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How the weather affects the pain of citizen scientists using a
smartphone app
William G. Dixon 1,2,3*, Anna L. Beukenhorst 1, Belay B. Yimer1, Louise Cook1, Antonio Gasparrini 4,5, Tal El-Hay 6,
Bruce Hellman 7, Ben James7, Ana M. Vicedo-Cabrera4, Malcolm Maclure8, Ricardo Silva 9,10, John Ainsworth 2,
Huai Leng Pisaniello1,11, Thomas House 12,13, Mark Lunt 1, Carolyn Gamble3,14,15, Caroline Sanders14,15, David M. Schultz 16,
Jamie C. Sergeant 1,3,17,18 and John McBeth1,3,18

Patients with chronic pain commonly believe their pain is related to the weather. Scientific evidence to support their beliefs is
inconclusive, in part due to difficulties in getting a large dataset of patients frequently recording their pain symptoms during a
variety of weather conditions. Smartphones allow the opportunity to collect data to overcome these difficulties. Our study Cloudy
with a Chance of Pain analysed daily data from 2658 patients collected over a 15-month period. The analysis demonstrated
significant yet modest relationships between pain and relative humidity, pressure and wind speed, with correlations remaining
even when accounting for mood and physical activity. This research highlights how citizen-science experiments can collect large
datasets on real-world populations to address long-standing health questions. These results will act as a starting point for a future
system for patients to better manage their health through pain forecasts.
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INTRODUCTION
Weather has been thought to affect symptoms in patients with
chronic disease since the time of Hippocrates over 2000 years
ago.1 Around three-quarters of people living with arthritis believe
their pain is affected by the weather.2,3 Many report their pain is
made worse by the cold, rain, and low atmospheric pressure.
Others report that their pain is made worse by warmth and high
humidity. Despite much research examining the existence and
nature of the weather–pain relationship,4 there remains no
scientific consensus. Studies have failed to reach consensus in
part due to their small sample sizes or short durations (commonly
fewer than 100 participants or one month or less); by considering
a limited range of weather conditions; and heterogeneity in study
design (e.g. the populations studied, methods for assessing pain,
assumptions to determine the weather exposure, and statistical
analysis techniques).5–11 Resolving this question requires collec-
tion of high-quality symptom and weather data on large numbers
of individuals. Such data also need to include other factors
potentially linked to daily pain variation and weather, such as
mood and amount of physical activity. Collecting this kind of
multi-faceted data in large populations over long periods of time,
however, has been difficult.
The increasing uptake of smartphones offers new and

significant opportunities for health research.12 Smartphones allow
the integration of data collection into daily life using applications
(apps). Furthermore, embedded technologies within the smart-
phones, such as the Global Positioning System (GPS), can be used

to link the data collection to specific locations. We created Cloudy
with a Chance of Pain,13,14 a national United Kingdom smartphone
study, to collect a large dataset to examine the relationship
between local weather and daily pain in people living with long-
term pain conditions.

RESULTS
Recruitment and retention
The study app was downloaded by 13,207 users over the 12-
month recruitment period (Figs 1 and 2a) with recruitment from
all 124 UK postcode areas. A total of 10,584 participants had
complete baseline information and at least one pain entry, with
6850 (65%) participants remaining in the study beyond their first
week and 4692 (44%) beyond their first month (Fig. 2b). Further
description of engagement clusters is provided in Supplementary
Table 2 and Supplementary Figs 1–3. A total of 2658 participants
had at least one hazard period matched to a control period in the
same month (Fig. 3) and were included in the final analysis. There
were 9695 hazard periods included in the analysis for the final
2658 participants, matched to 81,727 control periods in 6431
participant-months. A total of 1235 participants contributed one
month, and the remaining 1423 participants contributed
2–15 months.
The final cohort was active for a median of 165 days

(interquartile range, IQR 84–245) with symptoms submitted on
an average of 73% of all days. Cohort members were
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predominantly female (83%), had a mean age of 51 years
(standard deviation 12.6), and had a range of different pain
conditions, predominantly arthritis (Supplementary Table 1). The
median number of weather stations associated with each
participant during the course of their active data-collection period
was 9 (IQR 4–14) with a maximum of 82 stations, indicating how
mobile participants were during the course of the study and the
importance of accounting for the weather at different locations
over the course of the study. As an illustration of the structure of
the data, the proportion of participants reporting a pain event was
plotted as a heat map per calendar day for the study period (Fig. 4),
aligned with the average United Kingdom weather data for the
same time period. On any given day during the study, about 1–6%
of participants had a pain event. At the start of the study, most
participants believed in an association between weather and their
pain (median score 8 out of 10, IQR 6–9). The demographics,
health conditions and baseline beliefs of the 2658 participants
included in the analysis were representative of the 10,584
participants who downloaded the app and provided baseline
information (Supplementary Table 2).

Weather and pain
The multivariable case-crossover analysis including the four state
weather variables demonstrated that an increase in relative
humidity was associated with a higher odds of a pain event with
an OR of 1.139 (95% confidence interval 1.099–1.181) per 10
percentage point increase, as was an increase in wind speed with
an OR of 1.02 (1.005–1.035) per 1 m s−1 increase (Table 1). The
odds of a pain event was lower with an increase in atmospheric
pressure with an OR of 0.962 (0.937–0.987) per 10-mbar increase.
Temperature did not have a significant association with pain (OR
0.996 (0.985–1.007) per 1 °C increase). The odds of a pain event
was 12% higher per one standard deviation increase in relative
humidity (9 percentage points) (OR 1.119 (1.084–1.154), compared

to 4% lower for pressure (OR 0.958 (0.930–0.989) and 4% higher
for wind speed (OR 1.041 (1.010–1.073) (11 mbar and 2m s−1,
respectively). Of the four weather variables, relative humidity had
the strongest association with pain, and temperature the least,
evidenced by the estimated relative importance of the variables
and their standardized odds ratios (Table 1, Supplementary Table
4). Similar effect sizes were seen when each variable was
examined in univariable analyses. Precipitation was not associated
with an increased odds of a pain event (OR 0.996 (0.989–1.003) per
1 mm daily rainfall amount) (Supplementary Table 5). Exploratory
analyses considered time spent outside by including an interac-
tion term with temperature, relative humidity, and wind speed.
Time spent outside did not have a significant interaction with
relative humidity or wind speed, nor did it lead to significant
associations for temperature when conducting analyses stratified
by time spent outside (Supplementary Table 3). It thus was not
included in the final model.
The model was then expanded to include mood and physical

activity on the day of interest, included as binary variables (Table 1),
resulting in a modest reduction in the point estimates for all
weather variables. Mood was strongly and independently
associated with pain events (OR 4.083 (3.824–4.360) for low mood
versus good mood), whereas there was no significant association
with physical activity (OR 0.939 (0.881–1.002) for high versus low
activity).
This multivariable regression model output represents the effect

of one weather variable while all else remains constant. In reality, a
single weather variable rarely changes in isolation while others
remain unchanged. To illustrate the composite effect of the
weather variables on the odds of reporting pain, an OR was
calculated for each day using the coefficients of our multivariable
model and daily UK mean weather values. Figure 5 demonstrates
there is significant variability in the odds of a pain event for any
given value of each weather variable. For example, at a
temperature of 8 °C, the odds of a pain event varied from around

Data item Ques�on stem Anchor - 
bo�om 

Anchor - top 

Pain severity How severe was your pain 
today? 

No pain Very severe 
pain 

Fa�gue How severe was your fa�gue 
today? 
 

No fa�gue Very severe 
fa�gue 

Morning 
s�ffness 

How s�ff did you feel on waking 
this morning? 

No s�ffness Very severely 
s�ff 

Impact of pain How much has your pain 
interfered with your ac�vi�es 
today? 

Not at all Very much 

Sleep quality How was your sleep quality last 
night? 

Very poor Very good 

Time spent 
outside 

How much �me have you spent 
outside today? 

None of the 
day 

All of the day 

Waking up 
feeling �red 

How �red did you feel when 
you woke up this morning? 

Not at all 
�red 

Extremely �red 

Physical 
ac�vity 

How long have you exercised 
today? 

No exercise 30+ minutes of 
strenuous 
exercise 

Mood How has your mood been 
today? 

Depressed Very happy 

Wellbeing How well did you feel today? Very unwell Very well 

Fig. 1 User interface of the study app (uMotif, London). Each colored segment represents one of the ten data items. Participants report their
symptoms on a five-point scale by dragging the segment from the center outwards
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0.8–1.2, depending on the other state variables in the weather
that day.
Other factors such as day of the week (Supplementary Table 6),

lagged weather values (Supplementary Table 7) and changes in
weather variables from the previous day were tested. Mondays,
Thursdays, and Saturdays (ORs 1.14, 1.14, and 1.29, respectively)
had higher odds of pain compared to Sundays, but adjusting for
the day of the week did not alter the effect of the four main
weather variables. Except for relative humidity (1-day lag and 2-
day lag), no significant associations were observed between
lagged weather variables and pain events. Including change in
weather from yesterday showed a minor effect of changing
relative humidity (OR 1.005 (1.001–1.009) per 10 percentage point
increase), whereas the effects of today’s relative humidity and
pressure remained unchanged (Supplementary Table 8). Stratifica-
tion by disease led to a loss of statistical power and largely
inconclusive results, although relative humidity appeared to have
a stronger association with pain in patients with osteoarthritis
(Supplementary Table 9, Supplementary Fig. 4). Stratification by
the number of pain sites also showed no meaningful difference
(Supplementary Table 10). After stratifying by participants’ prior
beliefs about their weather–pain relationship, relative humidity
remained associated with pain in all participants although the

association with pressure was only seen in those with a strong
prior belief (Supplementary Table 11).

DISCUSSION
This study has demonstrated that higher relative humidity and
wind speed, and lower atmospheric pressure, were associated
with increased pain severity in people with long-term pain
conditions. The most significant contribution was from relative
humidity. The effect of weather on pain was not fully explained by
its day-to-day effect on mood or physical activity. The overall
effect sizes, while statistically significant, were modest. For
example, the ‘worst’ combination of weather variables would
increase the odds of a pain event by just over 20% compared to
an average day. Nonetheless, such an increased risk may be
meaningful to people living with chronic pain.
In addition to investigating the weather–pain relationship, we

successfully conducted a national smartphone study that deliv-
ered on the promise of how consumer technology can support
health research.12,15 This study recruited over 10,000 participants
throughout the United Kingdom, sustained daily self-reported
data over many months,13 and showcased the value of passively
collected GPS data. Prior large smartphone studies have retained

Fig. 2 Recruitment and retention. a Cumulative recruitment and number of active participants through time. The blue line represents the
cumulative number of participants with a completed baseline questionnaire and at least one pain score submitted. The red line represents the
current number of active participants (i.e. those who have submitted their first but not yet their last pain score in the study period).
b Retention through time. The graph represents the retention of active participants through time as a survival probability from the day of
their recruitment. Participants were censored when they were no longer eligible for follow-up. Eligible follow-up time ranged from 90 days (for
those recruited on 20 January 2017) to 456 days (for those recruited on 20 January 2016)
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only around one in ten participants for seven days or less.16,17 In
contrast, our study retained 65% of participants for the first seven
days, and 44% for the first month, with over 2600 participants
contributing to the analysis having provided data for many
months of the study.13,14 An important success factor was strong
public involvement in early setup and piloting, as well as
participants’ interest in weather as a possible pain trigger.14 The
study design has resolved problems of prior weather–pain studies
such as small populations,5,7 short follow-up,3,8 surrogate pain
outcomes,11 the absence of possible causal pathway variables
such as mood, and assumptions about where participants were
located and thus the weather to which they were exposed.18,19

Overcoming these obstacles produced a large dataset that
allowed us to tease out subtle relationships between weather
and pain.
There are potential limitations to this study. First, the reduction

in participant numbers from over 10,000 with baseline data to the
final 2658 participants with at least one within-month risk set
raises questions about generalisability. Importantly, the character-
istics of those included in the analysis were similar to the initial
10,000 participants, other than being slightly older (mean age 51
versus 48 years old). In a prior analysis, we showed that Cloudy
participants were largely representative of a population reporting

chronic-pain symptoms,13 although proportionally fewer partici-
pants at both extremes of age were recruited. However, we would
not expect middle-aged recruits to differ in their relationship
between weather and pain from older or younger participants,
and thus such selection factors would not invalidate our results.
Second, the study was advertised to participants with a clear
research question. It is possible that only people with a strong
belief in a weather–pain relationship participated, generating an
unrepresentative sample. However, the percentage of participants
who believed in the weather–pain relationship was similar to prior
studies,20 and we did not see selective attrition of people who
reported no weather–pain beliefs.13 The within-person design
would, regardless, mean that participants who drop out early
would not introduce bias from time-invariant characteristics. Third,
the lack of blinding raises possible information bias where
observed weather could influence participants’ symptom report-
ing. Our baseline questionnaire demonstrated that rain and cold
weather were the most common pre-existing beliefs. If a reporting
bias were to exist, we would expect higher pain to be reported at
times of colder weather. Our findings—including the absence of
an association with either temperature or rainfall—cannot be
explained by such a reporting bias. Fourth, pain reporting is
subjective, meaning one participant’s “moderate” might equate to

Fig. 3 Example participant timeline of 21 days, showing participant-reported items (here, pain severity, mood, and exercise) and weather data
(here, temperature and relative humidity). Pain events with their associated hazard periods (dark grey) occur when pain severity increases by
two or more ordinal categories between consecutive days (e.g. from Day 4 to Day 5). Control periods (light gray) occur on days that were
eligible to be a pain event, but where pain did not increase by two or more ordinal categories. Days where there was no recorded pain on the
preceding day, or where the preceding day’s pain was severe or very severe (and could thus not increase by two or more categories), were not
eligible to be pain-event days or control days. The case-crossover analysis compared the weather on pain-event days to weather on control
days within a risk set of a calendar month
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someone else’s “severe”. The within-person case-crossover analy-
sis meant we compared moments when an individual’s score
increased by a meaningful amount to a control period for that
same person. Fifth, we chose to model the weather using daily
averages. It is possible that other findings may be hidden if the
association between weather and pain was with other metrics of
weather, such as the daily maximum, minimum, or range, or even
if the changes in weather on hourly time scales affect participants’
pain. Sixth, the findings from this United Kingdom study cannot
necessarily be extrapolated to different climates where the
weather is different. Seventh, our population-wide analysis
assumed that all participants have the same weather–pain
relationship. Different diseases may have different sensitivities to
pain and, even within disease, participants may be affected
differently. Our decision to use the whole chronic-pain population
in our primary analysis means the overall associations with
weather variables may be combinations of strong, weak and
absent causal effects, thereby underestimating the most impor-
tant associations. Notable differences were not seen after
stratification by pain condition, although the power to detect
any differences was reduced because of smaller sample sizes.
Lastly, the inclusion of repeated events per person required us to
consider within-subject dependence which, if not accounted for,
would lead to bias.21 Our outcome was based on changes in pain
(a two or more category increase), which meant events rarely
occurred on consecutive days, thereby ensuring a time gap
between recurrent events and the avoidance of bias.
Understanding the relationship between weather and pain is

important for several reasons. First, this study validates the
perception of those who believe that their pain is associated with
the weather. Second, given we can forecast the weather days in
advance, understanding how weather relates to pain would allow
pain forecasts. Patients could then plan activities and take greater
control of their lives. Finally, understanding the relationship
between weather and pain might also allow better understanding
of the mechanisms for pain and thus allow the development of
new and more effective interventions for those who suffer
with pain.
In summary, our large national smartphone study has success-

fully supported the collection of daily symptoms and high-quality

weather data, allowing examination of the relationship between
weather and pain. The analysis has demonstrated significant
relationships between relative humidity, pressure, wind speed and
pain, with correlations remaining even when accounting for mood
and physical activity.

METHODS
Patient involvement
Patient involvement has been important throughout the study, from
inception to interpretation of the results. Co-author C.G. is a patient partner
and co-applicant, while a patient and public involvement group of seven
additional members has supported the study, meeting eight times in total.
During the feasibility study,14 patients positively influenced the wording
and display of questions within the app. C.G. and other members of the
Patient and Public Involvement Group were involved in media broadcasts
at study launch and subsequent public engagement activities, explaining
why the research question was important to them and relevant to patients
with long-term pain conditions.22 They have supported the interpretation
of findings and the development of dissemination plans for the results,
ensuring the results reach study participants, patient organizations and the
general public.

Recruitment
We recruited participants through local and national media (television,
radio, and press) and social media from 20 January 2016 to 20 January
2017. To participate in the study, participants needed to (i) be living with
long-term (>3 months) pain conditions, (ii) be aged 17 years or older, (iii)
be living in the United Kingdom, and (iv) own an Android or Apple iOS
smartphone. Interested participants were directed to the study website
(www.cloudywithachanceofpain.com) where they could check their elig-
ibility, learn about the study, and download the uMotif app (Fig. 1). After
downloading the study app, participants completed an electronic consent
form and a baseline questionnaire including demographic information
(sex, year of birth, first half of postcode), anatomical site(s) of pain,
underlying pain condition(s), baseline medication use, and beliefs about
the extent to which weather influenced their pain on a scale of 0–10,
including which weather condition(s) were thought to be most associated
with pain. Participants were then invited to collect daily symptoms for six
months, or longer if willing. Each day, the app alerted participants to
complete ten items at 6:24 p.m. (Fig. 1). The ten items were pain severity,
fatigue, morning stiffness, impact of pain, sleep quality, time spent outside,
waking up feeling tired, physical activity, mood, and well-being. Each data

Fig. 4 The proportion of eligible active participants reporting a pain event during the study period, aligned with average UK weather data
from February 2016 to April 2017. Heat map colors indicate the percentage of participants reporting a pain event on that day, ranging from
1–6% participants. The denominator per day is the number of participants who reported their pain on the day of interest and the prior day,
irrespective of the level of pain on the prior day and thus their eligibility for a pain event
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item had five possible labeled ordinal responses. For example, in response
to the question “How severe was your pain today?”, possible responses
were “no pain”, “mild pain”, “moderate pain”, “severe pain” or “very severe
pain”. The data were analysed using a case-crossover design where, for
each participant, exposure during days with a pain event (“hazard periods”)
were compared to “control periods” without a pain event in the same
month.23 Pain events were defined as a two-or-more category increase in
pain from the preceding day, consistent with more stringent definitions of
a clinically important difference24 (Fig. 3). Data collection ended on 20
April 2017.

Cohort selection
Participants were included in the final cohort for analysis if they fulfilled
the following criteria: (1) downloaded the app; (2) provided consent; (3)
completed the baseline questionnaire; and (4) contributed at least one
pain event and matched control period in the same month (see below).
During exploratory analysis, it was apparent that people reported higher
pain levels in the first ten days following recruitment (perhaps due to
calibration or regression to the mean). Therefore, the first ten days were
excluded from the formal analysis. However, even if the first ten days were
included, they had a negligible effect on the results (Supplementary Table
12).
The total person-days in study was calculated for each participant as the

number of days between their first and last day of entering pain data. The
number of person-days on which a pain score was entered was summed
per participant, presented as a proportion of the total person-days in study,
and averaged across the population. The geographical distribution of
recruitment was described as the number of UK postcode areas
represented (out of a maximum of 124).25 The movement of participants
during the study was described as the median number of weather stations
associated with each participant during their data-collection period.

Ethical approval
Ethical approval was obtained from the University of Manchester Research
Ethics Committee (ref: ethics/15522) and from the NHS IRAS (ref: 23/NW/

0716). Participants were required to provide electronic consent for study
inclusion. Further details are available elsewhere.13,14

Weather data
Weather data were obtained by linking hourly smartphone GPS data to the
nearest of 154 possible United Kingdom Met Office weather stations.
Where GPS data were missing, we used significant location imputation.
(For details, see supplement). Local hourly weather data were obtained
from the Integrated Surface Database (ISD) of NOAA (http://www.ncdc.
noaa.gov/isd), which includes hourly observations from UK Met Office
weather stations.
Given the latitude–longitude coordinates of a participant location, the

haversine distance to every Met Office weather station was calculated. The
nearest station to the given location was selected, conditional on the
distance being less than 100 km and the station having four weather
variables (temperature, pressure, wind speed, and dewpoint temperature)
available at that time. If all stations with the required weather data
exceeded the maximum distance (100 km), the location was left unlinked
and the observation was excluded from the analysis.
The significant location imputation approach for handling missing

hourly GPS data had three stages.26 First, the participant’s observed
location data were ordered by the frequency that the locations were
visited. Second, the locations were spatially clustered using Hartigan’s
Leader Algorithm27 with a threshold of 0.5 km. Third, missing locations
during weekdays were replaced by the centroid of the participant’s most
visited cluster for weekdays and missing locations during weekends were
replaced by centroid of the participant’s most visited cluster for weekends.

Recruitment and retention
Recruitment and duration of follow-up were presented as a graph of
cumulative recruitment and active participants, with participation ending
at the last symptom entry. Retention in the study was also presented as a
survival probability against time since recruitment, with participants
censored when they were no longer eligible for follow-up. Eligible
follow-up time ranged from 90 days (for those recruited on 20 January
2017) to 456 days (for those recruited on 20 January 2016). Engagement of

Table 1. Association between weather and pain from the case-crossover analysis in 2658 participants

Variable Univariable (single weather
variable only) Odds ratio (95% CI)

Multivariable (all weather
variables only) Odds ratio (95% CI)

Multivariable (weather plus activity
and mood) Odds ratio (95% CI)

Temperature

Per 1 °C 1.001 (0.991–1.012) 0.996 (0.985–1.007) 1.001 (0.989–1.013)

Per 1 s.d. (4.8 °C) 1.007 (0.956–1.060) 0.981 (0.929–1.035) 1.005 (0.949–1.064)

Relative humidity

Per 10% 1.148 (1.108–1.189) 1.139 (1.099–1.181) 1.117 (1.075-1.16)

Per 1 s.d. (8.6%) 1.126 (1.092–1.61) 1.119 (1.084–1.154) 1.100 (1.064–1.136)

Pressure

Per 10 mbar 0.936 (0.914–0.958) 0.962 (0.937–0.987) 0.966 (0.94-0.993)

Per 1 s.d. (11.1 mbar) 0.930 (0.905–0.955) 0.958 (0.930–0.986) 0.963 (0.934–0.992)

Wind speed

Per 1m s–1 1.023 (1.01–1.037) 1.02 (1.005–1.035) 1.011 (0.995–1.027)

Per 1 s.d. (2.1 m s–1) 1.048 (1.020–1.077) 1.041 (1.010–1.073) 1.022 (0.990–1.056)

High activity 0.939 (0.881–1.002)

Low mood 4.083 (3.824–4.360)

High activity—Top three categories: 30min or more of light or strenuous activity per day, or less than 30min of strenuous activity
Low mood—Bottom three categories: ‘depressed’, ‘feeling low’ or ‘not very happy’ s.d. standard deviation
Distribution of weather variables:
Temperature: range −4.9 to 25.9 °C, s.d. 4.8 °C
Relative humidity: range 43.8–100%, s.d. 8.6%
Pressure: range 966–1044.8 mbar, s.d. 11.1 mbar
Wind speed: range 0–21.5 m s−1, s.d. 2.1 m s−1
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participants was further described through clustering of engagement
states, which has been described in detail elsewhere.13 Following
recruitment, individuals were labeled as engaged if they reported any of
the ten symptoms on a given day. A first-order hidden Markov model was
used to estimate the levels of engagement of participants by assuming
three latent engagement states: high, low, and disengaged. Clusters were
defined according to different probabilities of transitioning between high
engagement, low engagement and disengagement during the study.
Retention of active participants was also presented stratified by engage-
ment cluster, and in the subset of participants who contributed to the final
analysis.

Analysis method
Days without pain events were only control periods if they were eligible to
have a two-or-more category increase (i.e. the preceding day’s pain was
lower than “severe”), thus fulfilling the exchangeability assumption for the
case-crossover study design.28 With this design, participants serve as their
own control, eliminating confounding by time-invariant factors. Each
month per participant with at least one hazard and one control period
formed a risk set. Conditional logistic regression was used to estimate the
odds ratio (OR) for a pain event for four state weather variables
(temperature, relative humidity, pressure, and wind speed). The condition
logistic regression model was implemented with the assumption that the
possible recurrent events (hazard periods) within a person are indepen-
dent conditional on the subject-specific variables and other observed time-
varying covariates. Further, we make sure that there is no overlap between
case and control periods. Our assumption is reasonable given the time gap
between subsequent events.
Each weather variable was included in univariable models and then all

four were included in a multivariable analysis. Each weather variable was
represented as a daily average per participant for the hazard or control
period, with results presented as an OR for a pain event in response to a
one-unit increase for temperature and wind speed (°C and meter
per second, respectively) or a ten-unit increase for relative humidity and
pressure (percentage points and millibar, respectively). Standardized odds
ratios of each weather variable were also calculated. The relative
importance of the four state weather variables was estimated by summing
the Akaike weights.29 In all models, the preceding day’s pain score was

included as it influenced the likelihood of a pain event the following day.
The model was expanded to include mood and physical activity on the day
of interest, included as binary variables. Time spent outside was considered
as a possible effect modifier by including an interaction term with
temperature, relative humidity, and wind speed. A directed acyclic graph is
included in the supplementary material (Supplementary Fig. 5).
Sensitivity analyses were conducted to examine the effect of precipita-

tion, day of the week, possible lag between weather and pain, change in
weather from the day before the hazard or control day, disease type, sites
of pain (single versus multiple sites) and prior beliefs in the weather–pain
relationship. Respecting patients’ perspectives, we decided our primary
analysis would focus on the whole chronic-pain population and our
analyses of disease-specific associations would be secondary. We also re-
ran the analysis including the first 10 days.

Daily pain-event estimates
Estimated odds ratio for a pain event per day compared to the average
weather day were calculated using the following equation:

Odds Ratio ¼ exp;
βT temperature� μTð Þ þ βRH

relative humidity� μRH
10

� �n

þ βwsp wind speed� μwsp
� �þ βP

pressure� μp
10

� ��

where
βT= coefficient for temperature from final model,
βRH= coefficient for relative humidity,
βwsp= coefficient for wind speed,
βP= coefficient for pressure, and
μT=mean temperature,
μRH=mean relative humidity,
μwsp=mean wind speed, and
μp=mean pressure
of the daily UK means over the study period.
The predicted odds ratios of a pain event, relative to the average

weather day, were plotted for all days within our study period for each of
the four state weather variables.
Statistical analyses were performed using R 3.3.0.30

Fig. 5 Estimated odds of a painful day for all weather days experienced during the 15 months. Estimated odds of a painful day are plotted as
the odds ratio for each day compared to the average weather day in this period (temperature= 9.3 °C, relative humidity= 83%, wind speed=
4m s–1 and pressure= 1013 mbar). Estimated odds are calculated from the output of the multivariable regression analysis. The day associated
with the highest estimated odds of a pain event had a temperature of 9 °C, relative humidity 88%, wind speed 9.5 m s–1 and pressure 988
mbar. The day associated with the lowest estimated odds of a pain event was when the temperature was 7 °C, relative humidity was 67%,
wind speed 4.5 m s−1 and pressure 1030 mbar
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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