obtain significant results for 

biological process (BP), cellular components (CC), and 

molecular functions (MF). R package “ClusterProfiler” 

was then used to visualize the GO enrichment results. 

 

Generation of a prognostic model using LASSO 

Regularization to evaluate the mutation profile of 

the signature genes 

 

Least absolute shrinkage and selection operator 

(LASSO) is a type of linear regression. Adding a 

penalty equal to the absolute value of the magnitude of 

some coefficients can result in the coefficients 

becoming zero, and thus they can be removed from the 

model. Therefore, a model with few coefficients can 

then be created. The candidate gene expression profiles 

were obtained from the training data set (n = 385) and R 

package “glmnet” was used to perform LASSO 

regularization to reduce the coefficients. This was 

followed by selection of the most robust markers to 

construct the risk score signature, which included eight 

genes. The following formula was used: 

 

Risk Score = 0.021 × PLAUR – 0.017 × ST3GAL6 – 

0.004 × GNG7 – 0.038 × PIK3CG – 0.048 × GLS2 

– 0.007 × IDO2 – 0.004 × UGT2B17 + 0.016 × F2. 

 

“Maftools” was selected for mutation analysis based on 

the model constructed by LASSO regularization to 

explore the mutation frequency of the signature genes in 

LUAD [38]. 

 

Testing data set validation 

 

The expression profiles of the signature genes were 

extracted from the testing data set, then used in the 

prognosis model for calculation. The predicted risk 

score was calculated and its association with survival 

outcomes was further analyzed. 

 

Survival analysis 

 

Univariate Cox proportional hazards regression analysis 

was used to evaluate the association between the 

expression level of the metabolic DEGs and the overall 

survival (OS) of LUAD patients. Metabolic DEGs with 

p < 0.05 based on the log-rank test were selected as 

candidate genes for construction of the prognosis 

model. The risk score for each sample was calculated 

based on the signature model to evaluate the association 

between the gene signature and the prognosis of LUAD 

patients. The samples were classified into either high 

risk or low risk groups depending on the median risk 

score. Kaplan-Meier curve and log-rank test were used 

to compare the differences in overall survival and 

progression free survival outcomes between the 

predicted high risk and low risk groups. p ≤ 0.05 was 

set as the significant level. All the survival analyses and 

log-rank tests were performed using R package survival, 

while the R package “surviminer” was used to plot 

the Kaplan-Meier curve. 

 

Statistical analysis 

 

Univariate analysis of survival outcomes was performed 

using the log-rank test. The correlation relationships 
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between the risk score and immune markers, the risk 

score and signature gene expression, the signature gene 

expression and immune cell infiltration score, and the 

risk score and immune cell infiltration score were 

determined by Pearson correlation. A two-tailed student 

t-test was used to compare the two groups. p ≤ 0.05 was 

set as the threshold for statistical significance. All 

statistical analyses were performed in R version 4.0.2. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Relationship between the Immune score and clinical status, survival outcomes. (A–G) Boxplot 

represent the difference between the immune score and clinical characteristics. p value above the boxplot indicates the difference between 
the two groups. (H–I) The Kaplan–Meier curves for overall survival and progression free survival of LUAD risk groups divided using the median 
cutoff point of immune score. 
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Supplementary Figure 2. Relationship between the Stromal score and clinical status, survival outcome. (A–G) Boxplot 

representing the difference between the stromal score and the clinical characteristic. p value above the boxplot indicates the difference 
between the two groups. (H–I) The Kaplan–Meier curves for overall survival and progression free survival of LUAD risk groups divided using 
the median cutoff point of Stromal score. 
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Supplementary Figure 3. (A) Analysis of the interactions among the eight signature genes using the STRING-DB database. (B) Correlation 
analysis of expression of the eight signature genes and LUAD oncogenic drivers and bypass signaling. 


