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Abstract
Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes 
an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently 
unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, 
organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in 
COPD patients, would induce phenotype changes of ASM.

Methods: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the 
direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility.

Results: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. 
CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 
expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative 
phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and 
KCl-induced contraction.

Conclusions: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM 
phenotype, which may be involved in airway remodelling in COPD.

Background
Chronic obstructive pulmonary disease (COPD) is an
inflammatory lung disease characterized by a progressive
and largely irreversible airflow obstruction, which
involves structural changes of the lung, including emphy-
sema and small airway remodelling [1]. Small airway
remodelling in COPD is characterized by adventitial
fibrosis and mucus cell hyperplasia, and may involve
increased airway smooth muscle (ASM) mass, particu-
larly in severe disease [1-5]. Small airway remodelling
may contribute to the reduced lung function as well as to
persistent airway hyperresponsiveness, which is present
in most of the patients [6,7].

Tobacco smoke exposure is considered to be the most
important risk factor for COPD in developed countries.
Lipopolysaccharide (LPS) - a constituent of the outer wall
of gram-negative bacteria and a contaminant of tobacco

smoke, organic dust and environmental pollution [8-11] -
has been implicated in the development and progression
of various pulmonary diseases, including COPD [12-14].
Cigarette smoke (CS) and LPS have previously been
shown to induce features of airway remodelling in animal
models, including airway wall thickening, increased ASM
mass, goblet cell hyperplasia and collagen deposition [15-
19].

Although the mechanisms involved in the development
and progression of small airway remodelling in COPD are
largely unknown, chronic inflammation of the airways is
presumably of major importance. This is indicated by
persistent infiltration of inflammatory cells, including
macrophages, neutrophils and T- and B-lymphocytes, in
the airway wall, which is correlated with the severity of
airflow obstruction [3,5].

This inflammatory response is associated with the
release of profibrotic cytokines and growth factors, which
are linked to a repair and remodelling process that thick-
ens the airway wall and narrows the airway lumen [20].
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However, small airway remodelling could also result
from direct effects of CS and LPS exposure on structural
cells of the airway wall, independent of inflammation.
Thus, studies using rat tracheal explants [21,22] and a
mouse model of CS exposure [23] have shown that CS
exposure of the airway wall may lead to the release of
TGF-β1 and upregulation of platelet-derived growth fac-
tor (PDGF), connective tissue growth factor (CTGF) and
procollagen gene expression independent of inflamma-
tory cell infiltration. The inflammation-independent
fibrotic response presumably involves an oxidant-driven
mechanism, which may be reinforced by inflammatory
cells such as macrophages and neutrophils, known to
release oxidants in response to tobacco smoke [24]. In
addition, epithelial cells, fibroblasts, as well as ASM cells
in culture have been shown to release pro-inflammatory
and profibrotic cytokines in response to CS [25-29] or
LPS [30-32].

As indicated above, various studies have indicated that
increased airway smooth muscle mass may contribute to
airway remodelling in COPD [2-5]. Indeed, a direct cor-
relation between the degree of smooth muscle mass and
airflow obstruction in COPD has been reported [3,5].
Previous in vitro studies from our laboratory have dem-
onstrated that growth factors, including PDGF, and extra-
cellular matrix (ECM) proteins, including collagen I and
fibronectin, induce a proliferative phenotype of bovine
tracheal smooth muscle (BTSM), which is accompanied
by reduced contractility of the muscle [33-35]. PDGF-
induced phenotypic modulation was shown to be medi-
ated by ERK 1/2 and p38 MAP kinase, two signalling
molecules that are importantly involved in mitogenic
responses of ASM [33,35]. The direct effects of CSE and
LPS on ASM proliferation are, however, currently
unknown. In this study, we present evidence that both
CSE and LPS induce a proliferative, hypocontractile phe-
notype of ASM independent of inflammation, which
could be important in the development and progression
of ASM growth in COPD.

Methods
Isolation of Bovine Tracheal Smooth Muscle Cells
Bovine tracheae were obtained from local slaughter-
houses and transported to the laboratory in Krebs-
Henseleit buffer of the following composition (mM):
NaCl 117.5, KCl 5.60, MgSO4 1.18, CaCl2 2.50, NaH2PO4
1.28, NaHCO3 25.00, and glucose 5.50, pregassed with 5%
CO2 and 95% O2; pH 7.4. After dissection of the smooth
muscle layer and removal of mucosa and connective tis-
sue, tracheal smooth muscle was chopped using a McIl-
wain tissue chopper, three times at a setting of 500 μm
and three times at a setting of 100 μm. Tissue particles
were washed two times with Dulbecco's Modified Eagle's

Medium (DMEM), supplemented with NaHCO3 (7 mM),
HEPES (10 mM), sodium pyruvate (1 mM), nonessential
amino acid mixture (1:100), gentamicin (45 μg/ml), peni-
cillin (100 U/ml), streptomycin (100 μg/ml), amphoteri-
cin B (1.5 μg/ml), and foetal bovine serum (FBS, 0.5%) (all
purchased from GIBCO BRL Life Technologies, Paisley,
UK). Enzymatic digestion was performed using the same
medium, supplemented with collagenase P (0.75 mg/ml,
Boehringer, Mannheim, Germany), papain (1 mg/ml,
Boehringer), and Soybean trypsin inhibitor (1 mg/ml,
Sigma Chemical, St. Louis, MO, USA). During digestion,
the suspension was incubated in an incubator shaker
(Innova 4000) at 37°C, 55 rpm for 20 min, followed by a
10-min period of shaking at 70 rpm. After filtration of the
obtained suspension over a 50 μm gauze, cells were
washed three times in supplemented DMEM containing
10% FBS. This isolation method results in a cell popula-
tion positive for smooth muscle α-actin (95%) and
smooth muscle myosin heavy chain [33,36].

Cigarette Smoke Extract
Cigarette smoke extract was prepared by combusting 2
research cigarettes (University of Kentucky 2R4F; filters
removed), using a peristaltic pump (Watson Marlow 323
E/D, Rotterdam, The Netherlands) and passing the smoke
through 25 ml of FBS-free DMEM supplemented with
penicillin and streptomycin at a rate of 5 minutes/ciga-
rette. The obtained solution is referred to as 100%
strength.

[3H]-Thymidine Incorporation
BTSM cells were plated in 24-well cluster plates at a den-
sity of 50,000 cells per well, and were allowed to attach
overnight in 10% FBS-containing DMEM at 37°C in a
humidified 5% CO2 incubator. Cells were washed two
times with sterile phosphate-buffered saline (PBS, com-
position [mM] NaCl, 140.0; KCl, 2.6; KH2PO4, 1.4;
Na2HPO4.2H2O, 8.1; pH 7.4) and made quiescent by
incubation in FBS-free medium, supplemented with apo-
transferrin (5 μg/ml, human, Sigma), ascorbate (100 μM,
Merck, Darmstadt, Germany), and insulin (1 μM, bovine
pancreas, Sigma) for 72 h. Cells were then washed with
PBS and stimulated with LPS (1-10,000 ng/ml), purified
from Escherichia coli O55:B5 (Sigma) or PDGF (10 ng/
ml) in FBS-free medium for 28 h. Treatment of cells with
CSE (1-50%) lasted 1 h, after which the cells were washed
3 times with PBS and incubated in FBS-free DMEM for
another 27 h. [3H]-thymidine (0.25 μCi/ml, Amersham,
Buckinghamshire, UK) was present during the last 24 h of
the incubations, followed by two washes with PBS at
room temperature and one wash with ice-cold 5% trichlo-
roacetic acid (TCA). Cells were incubated with TCA on
ice for 30 min. Subsequently, the acid-insoluble fraction
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was dissolved in 0.5 ml NaOH (1 M). Incorporated [3H]-
thymidine was quantified by liquid-scintillation counting.

Cell number determination
BTSM cells were plated in 6-well cluster plates at a den-
sity of 100,000 cells/well in medium, containing 10% FBS.
Cells were grown to 50% confluence after which they
were serum-deprived for 72 h. Subsequently, cells were
treated with CSE (15%) 2 times for 1 h, on day 0 and day
2, respectively, or with LPS (1 μg/ml) or PDGF (10 ng/ml)
for 4 days continuously. On day 4, the cells were washed
twice with PBS and were trypsinized (0.25% Trypsin-
EDTA (GIBCO); 15 min) and re-suspended in FBS-con-
taining DMEM. Cells were then counted in duplicate,
using a hemocytometer. When applied, the MEK inhibi-
tors U0126 (3 μM; Tocris Cookson, Bristol, UK) or PD
98059 (30 μM, Sigma) and the p38 MAPK inhibitors SB
203580 (10 μM, Tocris) or SB 239063 (10 μM, Sigma)
were added to the cells 30 min before stimulation and
were present throughout the experiment.

Western blot analysis
BTSM cells were plated in 6-well cluster plates at a den-
sity of 200,000 cells/well in medium, containing 10% fetal
bovine serum. Upon confluence, cells were washed two
times with sterile PBS and made quiescent by incubation
in serum-free medium, supplemented with apo-transfer-
rin (5 μg/ml) and ascorbate (100 μM) for either 24 h, for
ERK 1/2 and p38 MAP kinase phopsphorylation, or 72 h,
for cyclin D1 expression. Cells were then washed with
PBS and stimulated in serum-free medium. To obtain
total cell lysates, cells were washed once with ice-cold
phosphate-buffered saline (PBS) and then lysed in ice-
cold RIPA buffer (composition: 50 mM Tris, 150 mM
NaCl, 1% Igepal CA-630, 1% deoxycholic acid, 1 mM NaF,
1 mM Na3VO4, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 7
μg/ml pepstatin A, 5 mM 2-glycerophosphoric acid, pH
8.0). Lysates were stored at -80°C until further use. Cul-
tured tissue strip homogenates were prepared by pulver-
izing the tissue under liquid nitrogen, followed by
sonification in ice-cold RIPA buffer. Protein content was
determined according to Bradford [37]. Homogenates
containing 50 μg of protein per lane were then subjected
to immunoblot analysis using antibodies against cyclin
D1, ERK 1/2, p38 MAP kinase or the phosphorylated
forms of ERK 1/2 (Thr202/Tyr204) or p38 MAP kinase
(Thr180/Tyr182) (Cell Signaling Technology, Beverly, MA,
USA). The antibodies were visualized using enhanced
chemiluminescence. Photographs of the blots were
scanned and analyzed by densitometry (Totallab™; Non-
linear Dynamics, Newcastle, UK).

Tissue culture
After dissection of the smooth muscle layer and careful
removal of mucosa and connective tissue, tracheal

smooth muscle strips were prepared while incubated in
gassed KH-buffer at room temperature. Care was taken
to cut tissue strips with macroscopically identical length
(1 cm) and width (2 mm). Tissue strips were washed once
in sterile FBS-free DMEM, supplemented with apo-trans-
ferrin (5 μg/ml) and ascorbate (100 μM). Next, the tissue
strips were transferred into suspension culture flasks
containing a volume of 7.5 ml medium. CSE treated strips
were exposed to 15% CSE for 1 h daily during 8 days. LPS
treatment was performed in the continuous presence of 1
μg/ml LPS during 8 days.

Isometric tension measurements
Tissue strips, collected from the suspension culture
flasks, were washed with several volumes of KH buffer
pregassed with 5% CO2 and 95% O2, pH 7.4 at 37°C.
Subsequently, the strips were mounted for isometric
recording (Grass force-displacement transducer FT03)
in 20-ml water-jacked organ baths containing KH buffer
at 37°C, continuously gassed with 5% CO2 and 95% O2,
pH 7.4. During a 90-min equilibration period, with
washouts every 30 min, resting tension was gradually
adjusted to 3 g. Subsequently, the muscle strips were
precontracted with 20 and 40 mM isotonic KCl solu-
tions. Following two washouts, maximal relaxation was
established by the addition of 0.1 μM (-)-isoprenaline
(Sigma). In most of the experiments, no basal myogenic
tone was detected. Tension was readjusted to 3 g, imme-
diately followed by three washes with fresh KH buffer.
After another equilibration period of 30 min, cumula-
tive concentration response curves were constructed
using stepwise increasing concentrations of isotonic KCl
(5.6-50 mM) or methacholine (1 nM-100 μM; ICN Bio-
medicals, Costa Mesa, CA, USA). When maximal ten-
sion was obtained, the strips were washed several times,
and maximal relaxation was established using 10 μM (-
)-isoprenaline.

Data analysis
All data represent means ± s.e. mean from separate
experiments. The statistical significance of differences
between data was determined by the Student's t-test for
paired observations. Differences were considered to be
statistically significant when P < 0.05.

Results
CSE and LPS induce BTSM cell proliferation
Proliferative responses of isolated BTSM cells to CSE and
LPS stimulation were investigated by [3H]-thymidine
incorporation and cell counting. A 1 h pulse treatment
with CSE, followed by 27 h incubation in serum-free
medium resulted in a significant and concentration-
dependent increase in [3H]-thymidine incorporation,
reaching a maximum of 187 ± 13% of control at a concen-
tration of 15% (Figure 1A). Similarly, LPS induced a con-
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centration-dependent increase in [3H]-thymidine
incorporation of up to 254 ± 45% of control, similar to
that induced by a submaximal concentration of PDGF (10
ng/ml; 258 ± 64%) (Figure 1B). Treatment of BTSM cells
with 15% CSE (two 1 h pulses, on day 0 and day 2), or 1
μg/ml LPS resulted in a significant increase in cell num-
ber as well, as determined 4 days after starting the treat-
ment (Figure 1C). As a positive control, PDGF (10 ng/ml,
4 days) similarly increased BTSM cell number (Figure
1C). The combined treatment of cells with CSE (15%) and
LPS (1 μg/ml) had no additional effect on cell numbers
when compared to the separate treatments alone (data
not shown). Collectively, these data indicate that both
CSE and LPS induce proliferation of BTSM cells in a non-
additive fashion.

CSE and LPS induce ERK 1/2 and p38 MAP kinase 
phosphorylation and cyclin D1 expression
Western blot analysis was performed to investigate the
effects of CSE (15%) and LPS (1 μg/ml) on phosphoryla-
tion of ERK 1/2 and p38 MAP kinase, two major signal-
ling pathways involved in ASM cell proliferation, and on
the expression of cyclin D1, a key regulator of cell cycle
progression downstream of ERK 1/2 and p38 MAP
kinase. Both CSE and LPS induced a rapid phosphoryla-
tion of ERK 1/2 (Figure 2). Both stimuli also induced a
rapid phosphorylation of p38 MAP kinase, which, simi-
larly to ERK 1/2 phosphorylation, was sustained (Figure
3). In addition, both CSE and LPS significantly increased
the expression of cyclin D1, as assessed after 24 h, to a
similar extent as 30 ng/ml PDGF (Figure 4), suggesting

an important role for these signalling pathways in the
proliferative response induced by CSE and LPS.

Role of ERK 1/2 and p38 MAP kinase in CSE- and LPS-
induced proliferation
To test this hypothesis, the effect of CSE or LPS on cell
number was determined in the presence or absence of
U0126 (3 μM), an inhibitor of MEK, the upstream activa-
tor of ERK 1/2, or SB 203580 (10 μM), an inhibitor of p38
MAP kinase. As illustrated in Figures 5A and 5B, inhibi-
tion of MEK by U0126 and inhibition of p38 MAP kinase
by SB 203580 completely abrogated the CSE- and LPS-
induced increase in cell number. By contrast, no effect of
the kinase inhibitors on basal cell numbers was observed.
These findings were confirmed by using PD 98059 (30
μM) and SB 239063 (10 μM), alternative inhibitors for
MEK and p38 MAP kinase, respectively (Figures 5C and
5D). Together with the CSE- and LPS-induced phospho-
rylation of ERK 1/2 and p38 MAP kinase described
above, these data indicate that CSE- and LPS-induced
proliferation is dependent on activation of the ERK 1/2
and p38 MAP kinase signalling pathways.

Effects of LPS and CSE on BTSM contractility
Previous studies have shown that the proliferative
response of BTSM cells to growth factors and ECM pro-
teins is linearly related to a decrease in contractility of
BTSM tissue [33,34]. In order to investigate the effects of
CSE and LPS on BTSM phenotype, strips were cultured
for 8 days with 1 μg/ml LPS or were subjected to daily
exposure to 15% CSE for 1 h during 8 days. After both

Figure 1 CSE and LPS induce BTSM cell proliferation. Subconfluent, serum-deprived BTSM cells were treated with increasing concentrations of 
CSE for 1 h (A) or increasing concentrations of LPS for 28 h (B). [3H]-Thymidine incorporation was determined 28 h after stimulation as described under 
methods. Data represent means ± S.E.M. of 5-7 experiments, each performed in triplicate. (C) Serum-deprived BTSM cells were treated 2 times (1 h, 
day 0 and day 2) with CSE (15%) or 4 days with LPS (1 μg/ml) or PDGF (10 ng/ml). Cells were counted in duplicate on day 4, using a hemocytometer. 
Data represent means ± S.E.M. of 5-8 experiments. *P < 0.05, **P < 0.01, ***P < 0.001 vs control
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treatments, maximal contraction induced by methacho-
line or KCl was significantly reduced compared to
untreated strips (Figures 6A and 6B). No differences in
the sensitivity (-log EC50) to methacholine and KCl were
found. These effects were associated with increased ERK
1/2 and p38 MAP kinase phosphorylation in the tissue
(Figure 7). Collectively, these results indicate that both
CSE and LPS induce a shift to a hypocontractile and pro-
liferative ASM phenotype.

Discussion
In this study, we demonstrated for the first time that CSE
and LPS induce a profound and concentration-dependent
increase in DNA synthesis and cell number of cultured
ASM cells. The CSE- and LPS-induced proliferation is
dependent on phosphorylation of ERK 1/2 and p38 MAP
kinase and downstream mitogenic signalling. In addition,
we demonstrated that CSE and LPS treatments reduce
the maximal contraction of ASM preparations to metha-
choline and KCl, which is also associated with increased

ERK 1/2 and p38 MAP kinase phosphorylation. Collec-
tively, these data indicate that CSE and LPS induce a phe-
notype shift of ASM to a proliferative and less contractile
phenotype that could be involved in airway remodelling
in COPD.

Although small airway remodelling has been associated
with cellular inflammation, evidence suggesting that
direct action of cigarette smoke on the airway wall is
involved in airway remodelling is accumulating. In rat
tracheal explants, Wang and colleagues [21,22] demon-
strated direct effects of CS on the release of active TGF-
β1, with subsequent phosphorylation of Smad-2 and
upregulation of CTGF and procollagen gene expression.
In addition, in a cell-free system, cigarette smoke extract
was found to release active TGF-β1 from (recombinant)
latent TGF-β1 via an oxidative mechanism [22]. Acute CS
exposure of mice may also induce a transient increase in
TGF-β1-, CTGF-, procollagen- and PDGF-gene expres-
sion and Smad-2 phosphorylation [23]. While the maxi-
mal response was observed 2 h after CS exposure, the

Figure 2 CSE and LPS induce ERK 1/2 phosphorylation. Serum deprived BTSM cells were treated with CSE (15%) or LPS (1 μg/ml) up to 2 h. Cell 
lysates were analyzed by immunoblotting for phospho-ERK 1/2 (Thr202/Tyr204) and total ERK 1/2 to correct for differences in protein loading. Phospho-
ERK 1/2 was quantified using densitometry and normalized to the maximal response in each experiment. Representative blots are shown. Data rep-
resent means ± S.E.M. of 7 experiments. *P < 0.05, **P < 0.01, #P < 0.1 vs control at t = 0
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increase in inflammatory cell numbers was only signifi-
cant after 24 h, by which time the gene expression had
subsided. This indicates that a dissociation between pro-
fibrotic remodelling responses and inflammatory cell
responses may occur. Chronic CS exposure of these mice
resulted in a persistent increase in gene expression of
above-mentioned factors and an increase in airway wall
collagen. Collectively, these data indicate that CS may ini-
tiate airway remodelling by inducing profibrotic growth
factors in the airway wall, which can lead to increased
deposition of matrix proteins. In addition, these observa-
tions imply that CS creates conditions which are strongly
mitogenic to ASM, since both growth factors and colla-
gen promote ASM proliferation, which may lead to an
increase in ASM mass [33,34,38]. Our present observa-
tions indicate that a direct effect of CS on ASM prolifera-
tion may also be involved in airway remodelling. To what
extent autocrine processes, involving the release of
growth factors and/or pro-proliferative ECM proteins by
these cells [39,40], may play a role, is currently unknown.

Remarkably, previous reports [41] have indicated that
CSE may also augment proliferation of passively sensi-
tized human ASM cells.

Prolonged exposure of cultured airway structural cells,
including ASM cells, to CSE may have cytotoxic effects
on these cells by inducing apoptosis and necrosis in a
concentration- and time-dependent manner [42-45].
Thus, in human ASM cells, a time- and concentration-
dependent induction of cell-cycle arrest, apoptosis and
necrosis by exposure to 2,5 - 20% CSE for 24 - 72 h has
been demonstrated [42]. Accordingly, the viability of our
BTSM cells was reduced after 24 h continuous incubation
of the cells with 15% CSE (not shown). However, it was
found that short, pulsed exposures of ASM cells to 5 -
50% CSE have a proliferative rather than a toxic effect on
these cells. This is of major importance, as this approach
seems to be a more suitable model for mimicking the in
vivo effects of CS than continuous exposure to high con-
centrations of CSE for several hours. In addition, CSE
exposure may be a more suitable approach for studying

Figure 3 CSE and LPS induce p38 MAP kinase phosphorylation. Serum deprived BTSM cells were treated with CSE (15%) or LPS (1 μg/ml) up to 2 
h. Cell lysates were obtained and analyzed by immunoblotting for phospho-p38 MAP kinase (Thr180/Tyr182) and total p38 MAP kinase to correct for 
differences in protein loading. Immunoblots were quantified using densitometry and the abundance of CSE- or LPS-induced p38 MAP kinase phos-
phorylation was normalized to the maximal response in each individual experiment. Representative blots are shown. Data represent means ± S.E.M. 
of 4-5 experiments. *P < 0.05, **P < 0.01, ***P < 0.001, #P < 0.1 vs control at t = 0
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the direct, epithelium-independent effects of CS on ASM,
as during smoking ASM is not directly exposed to CS but
indirectly, to components of CS after passing the epithe-
lial barrier.

LPS activates the Toll-like receptor 4 (TLR4) signalling
pathway, causing activation NF-κB and AP1, which
results in transcription of pro-inflammatory cytokine
genes and initiation of the innate immune response [46].
In human subjects, acute experimental LPS inhalation
leads to pulmonary and systemic inflammatory responses

associated with airways obstruction and increased airway
responsiveness [47,48]. Chronic exposure to LPS-con-
taining dust or bio-aerosol in occupational or home envi-
ronment has also been associated with persistent airway
inflammation, decline of lung function and airway hyper-
responsiveness [14,49,50]. Moreover, LPS exposure may
contribute to the severity of asthma [50]. LPS may be
importantly involved in bacterial infection-induced exac-
erbations of COPD, which contribute to the progression
of the disease and diminish the quality of life [51-53]. In

Figure 4 CSE and LPS increase cyclin D1 expression. Serum-deprived BTSM cells were treated with CSE (15%) for 1 h, or LPS (1 μg/ml) or PDGF (30 
ng/ml) for 24 h. Cell lysates were obtained 24 h after stimulation and analyzed by immunoblotting for cyclin D1 and β-actin to correct for protein 
loading. Cyclin D1 was quantified using densitometry and normalized to control expression. Data represent means ± S.E.M. of 4-7 experiments. *P < 
0.05 vs control

 

Contro
l

CSE 15%

LPS 1ug/m
l

PDGF 30 ng/m
l

C
yc

lin
 D

1 
ab

un
da

nc
e 

(%
 o

f c
on

tr
ol

)

0

50

100

150

200

*
*

*

Cyclin D1

ß-actin

Control              LPS            PDGF           CSE

Cyclin D1

ß-actin

Control              LPS            PDGF           CSE

* *
*

 

Contro
l

CSE 15%

LPS 1ug/m
l

PDGF 30 ng/m
l

C
yc

lin
 D

1 
ab

un
da

nc
e 

(%
 o

f c
on

tr
ol

)

0

50

100

150

200

*
*

*

Cyclin D1

ß-actin

Control              LPS            PDGF           CSE

Cyclin D1

ß-actin

Control              LPS            PDGF           CSE

* *
*



Pera et al. Respiratory Research 2010, 11:48
http://respiratory-research.com/content/11/1/48

Page 8 of 12
animal models, exposure to LPS induces various inflam-
matory and pathological changes closely mimicking
COPD, including airway remodelling and emphysema
[17,18,54]. Our present data provide evidence that a
direct effect of LPS on ASM cell proliferation may con-
tribute to airway remodelling. Although it has been

reported that tobacco smoke is contaminated with LPS
[8], LPS is unlikely to have contributed to the CSE-
induced effects presented in this study, since LPS concen-
trations in the CSE were hardly detectable and far below
the concentrations needed to induce ASM cell prolifera-
tion (not shown). This is in accordance with previous

Figure 5 CSE- and LPS-induced proliferation is dependent on ERK 1/2 and p38 MAP kinase. Serum-deprived BTSM cells were treated 2 times (1 
h, day 0 and day 2) with CSE (15%) or 4 days continuously with LPS (1 μg/ml) in the absence or presence of the MEK inhibitor U0126 (3 μM) and the 
p38 MAP kinase inhibitor SB 203580 (10 μM) (panels A and B), as well as in the absence or presence of the MEK inhibitor PD 98059 (30 μM) and the 
p38 MAP kinase inhibitor SB 239063 (10 μM) (panels C and D). Cells were counted in duplicate on day 4, using a hemocytometer. Data represent means 
± S.E.M. of 4-7 experiments. *P < 0.05, **P < 0.01 vs untreated control, #P < 0.05, ##P < 0.01, ###P < 0.001 vs CSE or LPS treatment in the absence of 
inhibitor.
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studies demonstrating that the LPS concentration in CSE
is very low and that neutralisation of LPS in CSE, using
polymyxin B, does not affect the CSE-induced IL-8
release by human macrophages [55]. In addition, we
investigated the effect of combined CSE and LPS treat-
ment on ASM cell proliferation, since both factors may be
involved simultaneously in exacerbations of COPD. How-
ever, no additive effects were observed, clearly indicating
that both stimuli act via common pathways, as previously
also suggested by others [55].

ASM cells display phenotypic plasticity, characterized
by reversible changes in contractile, proliferative and syn-
thetic characteristics, and governed by a variety of
growth factors, cytokines, G-protein-coupled receptor
agonists and ECM proteins [33-35,38,56-59]. In vitro,
smooth muscle-specific contractile protein expression is
reduced in response to serum-rich media or growth fac-
tors, leading to a decrease in contractility, whereas the
proliferative capacity is increased [33,35,57,58]. Previous
studies have shown that ERK 1/2 and p38 MAP kinase are
importantly involved in PDGF-induced proliferation and
hypocontractility of ASM [33,35]. Indeed, activation of
ERK 1/2 has been shown to increase the expression of
cyclin D1, a key regulator of G1 phase cell cycle progres-
sion [60,61] and to play a fundamental role in ASM cell
proliferation [60,62-64]. p38 MAP kinase activation has

also been shown to contribute to ASM cell cycle progres-
sion and proliferation [33,35,65-68], although this may
depend on the mitogen used [65,68]. The present study
demonstrated that both CSE and LPS induce phosphory-
lation of ERK 1/2 and p38 MAP kinase as well as
increased expression of cyclin D1 in BTSM cells, whereas
inhibition of ERK 1/2 and p38 MAP kinase prevented the
CSE- and LPS-induced proliferation of these cells. As a
possible mechanism that may be involved, CSE was
recently shown to induce ERK 1/2 and p38 MAP kinase
phosphorylation through NADPH oxidase-induced reac-
tive oxygen species (ROS) formation in human ASM cells
[69]. NADPH oxidase has previously also been shown to
be involved in proliferative effects of TGF-β1 in these cells
[70].

Expression of TLR4 receptors [31,32] and LPS-induced
ERK 1/2 and p38 MAP kinase phosphorylation [31,71] in
ASM cells have previously been reported as well.
Remarkably, in rabbit ASM, it was shown that LPS-
induced ERK 1/2 and p38 MAP kinase activation had
opposing effects on LPS-induced hypercontractility [31].
The LPS-induced hypercontractility of rabbit ASM prep-
arations seems to be at variance with our observation of
an LPS-induced hypocontractility of BTSM. Difference in
duration of LPS treatment (24 h vs 8 days in our study) as
well as species differences could possibly underlie this

Figure 6 CSE and LPS induce BTSM hypocontractility. Methacholine (A)- and KCl (B)-induced contractions of BTSM strips cultured for 8 days with 
or without LPS (1 μg/ml) or exposed to 15% CSE for 1 h daily during 8 days. Data represent means ± S.E.M. of 4-6 experiments, each performed in 
duplicate. *P < 0.05 vs control.
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difference. Indeed, a previous study from our lab indi-
cated that at least 4 days of treatment with FBS was
required to induce a proliferative BTSM phenotype with
a significant decrease in contractility [33]. A hypocon-
tractile ASM phenotype has also been observed after
long-term incubation of ASM preparations with other
growth factors, including PDGF and IGF-1 [33] as well as
with pro-proliferative ECM proteins, such as collagen I
and fibronectin [34]. It has been demonstrated that the
reduced contractility induced by growth factors and ECM
proteins is accompanied by reduced expression of con-
tractile proteins, such as sm-myosin, calponin and sm-α-
actin [34]. Such a mechanism could also underlie CSE-
and LPS-induced hypocontractility of BTSM. Thus, CSE
as well as LPS reduced the maximal contractile response
to both a receptor-dependent (methacholine) and a
receptor-independent (KCl) stimulus, indicating that
post-receptor alterations such as reduced contractile pro-
tein expression are likely to be involved.

Conclusions
In conclusion, our in vitro data provide evidence that
both CSE and LPS may contribute to airway remodelling
in COPD through direct effects on ASM cells causing a

proliferative phenotype that may be involved in increased
ASM mass in this disease.
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Figure 7 CSE and LPS induce ERK 1/2 and p38 MAP kinase phosphorylation in BTSM strips. BTSM strips were cultured for 8 days with or without 
LPS (1 μg/ml) or exposed to 15% CSE for 1 h daily during 8 days. Tissue lysates were analyzed by immunoblotting for phospho-ERK 1/2 (Thr202/Tyr204) 
and phospho-p38 MAP kinase (Thr180/Tyr182). Differences in protein loading were corrected for by immunoblotting for total ERK 1/2 and total p38 MAP 
kinase. Immunoblots were quantified using densitometry. The abundance of CSE- and LPS-induced ERK 1/2 and p38 MAP kinase phosphorylation was 
normalized to controls from untreated strips. Data represent means ± S.E.M. of 3-6 experiments. *P < 0.05, **P < 0.01 vs control
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