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The ability of human pluripotent stem cells (hPSCs) to specialize in neuroepithelial tissue
makes them ideal candidates for use in the disease models of neural tube defects. In
this study, we cultured hPSCs in suspension with modified neural induction method,
and immunostaining was applied to detect important markers associated with cell fate
and morphogenesis to verify the establishment of the neural tube model in vitro. We
carried out the drug experiments to further investigate the toxicity of valproic acid (VPA)
exposure and the potential protective effect of folic acid (FA). The results demonstrated
that neural rosette undergoes cell fate speciation and lumen formation accompanied by
a spatiotemporal shift in the expression patterns of cadherin, indicating the model was
successfully established. The results showed that VPA caused morphogenesis inhibition
of lumen formation by altering cytoskeletal function and cell polarization, which could be
rescued by FA supplement.
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INTRODUCTION

Neural tube defects (NTDs) are one of the most common congenital malformations. The main
manifestations include spina bifida and anencephaly (Avagliano et al., 2019). Severe fatal NTDs lead
to death during the fetal period, while surviving children have to face lifelong disability as well as the
high cost of medical and life care, which brings the family and society heavy burden (Malcoe et al.,
1999). NTDs are caused by the interaction of environmental and genetic factors. The environmental
factors include medicine exposure, infection, and radiation (Jia et al., 2019). Valproic acid (VPA)
is one of the most commonly prescribed drugs to control epileptic seizures. Unfortunately, reports
have shown that VPA exposure during pregnancy increases the risk of NTDs in the fetus, which
puts the use of VPA in pregnant women into a dilemma (Diav-Citrin et al., 2008; Ornoy, 2009).
Therefore, exploring the mechanism of NTDs induced by VPA is of great significance.
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The current research on NTDs is mainly based
on animal models, which has confirmed that VPA is
neurotoxic to embryonic development (Hughes et al., 2018).
Neurodevelopmental toxicity of VPA in zebrafish embryos
includes developmental delay (Teixidó et al., 2013), brain defects
(Cowden et al., 2012), locomotor behavioral changes, and
social interaction impairment (Dwivedi et al., 2019). Although
a detailed neurotoxic analysis of VPA exposure has been
performed, the mechanism by which VPA is teratogenic remains
unknown, and a range of potential mechanisms including folic
acid (FA) antagonism have been proposed (Dawson et al., 2006;
Fathe et al., 2014; Semmler et al., 2017).

Folic acid is an essential synthetic nutritional supplement
found in fortified food and dietary supplements. FA metabolism
is vital for nervous system development and function, enabling
nucleic acid biosynthesis, cell proliferation, and growth necessary
for the neurogenesis process (Balashova et al., 2018). With
the promotion of FA supplementation during pregnancy, the
prevalence of NTDs has reduced significantly (Czeizel et al.,
2013), which reduces the incidence of NTDs in humans by
60–70% (van der Linden et al., 2006)and rescues NTDs induced
in chick embryos (Güney et al., 2003; Weil et al., 2004), whereas
the specific protective mechanism is not yet clear. FA pathway
is of considerable importance, as clinicians need to know if
FA supplementation can prevent VPA-induced NTDs. It is
well established that FA supplementation reduces the risk of
embryonic NTDs and other congenital malformations in humans
and rodents (Dawson et al., 2006). As VPA-induced neurotoxicity
is assumed to be related to folate deficiency (Semmler et al., 2017),
we hypothesized that FA is a feasible candidate for preventing
VPA-induced embryonic neurogenesis abnormalities.

Model animals such as mice, chickens, and zebrafish have
certain limitations in exploring the mechanism of human NTDs
induced by VPA for substantial interspecies divergence. Human
pluripotent stem cells (hPSCs) are widely employed in the study
of human embryonic development for their self-renewal and
multi-differentiation potential characteristics (Takahashi et al.,
2007), which offer a unique window to explore the process
of early embryonic development. In this study, we modified
neural induction method to generate neural rosette tissue
with a single lumen derived from hPSCs (Meinhardt et al.,
2014), morphologically similar to the pseudo-stratified columnar
epithelium of neural tube in vivo, which can be used as a
stable neural tube model in vitro. Based on the model, we
explored the effect of VPA exposure on neural differentiation to
further probe the potential mechanism underlying VPA-induced
NTDs. Finally, we investigated whether FA could rescue
VPA-induced perturbations.

MATERIALS AND METHODS

Human Pluripotent Stem Cells Culture
and Neural Induction
Undifferentiated hPSCs (WA-09 alias H9, WiCell) were seeded
into Matrigel-coated 6 well plates in media (Thermo Fisher,

CA1001500) without feeders and passaged weekly. HPSCs
were differentiated into neural rosettes using a published
method with minor modifications (Meinhardt et al., 2014)and
cultured in neural induction media (NIM) containing N2(1:100),
NEAA(1:100), and DMEM/F12. Y-27632 (10 µM) and B27(1:50)
supplement were added into the NIM at day 0 of differentiation.
Fresh NIM medium was freshly exchanged daily.

Immunofluorescence Staining
Tissues were fixed in 4% paraformaldehyde at 4◦C for 5 h before
dehydration and then embedded in O.C.T for the frozen slice.
Tissues were permeabilized with 0.2% Triton X100 in PBS for
10 min followed by blocking with 10% donkey serum in PBS
for 1 h at room temperature. Primary antibodies were applied
overnight at 4◦C, followed by incubation with corresponding
secondary antibodies-conjugated with Alexa Fluor 488 or 546
at room temperature for 1 h on the next day. The primary
antibodies we used in the study are NANOG (R&D, AF1997),
PAX6 (Biolegend, 901302), ECAD (Cell Signaling, 3195T),
NCAD (Biolegend, 350802), SOX2 (R&D, AF12018), OCT4
(Abcam, ab181557), Nestin (Santa Cruz, sc-23927), PHH3
(Millipore, MABE941), ZO-1 (Thermo Fisher, 61-7300), PKCλ

(BD, 610207), EZRIN (Sigma, E8897), PAX3(R&D, MAB2457),
and NKX2.1(Santa Cruz, sc-13040). The stained coverslips
were mounted for confocal laser scanning microscopy. We
randomly select different positions for fluorescence intensity
measurement with ZEN and performed intensity analysis with
GraphPad Prism 7.

Western Blot
Proteins were extracted from tissue with RIPA buffer (Sigma,
R0278) containing protease inhibitor (Roche, 04693159001). The
concentrations of extracted cellular proteins were measured using
a QuantiPro BCA assay kit (Sigma, QPBCA). Equal amounts
of protein were loaded into SDS-PAGE gels and transferred
to a nitrocellulose membrane with Transfer-Blot Turbo system
(Bio-rad, 170-4150). The membranes were blocked with 5%
skim milk in TBST and the primary antibody phosphorylated
myosin light chain (pMLC) (Cell Signaling, 3671) was incubated
overnight at 4◦C. After incubation with secondary antibodies
conjugated with horseradish peroxidase, protein bands were
visualized using the G: Box Bio Imaging systems. Protein
expression was normalized to GAPDH (Abcam, ab181602),
which serves as a loading control.

RNA Sequence
The purity of the sample was determined by NanoPhotometer
(IMPLEN, CA, United States). The concentration and integrity
of RNA samples were detected by Agilent 2100 RNA Nano 6000
Assay Kit (Agilent Technologies, CA, United States). Sequencing
libraries were generated using VAHTS Universal V6 RNA-seq
Library Prep Kit for Illumina (NR604-01/02). RNA concentration
of library was measured using Qubit RNA Assay Kit in Qubit
3.0 to preliminary quantify and then dilute to 1 ng/µl. Insert
size was assessed using the Agilent Bioanalyzer 2100 system
(Agilent Technologies, CA, United States). After the insert
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FIGURE 1 | Cell fate specialization of the neural rosette. (A) A schematic diagram illustrating the method of differentiating hPSCs to the neural rosette (Meinhardt
et al., 2014). (B) Morphological results showed that the neural rosette contains a central cavity. (C) The diameter of cell aggregates from day 1 to day 6, n = 25.
(D) The expression of NANOG decreased and the expression of PAX6 increased during differentiation. (E) There was a transition of the temporal-spatial expression
pattern of ECAD and NCAD during the differentiation. (F) The expression of PAX3 at day 4. (G) The expression of NKX2.1 at day 4. Scale bars: 50 µm.

size met the expectation, the Bio-RAD CFX 96 fluorescence
quantitative PCR instrument was used to accurately quantify the
library effective concentration, and the reagent used was Bio-
RAD KIT iQ SYBR GRN. The clustering of the index-coded
samples was performed on a cBot cluster generation system
using HiSeq PE Cluster Kit v4-cBot-HS (Illumina) according
to the manufacturer’s instructions. After cluster generation, the

libraries were sequenced on an Illumina platform and 150 bp
paired-end reads were generated. The cluster generation and
sequencing were performed on Novaseq 6000 S4 platform, using
NovaSeq 6000 S4 Reagent kit V1.5 (Annoroad Gene Technology,
Beijing, China). Each group of samples includes control group
and VPA1 µM group and the experiment was performed in three
biological replicates.
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FIGURE 2 | The appearance of pseudo-stratified columnar epithelium during cell fate specialization. (A) The separation of SOX2 and OCT4 during the differentiation.
(B) Neural rosette expressed Nestin by day 4. (C) Expression of PHH3 was rich at the apical area by day 4. Scale bars: 50 µm.

Statistical Analysis
GraphPad Prism 7 (GraphPad Software) was used for all
statistical analyses and graphs made. Statistical analysis was
performed by one-way ANOVA with P-values < 0.05 deemed
significant. ns – P > 0.05, ∗ – P < 0.05.

RESULTS

Generation of the Neural Rosette in vitro
We first modified the neural induction method to obtain a single
neural rosette derived from hPSCs (Figure 1A). Initially, hPSCs
were dissociated into a single cell and cultured in suspension in
the NIM containing N2(1:100), NEAA(1:100), and DMEM/F12,
which generated free-floating cell aggregates by day 2, defined as
embryoid bodies (EBs). We noted the appearance of the neural
rosette with a central cavity by day 4, which further differentiated
into radial tissue composed of multi-layered cells by day 6
(Figure 1B). As observed, the morphological analysis revealed
that the diameter of cell aggregates gradually increased during the
differentiation process (Figure 1C).

Cell Fate Specialization During the
Differentiation
The development of early embryo involves a pluripotent cell
population within the inner cell mass differentiating to the
epiblast and then to the three germ layers, ectoderm, mesoderm,
and endoderm. The embryonic ectoderm thickens to form
pseudostratified columnar cells and extends to form a neural plate
under neural induction, which folds to the dorsal of the embryo to
form the neural tube (Chizhikov and Millen, 2005). To verify the
characteristic of the neural rosette, we first examined the tissue
from the aspect of cell fate specialization.

NANOG is known as a master regulator of self-renewal
and pluripotency, and the downregulated level of which leads
to the exit from pluripotency and ultimately differentiation

(Pan and Thomson, 2007). According to the development
process in vivo, we first detected the expression of NANOG.
Immunofluorescence (IF) staining showed that almost all cells in
the EBs expressed NANOG by day 2. As expected, we observed
a strong reduction in the level of NANOG from day 2 to day
6 (Figure 1D), which demonstrated that hPSCs have gradually
exited from pluripotency under neural induction. Ectodermal
lineage marker PAX6 plays an important role in regulating
neurogenesis during the development of neural tube (Osumi
et al., 2008). Therefore, we examined the expression of PAX6
during the differentiation. IF staining revealed that there was
no expression of PAX6 by day 2, while PAX6 was detected in
the neural rosette by day 4 and most of the cells were PAX6
positive by day 6 (Figure 1D), indicating that neural rosette has
differentiated into neuroectoderm.

After specification of the neuroectoderm at the dorsal
ectoderm germ layer, the development of neural tube continues
with the acquisition of dorsal neural identity, revealed by
expression of dorsal markers such as PAX3, by the midline dorsal
ectodermal cells of the gastrulating embryo. We thus sought to
examine the dorsal and ventral fate of neural rosette derived from
hPSCs. Immunostaining revealed that neural rosette expressed
the dorsal neural marker PAX3 at day 4 (Figure 1F). PAX6 are
expressed by undifferentiated cells in the ventral region of the
neural tube (Ericson et al., 1997). We detected the expression of
PAX6 at day 4 while the ventral neural marker NKX2.1 was not
detectable at day 4 (Figure 1G). In the previous research, PAX6
is first detected at 5 somites (Inoue et al., 2000; Bell et al., 2001)
while NKX2.1 expression is initially observed slightly later at 10–
12 somites (Shimamura et al., 1995; Sussel et al., 1999). Together,
these data showed the dorsal-ventral pattern of neural rosette
derived from hPSCs is consistent with the previous research.

To further understand the process of cell fate specialization,
we examined crucial markers including early neuroectoderm
marker SOX2 (Kishi et al., 2000) and pluripotency marker OCT4
highly expressed in the inner cell mass and epiblast of the embryo
(Pesce and Schöler, 2001). As expected, most cells expressed

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 888152

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-888152 May 10, 2022 Time: 16:49 # 5

Zhang et al. Application of hPSCs

FIGURE 3 | The formation of a single lumen. (A,B) F-actin was concentrated at the apical area in the neural rosette. (C,D) ZO-1 was concentrated at the apical area
in the neural rosette. (E) F-actin co-localized with ZO-1 at the apical area. (F) The fluorescence intensity of F-actin and ZO-1. Scale bars: 50 µm. *P < 0.05.

SOX2 and OCT4 simultaneously by day 2, consistent with the
developmental phenomenon that SOX2 expression is earlier than
PAX6 in the gastrulation stage in vivo. We found the separation
of SOX2 and OCT4 in the neural rosette and there were two types
of cells: SOX2 + OCT4- and SOX2-OCT4+. The proportion of
SOX2-OCT4+ cells accounted for only a small part (Figure 2A),
indicating that the loss of pluripotency and acquisition of neural
property drive hPSCs toward neuroectoderm. In addition, Nestin
expressed by neural stem cells was positive in the neural rosette
and formed pseudo-stratified columnar epithelium (Figure 2B),
similar to previous research. Phospho-Histone H3 (PHH3), a
recently described marker specific for proliferation (Bershteyn
et al., 2017), was preferentially distributed at the apical domain
of single-layered neuroepithelium (Figure 2C).

Temporal-Spatial Transformation of
Cadherins
The previous study has revealed that the transformation of
cadherin during embryonic development plays a crucial role
in regulating cell fate decisions. We detected the expression of
E-cadherin (ECAD) and N-cadherin (NCAD), typical Type I
cadherins with temporal-spatial expression patterns. IF staining
showed that ECAD was highly expressed in the intercellular space
by day 2, and there was faint expression by day 4 (Figure 1E),
similar to that of high expression on the cell surface during
the HH8 period in the chicken embryo (Rogers et al., 2018).
Meanwhile, no expression of NCAD was detected by day 2 and
we found that NCAD was enriched at the apical part in the neural
rosette tissue by day 4, which formed a closed ring in the center

(Figure 1E), consistent with the phenomenon that NCAD was
highly expressed in the neural tube during the HH10 period in
the chicken embryo (Rogers et al., 2018). HH8 and HH10 were
a series of normal stage in the development of the chick embryo
proposed by Hamburger and Hamilton (1992).

The Formation of a Single Lumen
The apical ring of the neural rosette is highly similar to the
lumen of the neural tube in vivo, which is a crucial morphological
event during neural tube development. The myosin at the apical
domain of neuroepithelium assembles and contracts, defined as
apical constriction (Morita et al., 2010). Therefore, we examined
the expression of cytoskeleton marker F-actin. IF staining showed
that F-actin was concentrated at the apical area in the neural
rosette t (Figures 3A,B). Apart from contractile actomyosin
networks at the apical domains, lumen morphogenesis requires
intercellular tight junctions (Nishimura et al., 2012). ZO-1 is
a membrane peripheral protein related to the tight junctions
between cells. Thus, we next examined the expression of ZO-1.
As expected, ZO-1 was enriched at the apical surface in the neural
rosette (Figures 3C,D), similar to the distribution of F-actin.
Besides, the fluorescence intensity of F-actin and ZO-1 presented
a coincident double-peak shape, in which a low signal area
represents lumen, indicating that F-actin co-localizes with ZO-1
at the apical area (Figures 3E,F), consistent with the previous
study (Odenwald et al., 2017).

Simultaneously, the polarized protein that interacts with
the cytoskeleton is enriched at the luminal surface, leading
to asymmetric division of neuroepithelial cells. PKCλ is a
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FIGURE 4 | Polarized protein co-localized with ZO-1 at the apical area. (A) PKCλ was enriched at the apical part of epithelial cells. (B) EZRIN was enriched at the
apical part of epithelial cells. (C,D) PKCλ and EZRIN co-localized with ZO-1 at the apical area. Scale bars: 50 µm.

core protein that maintains the polarity and integrity of
neuroepithelial cells (Chen et al., 2017). EZRIN interacts with
both F-actin and membrane proteins, exhibiting strong polarity
of the actin cytoskeleton (Zhu et al., 2020). To further examine
the emergence of polarized neuroepithelial tissues, we continued
to detect the expression of PKCλ and EZRIN in the neural
rosette. IF staining showed that PKCλ was enriched at the
apical part of epithelial cells, generating a polarized ring
(Figure 4A), consistent with what was previously reported
(Chen et al., 2017). Meanwhile, we found the existence of the
EZRIN-rich apical domain in the neural rosette (Figure 4B). In
addition, fluorescence intensity analysis revealed that both PKCλ

and EZRIN co-localized with ZO-1 at the apical area, presenting
a double-peak shape (Figures 4C,D).

All above results demonstrated that the neural rosette derived
from hPSCs we have obtained could be used as a neural tube
model in vitro, providing a research platform to explore the
mechanism of NTDs.

Valproic Acid-Induced Morphogenesis
Inhibition on Neural Tube Model
To explore the effect of VPA exposure on neural tube
development, hPSCs were treated with increasing concentrations

of VPA at 0 µM (control), 0.1 µM, 1 µM, and 10 µM from
day 0 (Supplementary Figure 1A). Compared to control, the
neural tube in the VPA 10 µM group was irregular with messy
structure; the neural tube in the VPA 1 µM group was visible
with ambiguous structure. There was no significant difference
between the VPA 0.1 µM group and the control group. The
diameter displayed a decrease in a dose-dependent manner
(Supplementary Figures 1B,C). These results implied that VPA
induced morphogenesis inhibition on the neural tube model.

Since VPA was added on day 0 of the differentiation process,
it is particularly necessary to determine that whether VPA
blocked the induction of neuroepithelial lineages. We have
already characterized the neurogenesis in the model under
control conditions, thus we examined the expression of PAX6 in
the VPA model. Immunostaining showed that the expression of
PAX6 was positive in both control group and VPA-treated groups
(Figure 5C), representing a success of EBs to differentiate into
neuroepithelial lineages.

Structure damage is related to lumen formation, a crucial
morphological event during the differentiation in vitro. To
further investigate how VPA impedes lumen morphogenesis,
we first detected the expression of F-actin. IF staining showed
that the expression of F-actin in VPA-treated groups except the
VPA 0.1 µM group was in a disorderly distribution and failed
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FIGURE 5 | VPA-induced morphogenesis inhibition on neural tube model. (A,D) The expression of F-actin at the apical domain in control, 0.1, 1, and 10 µM group.
(C) The expression of PAX6 in control, 0.1, 1, and 10 µM group. (B,E) The expression of ZO-1 at the apical domain in control, 0.1, 1, and 10 µM group. (F) RNA
sequencing of VPA1 µM and control group. Scale bars: 50 µm. *P < 0.05.

to accumulate at the apical surface (Figures 5A,D). We next
detected ZO-1 and found that there was a faint expression of
ZO-1 at the apical surface in VPA 10 µM and VPA 1 µM
groups (Figures 5B,E). These results demonstrated that VPA
has a destructive effect on the cytoskeleton reorganization and
cell polarization, which may be the mechanism of VPA-induced
morphogenesis inhibition.

The phenotyping results above showed that VPA can
impede lumen formation of the neural rosette. RNA
sequencing (RNA-seq) was performed to gain insight into
the underlying molecular basis for the changes. Gene
Ontology (GO) analysis suggested genes differentially
expressed were enriched in several biological processes
including apical junction assembly (Figure 5F). These gene
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FIGURE 6 | FA rescued VPA-induced morphogenesis inhibition. (A,C) The expression of F-actin at the apical domain in control, VPA1 µM, FV and FA10 µM group.
(B,D) The expression of ZO-1 at the apical domain in control, VPA1 µM, FV, and FA10 µM group. (E) Western blot of pMLC in control, VPA1 µM, FV group.
(F) Quantification of triplicate experiments. Scale bars: 50 µm. *P < 0.05.

expression changes indicated that VPA exposure might affect
apical constriction.

Folic Acid-Mediated Remedy for Valproic
Acid-Induced Morphogenesis Inhibition
Studies have found that FA has a protective effect on the
neurotoxicity of VPA (Muhsen et al., 2021), we hypothesized that
FA is a feasible candidate for preventing VPA-induced embryonic
neurogenesis abnormalities. To further investigate whether FA
supplementation could ameliorate the VPA-induced negative
effect, we cotreated hPSCs with VPA1 µM and FA10 µM, defined
as FV group (Supplementary Figure 2A). It is noteworthy that
there was a visible structure in the FV group and there was
no significant difference between the control and FV group
(P > 0.05) (Supplementary Figures 2B,C), indicating that FA
rescued VPA-induced morphogenesis inhibition.

To further explore whether FA protects against VPA-induced
destruction of cytoskeleton reorganization and cell polarization,
we first detected the expression of F-actin and found that the
expression of F-actin in the FV group was condensed at the
apical surface compared to the VPA1 µM group (Figures 6A,C).
In addition, we examined the expression of ZO-1. There was
a similar expression pattern of ZO-1 between the FV and
control group (Figures 6B,D). The above results indicated
that FA counteracts VPA-induced damage on cytoskeleton
reorganization and cell polarization.

To investigate the molecular mechanism underlying the
protective effect, western blot was applied to detect the expression

of pMLC, an active form of myosin II, closely related to apical
constriction. Results demonstrated that the expression of pMLC
in the VPA 1 µM group was decreased compared to the control.
When co-treated with VPA and FA, the expression of pMLC
increased (Figures 6E,F), suggesting that FA rescued the VPA-
induced morphogenesis inhibition by increasing the level of
pMLC expression.

DISCUSSION

In the present study, we first modified the neural induction
method to generate neural rosette and found that there were
cell fate specialization and lumen formation accompanied
with the temporal-spatial expression pattern of cadherins.
Therefore, we hypothesized that neural rosette derived from
hPSCs can be used as a neural tube model in vitro to assess
VPA neural teratogenicity, which is rapid and effective and
avoids ethical restriction and interspecies divergence compared
to animal models.

Here, we demonstrated that VPA exposure resulted in a
dose-dependent morphogenesis inhibition on the neural tube
model. Disordered distribution of F-actin and ZO-1 revealed
that VPA exposure destroyed lumen formation by impairing
cytoskeleton reorganization and cell polarization. RNA-seq
indicated that VPA exposure affected the expression of genes
closely related to apical contraction, which is required for lumen
formation in neural tube morphogenesis, a hallmark of vertebrate
epithelial cell layers. Apical constriction of cells depends upon
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the actin-myosin contractile force driven by localized myosin
light chain phosphorylation. Actin polymerization plays an
important role in apical contraction which promotes cytoskeletal
organization (Taniguchi et al., 2015). Claudins are essential for
cell shape changes during neural tube closure. Their removal did
not affect cell type differentiation, neural ectoderm patterning
(Baumholtz et al., 2017). Further investigations are required to
make a distinction between these mechanisms.

It is worth noting that we observed that FA supplementation
counteracts the VPA-induced effect on the cytoskeleton
and cell polarity by upregulating the expression of pMLC.
In a previous study, VPA-induced neural teratogenicity is
linked to perturbations in neurogenesis-related FA pathway
in folate-deficient models (Kao et al., 2014) and FA protects
against VPA-induced neural tube and brain defects in mice
(Dawson et al., 2006) and rats (Shona et al., 2018). Therefore, our
results are consistent with the above studies. Interestingly, pMLC
is an activated form of myosin II phosphorylated by MLCK
(Ikebe and Hartshorne, 1985). A recent study suggests that FA
improves the shape of epithelial cells during morphogenesis
through the MLCK pathway (Martin et al., 2019), which
is a possible mechanism for FA to play a rescue role. On
the other hand, there are conflicting findings suggesting
that FA supplementation has no protective effects against
VPA-induced neural teratogenicity in mice (Hansen et al., 1995)
and case-control studies in humans (Jentink et al., 2010). Further
research is required to decipher the mechanism underlying
the protective effect. In addition, the molecular interactions
that regulate many of the morphogenetic changes required for
neural tube closure occur at the apical cell surface (Colas and
Schoenwolf, 2001; Lawson et al., 2001). During neural tube
closure, apical localization of RhoA/ROCK signaling components
at the neural plate midline is required for pMLC, the downstream
target of RhoA/ROCK signaling, which then moves along actin
filaments to generate the contractile force required for apical
constriction (van Straaten et al., 2002). We speculate that FA may
affect the expression of pMLC by RhoA/ROCK signaling. Further
research is required to decipher the mechanism underlying the
protective effect.

To conclude, we established an effective neural tube model
in vitro from hPSCs by modifying the published method. Based
on the model, we found that VPA induced morphogenesis
inhibition including the destruction of cytoskeleton function
and cell polarity, and FA supplementation rescued these
perturbations. Combining our results and existing research,
we assume that the mechanism of FA-mediated remedy for
VPA-induced perturbations may be associated with the MLCK
pathway, further molecular mechanism remains uncertain.

Furthermore, we are not sure whether there is a decrease in
the percentage of MLC phosphorylation or the total levels of
MLC by quantifying pMLC with GAPDH as a control. It is
also unclear whether pMLC is a cause or consequence of the
observed failure of lumen formation, thus more research needs to
be performed. In addition, excessive apoptosis is an underlying
cause of NTDs (Huang et al., 2019). Apoptosis is known to
occur during and after neurulation in the neuroepithelium,
although the significance of this finding is not fully understood.
It has been postulated that apoptosis is required for bending
of the neural folds at the dorsolateral hinge point and for
midline epithelial remodeling once the neural folds have come
into contact and fused (Copp et al., 2003). Another study
has shown that apoptosis is not a requirement for neural
tube closure (Massa et al., 2009). Nevertheless, excessive cell
death in the neuroepithelium can disrupt anterior neural tube
closure by leaving the embryo with an inadequate number
of cells to undergo proper closure. Absence of exploration of
apoptosis in the neuroepithelium caused by VPA was another
limitation in the study.
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